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Abstract

Pricing telecommunication networks has become a topic
of high interest in order to deal with the increasing num-
ber of subscribers as well as more and more demanding
applications. Users’ behavior (or preferences) is usually
represented by means of the so-called utility function, butin
most cases this function expresses the instantaneous level
of satisfaction for the quality of service provided. In this
paper, we aim at extending a previous work on auctions
for bandwidth to the case where users (or applications) are
sensitive to the history of their previous allocations. We
introduce a mechanism which takes bids in the form of a fi-
nite set of three-(or more)-dimensional points, indicating
the bidders willingness to pay for a given quantity, con-
tingent on a given history of allocations or prices to the
bidder. Bids are partial representations of continuous util-
ity surfaces. The mechanism computes prices and alloca-
tions that are approximately (within specified bounds) and
myopically incentive compatible and approximately (within
specified bounds) and myopically efficient. The results are
approximate because we use piecewise linear approxima-
tions of the unknown true continuous utility functions. This
extension also includes a refinement of the scheme previ-
ously published by providing a closer approximation of real
user demand functions.

1 Introduction

During the last decade, the Internet has suffered from
congestion due to an exponentially increasing number of
subscribers, while capacity did not increase in the same
way. At the same time, applications have become increas-
ingly bandwidth and quality of service (QoS) demanding.
Many solutions have been proposed to cope with conges-
tion, but a natural one is to introduce pricing schemes to

control demand: if prices increase, demand decreases, and
conversely. Although many people argue that pricing is not
likely to be implemented thanks to the use of optical fiber
so that capacity will still be far away from demand, this
does not seem to be the case for wireless networks, where
available frequencies are limited, as well as for many access
networks, where switching from traditional copper lines to
optical fiber would be very expensive (this is traditionally
called the last mile problem [2]).

Pricing is thus the subject of a large literature; the reader
is advised to look at [7, 9, 12, 22] and the references therein
for overviews on the range of methods that have been de-
velopped so far. We deal here with auction schemes for
bandwidth. Auctions have been first used in thesmart mar-
ket proposal [14] at the packet level in such a way that
packets with the highest bid are served as far as capac-
ity is not exceeded, and the remaining ones are discarded.
The per-packet price almost follows the second-price princi-
ple: each admitted packets is charged the lowest bid among
all admitted packets. In order to alleviate the per-packet
management, progressive second price (PSP) auctions have
been developped [13]. In that scheme, users submit two-
dimensional bids composed of the amount of bandwidth
asked, and the unit price for it. Users with the highest unit
price are allocated the desired quantity. The scheme is stud-
ied using the framework ofgame theory[10] : the game
is played until a Nash equilibrium is reached, meaning that
no user (or player) has an incentive to deviate from his cur-
rent allocation. Here again, charges obey the second price
principle. Incentive compatibility (users’ interest is tode-
clare their real valuation of bandwidth), individual rational-
ity (users will always gain by entering the game) and effi-
ciency (the social welfare of the resulting allocation is max-
imized) are proved to be verified. Nevertheless, that scheme
(still) presents the drawbacks of requiring a convergence
phase (meaning a loss of steady state efficiency, especially
if players leave the game or new ones enter [15]), and it also
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requires that the bid profile (the list of users’ bids) be broad-
casted to all players at each step, resulting in signalization
overhead. Moreover, the properties of the scheme in terms
of incentives and efficiency rely on the strong assumption
that users are short-sighted, i.e. they do not take into ac-
count the convergence phase of the auction game [16]. To
cope with those problems, the authors have developped the
so-called multi-bid scheme where players submit a set of
two-dimensional bids for once when they enter the game
[17], meaning that they do notneedto send new bids after-
wards. Allocations and charges are then immediately com-
puted. It is thus a one-shot scheme where players do not
need to know the bid profile before submitting. Again, in-
centive compatibility, individual rationality and efficiency
are proved to be verified. Note that other auction schemes
exist in the literature, but we do not describe them here for
sake of conciseness [1, 3, 5, 6, 19, 20, 21].

In all those pricing schemes, the user behavior is mod-
eled by the so-called utility function, representing users’
preferences. This function may depend on various QoS
measures, but the obtained throughput or allocated band-
width is often the measure of interest. In all the previously
presented pricing schemes, the utility function depends on
the instantaneous allocation, and is therefore independent
of the allocations a player obtained previously. However,
we can easily imagine applications for which the utility of
getting a given amount of bandwidth depends on what was
previously obtained: for instance, it is the case of applica-
tions targeting a given average bandwidth.

Our goal is thus to extend the work on multi-bid auc-
tions to the case of history-dependent valuation functions.
We additionally provide a refinement of the results in [17]
by using a better approximation of real valuation func-
tions, resulting in improved error bounds. This work has
been inspired in part by ATHENA [8] where a history-
dependent utility function has been developped. Never-
theless, ATHENA considers only users with strict require-
ments, whereas we consider here elastic users, and it does
not include the analytical results in terms of incentives or
efficiency for instance that are provided here.

This paper is organized as follows. In Section 2 we
present the modeling of history-dependent utility functions
and discuss its practical validity. Section 3 presents the
multi-bid scheme applied to this model. This can be seen
as a generalization of the work on multi-bids in [17] where
it is applied only to history-independent utility functions,
with tighter bounds thanks to a modification of the alloca-
tion procedure. Section 4 then describes the properties ver-
ified by the scheme, that are individual rationality, (condi-
tional) incentive compatibility and (conditional) efficiency.
Note that those inter-temporal results are independent of fu-
ture allocations. This is typically justified when connection
durations are random and unknown, and may end at any

time. The consequences of the three aforementioned prop-
erties in terms of user behavior and efficiency/complexity
trade-off are investigated in Section 5. Section 7 gives our
conclusions and directions for future work.

2 A history-dependent model to represent
users’ preferences

We describe here the mathematical representation we
will consider to take into account the fact that the utility
of a user at a given time is a function not only of her current
allocation and charge, but also of what happened from her
arrival in the network.

Time is divided into slots: allocations and prices cannot
change within a time slot, which implies that slots are short
enough to prevent a user entering the game from waiting
too long before her request be treated, and long enough to
allow synchronization among the different parts of the auc-
tion game and control computational complexity.

We assume that utility functions are quasi-linear, which
means that for a useri whose resource allocation and charge
at a given time slott are respectivelyai,t andci,t, the utility
Ui,t is the difference between what useri thinks the resource
ai,t is worth to her (her willingness-to-pay) and the priceci,t

she is charged.
In this paper, we assume that a user willingness-to-pay

for the resource at a given time slot may depend on her pre-
vious allocation and/or charges. Formally, the utility of a
useri at timet is

Ui,t = θi(ai,t, f(Xi,t−1)) − ci,t, (1)

whereθi is useri’s valuation (or willingness-to-pay) func-
tion, Xi,t−1 is the history of useri’s allocations and costs
starting from her arrival until time slott − 1, andf is a
function that represents what criteria useri is sensitive to.
Following are examples of such criteria.

• f(Xi,t−1) = ∅: this is the case when the user is only
sensitive to her current allocation and price. This (sim-
ple) model was considered in [13, 17].

• f(Xi,t−1) = ai,t−1: the bandwidth allocated in the
previous slots. This case may correspond to a user that
is sensitive to the “continuity” of her allocation. For
example, consider a user whose target is to experience
a certain average throughput. Then this user will val-
uate more the resource at timet if she did not obtain
enough at the previous time slot:θi in this case is non-
increasing in its second argument.

• f(Xi,t−1) = (
∑t−1

k=t0
i
ai,k,

∑t−1
k=t0

i
ci,k), wheret0i is

the time slot when useri entered the game: here the
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user is sensitive to the cumulated resource she has ob-
tained and the total charge she has paid until the cur-
rent slot. This model can apply for example to users
downloading a file:

∑t−1
k=t0

i
ai,k is proportional to the

amount of data that useri has downloaded from the be-
ginning of her connection, and she may valuate more
or less the resource depending on the amount of data
that remains to be transfered, and on the amount of
money she has spent.

In this paper, we will treat the case whenf(Xi,t−1) is
one-dimensional, because it is more intuitive and enables
graphical interpretations. However, all next definitions and
properties also hold whenf(Xi,t−1) has several dimen-
sions. Consequently, the utility experienced by a useri dur-
ing time slot t depends on three parameters, that are her
current allocationai,t, the price she is chargedci,t, and the
value off(Xi,t−1) that we call thehistory-relevant crite-
rion for useri. To simplify the notations, we will noteξi

the value of the history-relevant criterion for a useri at the
current time slot, andΞi the set of possible values ofξi.

We assume that users have elastic demand, that is to
say their valuation function satifies some regularity assump-
tions. Moreover, we assume that the dependency ofθi on
the history-relevant criterion is monotone1. Those proper-
ties are summarized in Assumption A.

Assumption A ∀i ∈ I,

• ∀ξi ∈ Ξi, θi(0, ξi) = 0 andθi(·, ξi) is non-decreasing,

• ∀ξi ∈ Ξi, θi(·, ξi) is concave.

• ∀q ∈ R
+, θi(q, ·) is a monotone function overΞi.

Such valuation functions are displayed in Figure 1 in the
case whenf(Xi,t−1) = ai,t−1. In the following,θ′i,ξ will

denote the partial derivative∂θi(q,ξ)
∂q

with respect to the first
argumentq, i.e. the marginal valuation conditionally on the
past.

3 Multi-bid auctions to compute allocations
at each time slot

In this section, we describe how the definition of the
multi-bid auction scheme introduced in [17] can be ex-
tended to take into account the time dependency of users’
valuation in the history. The mechanism we suggest here
implies that at her arrival in the game, each useri submits a
certain numberMi of 3-dimensional bids2 of the form

si
∆
= {(qm

i , ξm
i , ρm

i ), 1 ≤ m ≤ Mi} , (2)

1whenf(Xi,t−1) is a K-dimensional vector, then we needθi to be
monotone in each of itsK components.

2In the general case wheref(Xi,t−1) is aK-dimensional vector, then
eachsm

i
should be of dimensionK + 2.
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Figure 1. Valuation (top) and marginal val-
uation (bottom) functions for three types of
users: indifferent to the history-relevant cri-
terion (left), increasing (center)and decreasing
(right) in that criterion.

that are interpreted as follows: a user submitting such a bid
declares she is willing to payρm

i ≥ 0 to obtain an allo-
cationqm

i > 0 at the current time slot, if the value of her
history-relevant criterion isξm

i . The setsi = (sm
i )1≤m≤Mi

is called themulti-bid submitted by useri. Remark that the
scheme we define here is a one-shot scheme, in the sense
that a user does not modify her bid once entered the auction
game: the multi-bidsi will be taken into account by the
mechanism until the departure of useri whatever the modi-
fications in the network conditions. A user is also asked the
sense of variation of her valuation function in the history-
relevant criterion; whenf(Xi,t−1) is one-dimensional, one
bit added to the multi-bidsi is sufficient to specify whether
θi(q, ·) is increasing or decreasing for allq.

Definition 1 We say that useri bids truthfully, or submits a
truthful multi-bid, if

• all points(qm
i , ξm

i , ρm
i ), 1 ≤ m ≤ Mi are on her val-

uation function curve, i.e.ρm
i = θi(q

m
i , ξm

i ) for all
m,

• useri reveals her true sense of variation in the history-
relevant criterion.

At time slott, we denoteIt the set of users that are in the
game: this set may change over time, as users may enter and
leave the network (like connections starting and ending).
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At a given time slott, the auctioneer will then compute
an allocationai,t and a price to payci,t for each useri
present in the game, based on the submitted multi-bids, and
taking into account the history of the game through the com-
putation of the history-relevant criterionf(Xi,t−1) of each
user.

3.1 Reserve price

We assume that the seller sets a reserve unit pricep0 un-
der which she prefers not to sell the resource. For this to be
taken into account by the mechanism, the seller (who will
be denoted as player0) may be seen as a player submitting a
bid s0 = (q0, q0p0) (with M0 = 1), whereq0 > Q. Remark
that if we want that bid to have the same form as the multi-
bids submitted by the users, then every multi-bid of the form
(q0, ξ0, q0p0), where the seller declares she is indifferent to
the history-relevant criterion, is appropriate. In this paper,

we will denoteI0
t

∆
= It ∪ {0} the set of all users present at

time slott (including the seller), andst
∆
= (si)i∈It

the set
of all competing multi-bids, that we will call themulti-bid
profile at timet. Throughout the paper, fori ∈ I0

t , we de-

notest,−i
∆
= (sj)j∈I0

t \{i} the multi-bid profile without user
i.

3.2 Conditional multi-bid depending on
the history

When users’ valuation functions are independent of the
history (which is the case treated in [17]), the multi-bid of
each useri is a set of two-dimensional bids from which
the functions used to compute allocations and prices are de-
fined. We describe here how the mechanism extracts a set
of 2-dimensional points from the multi-bidsi and a given
valueξi of the history-relevant criterionf(Xi,t−1). This set
of 2-dimensional points, that we call theconditional multi-
bid and denotesi,ξi

, is computed as follows from the 3-
dimensional bids:

• if useri declared thatθi(q, ·) is anincreasingfunction
for all givenq, the conditional multi-bid corresponding
to the history-relevant criterionξi is

si,ξi

∆
= {(qm

i , ρm
i ) : ξm

i ≤ ξi}; (3)

• if user i declared thatθi(q, ·) is decreasing for all
givenq, the conditional multi-bid corresponding to the
history-relevant criterionξi is

si,ξi

∆
= {(qm

i , ρm
i ) : ξm

i ≥ ξi}. (4)

Therefore only bids with history criterion under/aboveξi,
depending on the form of monotonicity, are considered by

just skipping theξm
i values. The conditional multi-bidsi,ξi

is designed in a way that each pair(q, ρ) ∈ si,ξi
is inter-

preted as meaning that at the current time slot, useri is
willing to pay less thanρ to obtainq units of resource be-
cause her history-relevant criterion has valueξi. Figure 2
illustrates the conditional multi-bidsi,ξi

for a truthful bid-
der whose valuation functionθi(q, ·) is decreasing for all
fixed q.

If player i declared she is indifferent to the history-
relevant criterion, then the mechanism simply ignores the

ξm
i in the bids, and takessi,ξi

∆
= {(qm

i , ρm
i ) : 1 ≤ m ≤

Mi} as in [17].
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Figure 2. Valuation function and a truthful
multi-bid submitted by a user (left), condi-
tional multi-bid si,ξi

for a given value ξi of the
history-relevant criterion. The bids from si

that appear in si,ξi
are s2

i , s
3
i , s

5
i and s7

i . On the
right are the conditional pseudo-valuation
function θ̄i,ξi

(top-right), and associated con-
ditional pseudo-demand function d̄i,ξi

(bottom-
right) as described in Section 3.3.

3.3 Allocation rule

We now describe how allocations are computed at each
time slott. The mechanism works as follows:

a) the valueξi of the history-relevant criterion is calcu-
lated for each playeri, and the conditional multi-bid
si,ξi

is derived fromsi andξi, as described in subsec-
tion 3.2.

b) The auctioneer then computes aconditional pseudo-
valuation functionfor each playeri:

Definition 2 At a given time slot, theconditional
pseudo-valuation functionfor a useri, who submitted
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the multi-bidsi and whose history-relevant criterion
equalsξi is the functionθ̄i,ξi

: R
+ → R

+, defined
as thelowest positive and concave functionsuch that
θ̄i,ξi

(q) ≥ ρ for all pair (q, ρ) ∈ si,ξi
.

The conditional pseudo-valuation function is displayed
in Figure 2 for a given value ofξi(t). The goal is
to obtain an approximation of the true valuation func-
tion from the multi-bid points. The valuation function
θi being concave in its first argument, the conditional
pseudo-valuation function̄θi,ξi

associated with a truth-
ful multi-bid is such that

∀ξi, ,∀q ≥ 0 θ̄i,ξi
(q) ≤ θi(q, ξi). (5)

c) From the conditional pseudo-valuation function,
which is left-differentiale, we compute theconditional
pseudo-marginal valuation function, denoted bȳθ′i,ξi

,
as the left derivative function of̄θi,ξi

. Sinceθ̄′i,ξi
(q)

is not defined atq = 0, we defineθ̄′i,ξi
(0) as the right

limit of θ̄′i,ξi
at 0 (which exists sincēθi,ξi

is piecewise
linear), so that̄θ′i,ξi

is continuous at0.

d) Then aconditional pseudo-demand function̄di,ξi
is

computed for each user:

∀p ∈ R
+ d̄i,ξi

(p)
∆
= sup{q : θ̄′i,ξi

(q) ≥ p}, (6)

with the conventionsup ∅ ∆
= 0. d̄i,ξi

may also be de-
fined as the largest quantityq of resource that maxi-
mizesθ̄i,ξi

(q) − pq, i.e. the quantity that a user with
valuation function̄θi,ξi

would buy to optimize her util-
ity if the resource were sold at a fixed unit pricep. Like
the conditional pseudo-marginal valuation, the condi-
tional pseudo-demand function̄di,ξi

is stair-step, left-
continuous, positive and non-increasing.

Those functions are different from the ones initially
published in [17] where users were asked to declare
their marginal valuation in their multi-bid. This new
choice allows to get a closer approximation of the val-
uation and demand functions, while keeping the prop-
erties proved in [17], yielding a reduced gap with re-
spect to the optimal values. Indeed, the new choice
computes a concave function for the pseudo-valuation
function that better approaches the actual one than the
stair-step function in [17].

e) Based on all conditional pseudo-demand functions of
the users present in the gameθ̄i,ξi

, i ∈ It, allocations
are determined (using the same rule as in [17]): the
aggregated conditional pseudo-demand functiond̄ξ is
computed:

d̄ξ
∆
=

∑

i∈I0
t

d̄i,ξi
. (7)

Then the pseudo-market clearing price corresponding
to d̄ξ is defined as

ūt
∆
= sup{p : d̄ξ(p) > Q}, (8)

and the total capacityQ is shared among flows accord-
ing to their conditional pseudo-demand functions: the
allocationai,t(st) for a useri ∈ I0

t can be written

ai,t(st)
∆
= d̄i,ξi

(ū+
t )+

d̄i,ξi
(ūt) − d̄i,ξi

(ū+
t )

d̄ξ(ūt) − d̄ξ(ū
+
t )

(Q−d̄ξ(ū
+
t )),

(9)
where, for every functionf , f(x+) denotes the right
limit at x (which exists here since conditional pseudo-
demand functions are stair-step). The first term of
the allocation (9) corresponds to the quantity player
i asks at the lowest pricēu+

t for which supply ex-
cesses pseudo-demand. The second term is strictly
positive if all the resource is not allocated atū+

t ,
the surplusQ − d̄ξ(ū

+
t ) being shared among players

who submitted a bid at pricēu, with weights propor-
tional to the “hops” of the pseudo-demand functions
d̄i,ξi

(ūt) − d̄i,ξi
(ū+

t ).

Let us now introduce some remarks that will be helpful
in the proofs of properties. Sincēθ′i,ξi

is left-continuous,
the sup in (6) is amax when{q : θ̄′i,ξi

(q) ≥ p} 6= ∅, i.e.
whenp ≤ θ̄′i,ξi

(0). It implies that

p ≤ θ̄′i,ξi
(0) ⇒ θ̄′i,ξi

(d̄i,ξi
(p)) ≥ p. (10)

Moreover,

∀p ∈ R
+ d̄i,ξi

(p+
) = sup{q : θ̄′i,ξi

(q) > p}, (11)

(still usingsup ∅ = 0). Therefore

∀p ∈ R
+, θ̄′i,ξi

(d̄i,ξi
(p+

)
+
) ≤ p, (12)

since if it were not the case then there would exist aq >

d̄i,ξi
(p+) such thatθ̄′i,ξi

(q) > p, which would contradict
(11). Equation (12) also holds forp ≥ θ̄′i,ξi

(0).

3.4 Pricing rule

The priceci,t each useri ∈ It is charged at time slott is
computed according to the multi-bid pricing rule defined in
[17], based on the conditional pseudo-valuation functions:

ci,t(st)
∆
=

∑

j 6=i

θ̄j,ξj
(aj,t(st,−i)) − θ̄j,ξj

(aj,t(st)), (13)

where ai,t(st,−j) is the allocation that the mechanism
would have given to useri at time slott if player j had just
leaved the game, i.e. if the bid profile at timet had been
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st,−i. This pricing rule, inspired by the Vickrey-Clarke-
Groves pricing rule [4, 11, 23], can be interpreted as an
“exclusion-compensation” principle: at time slott, each
user pays for the loss of valuation she imposed on the others
by staying in the game.

4 Properties of the scheme

We prove in this section that the auction scheme de-
scribed above verifies three important properties (at leastup
to pre-determined constants): (conditional) incentive com-
patibility which states that users’ best interest is to truthfully
declare their valuations, individual rationality which states
that entering the game will never yields a negative utility,
and (conditional) efficiency, stating that the resulting allo-
cation is the one providing the highest social welfare (that
is the sum of valuations of users, auctioneer included).

Before proving those three properties, let us prove a
lemma stating that the auction mechanism allocation maxi-
mizes the declared “pseudo-social welfare”, i.e. the sum of
pseudo-valuations of all users, at each time slott, given the

history of allocations. Defineat(st)
∆
= (ai,t(st))i∈It

as the
vector of allocations at time slott.

Lemma 1 The multi-bid allocationat(st) maximizes the
sum of the pseudo-valuations of all users (including the
seller) under the capacity constraint:

∀st, at(st) ∈ arg max
ã∈At

∑

i∈It

θ̄i,ξi
(ãi) (14)

whereAt
∆
= {ã = (ãi)i∈I0

t
∈ [0, Q]|I

0
t | :

∑

i∈I0
t
ãi ≤ Q}.

Proof: We start by showing that for every multi-bid
profilest, i ∈ It andy ∈ R

+, we have

θ̄i,ξi
(ai,t(st)) − θ̄i,ξi

(y) ≥ ūt(ai,t(st) − y), (15)

whereūt is the pseudo-market clearing price computed in
(8).

• if y < ai,t(st), then

θ̄i,ξi
(ai,t(st)) − θ̄i,ξi

(y)

≥ θ̄′i,ξi
(ai,t(st))

︸ ︷︷ ︸

≥θ̄′

i,ξi
(d̄i,ξi

(ūt))

(ai,t(st) − y)
︸ ︷︷ ︸

≥0

≥ ūt(ai,t(st) − y),

where (10) is applied, holding because0 ≤ y <

ai,t(st) by hypothesis (thus̄di,ξi
(ūt) ≥ ai,t(st) > 0

and consequentlȳut ≤ θ̄′i,ξi
(0)).

• If y ≥ ai,t(st), then

θ̄i,ξi
(y) − θ̄i,ξi

(ai,t(st))

=

∫ y

ai,t(st)

θ̄′i,ξi

≤ θ̄′i,ξi
(ai,t(st)

+
)

︸ ︷︷ ︸

≤θ̄′

i,ξi
(d̄i,ξi

(ū+

t )
+
)

(y − ai,t(st))
︸ ︷︷ ︸

≥0

≤ ūt(y − ai,t(st)),

by using (12).

Therefore (15) holds, and Lemma 1 immediately follows:
if we denote bỹa another allocation vector satisfying the
capacity constraint, we have

∑

i∈I0
t

θ̄i,ξi
(ai,t(st)) −

∑

i∈I0
t

θ̄i,ξi
(ãi,t)

≥ ūt

( ∑

i∈I0
t

ai,t(st)

︸ ︷︷ ︸

=Q

−
∑

i∈I0
t

ãi,t

︸ ︷︷ ︸

≤Q

)

≥ 0.

4.1 Incentive compatibility

This subsection aims at studying an important notion
called incentive compatibility. It states that a selfish user’s
best interest reacting to the auction scheme we have defined
in the previous section, in order to optimize her utility, is
to play truthfully by declaring her valuation of bandwidth,
whatever the bids submitted by the other players be. In-
deed, we are going to prove that at each time slott, in the
worst case, a truthful user is ensured that the gap between
the utility brought by the multi-bid she submitted and the
maximum utility that she could have obtained by bidding
differently is less thanmaxq∈[0,Q] θi(q, ξi)−θ̄i,ξi

(q), where
ξi = f(Xi,t−1).

Proposition 2 (incentive compatibility) ∀t,∀i∈It,∀st,−i,

∀si, s̃i, ∀ξi = f(Xi,t−1),

si truthful ⇒
Ui,t((si, st,−i), ξi) ≥ Ui,t((s̃i, st,−i), ξi) − Ci,ξi

,(16)

with
Ci,ξi

∆
= max

q∈[0,Q]
θi,t(q, ξi) − θ̄i,ξi

(q). (17)

Proof: Let st = (si, st,−i). Note that the conditional
pseudo-valuation functions̄θj,ξj

, j 6= i, are the same if the
multi-bid profile isst or (s̃i, st,−i) and that, from the defini-
tion of Ci,ξi

, θ̄i,ξi
(q) ≤ θi,t(q, ξi) ≤ θ̄i,ξi

(q) + Ci,ξi
,∀q ∈

[0, Q]. We therefore have, using (13):
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Ui,t(st, ξi) − Ui,t((s̃i, st,−i), ξi)

≥ θ̄i,ξi
(ai,t(st)) +

∑

j 6=i

θ̄j,ξj
(aj,t(st)) − Ci,ξi

−θ̄i,ξi
(ai,t(s̃i, st,−i)) −

∑

j 6=i

θ̄j,ξj
(aj,t(s̃i, st,−i))

≥ −Ci,ξi
+

∑

j∈I0
t

(

θ̄j,ξj
(aj,t(st)) − θ̄j,ξj

(aj,t(s̃i, st,−i))

)

︸ ︷︷ ︸

≥0 (Lemma 1)

,

which establishes Proposition 2.
Bidding truthfully therefore ensures that, at each time

slot t, playeri maximizes her utility up to a constant that
is the largest difference between her conditional valuation
and pseudo-valuation functions. Notice that incentive com-
patibility is proved only when reasoning per time slot, con-
ditionally on the past; there may exist untruthful strategies
that lead in some situations to a larger overall utility during
the presence period of a player, given the fact that your cur-
rent allocation affects your future utility. However, playing
truthfully may anyway be the best strategy for users who do
not have an idea of their (random) connection duration, so
that it could stop at any time, or of the evolution of network
conditions in the future (with other users randomly enter-
ing/leaving the game).

4.2 Individual rationality

A second interesting property is individual rationality,
stating that a user who submitted a truthful multi-bid is en-
sured to obtain a non-negative utility, i.e. to be charged
a price equal to or below her valuation for her allocation.
This property implies that a rational user will always enter
the game and continue to play at each time slot.

Proposition 3 ∀t,∀i ∈ It,∀st,−i, ∀ξi = f(Xi,t−1), if user
i submitted a truthful multi-bidsi then

Ui,t(si, st,−i) = θi(ai,t(st), ξi) − ci,t(st) ≥ 0. (18)

Proof: Equation (5) implies

Ui,t(st, ξi) = θi,t(ai,t(st)) − ci,t(st)

= θi,t(ai,t(s))+
∑

j 6=i

[
θ̄j,ξj

(aj,t(st))− θ̄j,ξj
(aj,t(st,−i))

]

≥
∑

j∈It

θ̄j,ξj
(aj,t(st)) −

∑

j 6=i

θ̄j,ξj
(aj,t(st,−i))

≥
∑

j∈It

θ̄j,ξj
(aj,t(st)) − θ̄j,ξj

(aj,t(st,−i)) ≥ 0,

where the last line comes from Lemma 1.

4.3 Efficiency

The last important property we wish to show is (condi-
tional) efficiency. We prove that, at each time slott, con-
ditionally to the past and independently of the future, the
auction scheme allocates efficiently the available resource
among users. The efficiency measure that we consider here
is social welfare, that is the total valuation of users (includ-
ing the seller) for the allocation:

∑

i∈I0
t
θi(ai,t, ξi). This

quantity is also the sum of utilities of all users, if we con-
sider that the utility of the seller is her valuation for her al-
location plus her total revenue,U0,t = θ0(a0,t)+

∑

i∈It
ci,t

for eacht, whereθ0(q) = p0q.
Like for the incentive compatibility property, efficiency

is instantaneous (i.e. at each time slott), which means that
allocations are not necessarily efficient if we consider pe-
riods of several time slots (then in general a discount fac-
tor has to be introduced to compare valuations at different
times). However, once again, such a property indicates that
the mechanism behaves in a good fashion, and may be cho-
sen if the network conditions of the future (number of users
and submitted multi-bids) cannot be predicted.

To establish this property, we add some regularity as-
sumptions on valuation functions:

Assumption B ∃κ > 0 : ∀i ∈ I,∀ξi ∈ Ξi,

• θi(·, ξi) is differentiable in its first argument andθ′i,ξi

(the derivative in the first argument) is continuous,

• ∀z, z′, z > z′ ≥ 0, θ′i,ξi
(z) − θ′i,ξi

(z′) > −κ(z − z′),

• θ′i,ξi
(Q) = 0.

The first and second points of Assumption B were intro-
duced by Lazar and Semret in [13] for valuation functions
independent of the history to prove the efficiency of Pro-
gressive Second Price auctions. The last point states that
the available resource of the link is sufficient to fully satisfy
a user if she is the only one using that link.

For such valuation functions, we have the following effi-
ciency result:

Proposition 4 Under Assumptions A and B, the auction al-
location at each time slot is close to the social welfare opti-
mum, conditionally on the past, when players bid truthfully:
∀It,∀(ξi)i∈It

and truthful multi-bid profilest,

∑

i∈I0
t

θi(ai,t(st),ξi) ≥ sup
ã∈At




∑

i∈I0
t

θi(ãi,ξi)



−Q
√

8κ max
i∈It

Ci,ξi

with A ∆
= {ã = (ãi)i∈I0

t
∈ [0, Q]|I

0
t | :

∑

i∈I0
t
ãi ≤ Q}.
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Proof: Relations (5) and (17) lead to

∀q, q̃ ∈ [0, Q],∀ξi,
∣
∣θi(q, ξi) − θ̄i,ξi

(q) −
(
θi(q̃, ξi) − θ̄i,ξi

(q̃)
)∣
∣ ≤ Ci,ξi

,

or equivalently

∣
∣
∣
∣

∫ q

q̃

[
θ′i,ξi

(x) − θ̄′i,ξi
(x)

]
dx

∣
∣
∣
∣
≤ Ci,ξi

. (19)

Assume now that there existK > 0, ξi andq ≥ 0 such
that

θ′i,ξi
(q) > θ̄′i,ξi

(q) + K. (20)

Then from Assumption B,θ′i,ξi
(q + K

κ
) ≥ θ′i,ξi

(q)−κK
κ

>

0, so thatq + K
κ
∈ [0, Q]. Therefore (19) gives

Ci,ξi
≥

∫ q+ K
κ

q

(
θi,ξi

(x)
′ − θ̄′i,ξi

(x)
)
dx

≥
∫ q+ K

κ

q

(
θ′i,ξi

(q) + κ(q − x) − θ′i,ξi
(q) + K

)
dx =

K2

2κ
,

thus from (20) we have

∀ξi,∀q ∈ [0, Q], θ′i,ξi
(q) − θ̄′i,ξi

(q) ≤
√

2κCi,ξi
. (21)

On the other hand, considerK > 0, ξi andq > 0 such
that θ′i,ξi

(q) < θ̄′i,ξi
(q) − K. Then from Assumption B,

q− K
κ
≥ 0, unless we would haveθ′i,ξi

(0) < θ̄′i,ξi
(q), which

would contradict (5). Applying again (19), we get

−Ci,ξi
≤

∫ q

q−K
κ

(
θ′i,ξi

(x) − θ̄′i,ξi
(x)

)
dx

≤
∫ q

q−K
κ

(
θ′i,ξi

(q)+ κ(q−x)−θ′i,ξi
(q)−K

)
dx =

−K2

2κ
,

therefore

∀ξi,∀q ∈ [0, Q], θ′i,ξi
(q)−θ̄′i,ξi

(q) ≥ −
√

2κCi,ξi
. (22)

We now establish Proposition 4: from (21), (22) and the
immediate relation̄di,ξi

(ū+
t ) ≤ ai,t(st) ≤ d̄i,ξi

(ūt) (that
is a consequence of (9)), we easily get, applying (10) and
(12),

{
θ′i,ξi

(ai,t(st)) ≤ ūt +
√

2κCi,ξi

ai,t(st) > 0 ⇒ θ′i,ξi
(ai,t(st)) ≥ ūt −

√
2κCi,ξi

.

Let It,+ = {i ∈ I0
t : ãi ≥ ai,t(st)} andIt,− = {i ∈ I0

t :

ãt < ai,t(st)}. We have

∑

i∈I0
t

θi(ai,t, ξi) − θi(ãi, ξi)

≥
∑

i∈It,−

θ′i,ξi
(ai,t(st))(ai,t(st) − ãi) −

−
∑

i∈It,+

θ′i,ξi
(ai,t(st))(ãi − ai,t(st))

≥
∑

i∈It,−

(ūt −
√

2κCi,ξi
)(ai,t(st) − ãi) −

−
∑

i∈It,+

(ūt +
√

2κCi,ξi
)(ãi − ai,t(st))

≥ −
√

2κ
∑

i∈It

√

Ci,ξi
|ai,t(st) − ãi|

≥ −2Q
√

2κ max
i

Ci,ξi
,

which gives the proposition.

5 Player and auctioneer behavior

5.1 Multi-bid choice for a user

As pointed out in the previous section, bidding truthfully
at the arrival into the game ensures a useri to obtain at each
time slott a utility that is close to the maximum possible, up
to Ci,f(Xi,t−1). If useri has an a priori probability distribu-
tion of the allocations she will obtain during her connection
period, then she may try to choose her multi-bid so as to
minimize the expected value ofCi,f(Xi,t−1). If she does
not have such an a priori distribution, then a natural way to
choose her bidsi is to try to be as close as possible to the
maximum utility at each time slotin the worst case, that is

si ∈ arg min{max
ξi∈Ξi

Ci,ξi
: si = (sm

i )1≤m≤M truthful}.
(23)

For general valuation functionsθi, finding an analytical ex-
pression of a multi-bid satisfying (23) is beyond the scope
of this paper, but could otherwise be obtained by numerical
optimization procedures (meta-heuristics for instance).

5.2 Trade-off between economical effi-
ciency and computational complexity

Proposition 4 states that the allocation at a given time
slot t is close to the socially optimal one, up to a value that
decreases (if users are rational) when the number of bids
Mi allowed in a multi-bid increases. Moreover, we proved
in [17] that the complexity of computing allocations and
prices given the conditional multi-bids(si,ξi

)i∈It
are of the

orderO
(
|It| ×

∑

i∈It
Mi,ξi

)
, whereMi,ξi

is the number
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of two-dimensional bids insi,ξi
. Notice that at each time

slot, selecting the conditional multi-bidssi,ξi
for all players

in It needs around
∑

i∈It
Mi operations.

Therefore, increasingMi for all users inIt ensures that
the conditional social welfare be close to the optimal one,
but also yields a higher complexity. Depending on the
computational capacities of the auctioneer and the relative
importance of efficiencyversuscomplexity, the auctioneer
may admit at mostM bids of the form(qm

i , ξm
i , pm

i ) in a
multi-bid, and chooseM to balance the trade-off. A study
of this trade-off, as well as a comparison with the PSP
scheme in terms of both complexity and efficiency, has been
realized in [18] in the case of atemporal utility functions,il-
lustrating the advantages of the multi-bids scheme.

6 Numerical illustration

In this section, we present an example of scenario with
different types of users entering and leaving the game over
time. The valuation functions that are used are those de-
scribed in Figure 1. The history-relevant criterion consid-
ered here for each user is his allocation at the previous slot.
We illustrate here the behavior of our scheme for when the
following scenario is applied (the corresponding allocations
and pseudo-market clearing price are plotted in Figure 3 for
Q = 10, M = 200 and truthful bids taken with equally
spaced values ofqm

i andξm
i ):

• the game begins at slott = 0 with only one player,
of type 2 (valuation increasing in the history-relevant
criterion), who leaves the game at timet = 28,

• another type-2 player bids for bandwidth betweent =

7 andt = 16,

• a player of type 3 (valuation decreasing in the history-
relevant criterion) enters the game att = 23, and an-
other one arrives att = 35.

Between time slotst = 7 and t = 16, two identical
players of type 2 are competing for the resource. However,
player 1 was already present upon arrival of player 2, and
had obtained some resource at timet = 6. Therefore due
to his type, he valuates the resource more than player 2 at
time t = 7, which explains that he obtains more resource at
that time. However he obtains less than in the previous slot,
hence his conditional valuation for slott = 8 will decrease,
whereas for the same reason the conditional valuation of
player 2 increases. For the following slots, the allocations
of both players therefore get closer.

The remaining type-2 player then faces a type-3 player
in the interval[23, 28]: when that player enters the game,
he obtains a large amount of resource (due to an important
valuation), which will decrease his conditional valuationfor
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Figure 3. Allocations ai,t (top) and pseudo-
market clearing price ūt (illustrating the con-
gestion level) (bottom) for the scenario de-
scribed in Section 6.

48



the next slot. That is the reason why the corresponding al-
location of player 3 is lower at slot24 than at slot23. The
symmetric reasoning applies to the type-2 player.

After slot 35, we have a situation where two identical
players of type 3 compete for bandwidth. Since player 3 had
obtained some resource at slot34, his conditional valuation
is lower than that of player 4, consequently at slot35 player
4 obtains more resource than player 3. At each time slot, the
player who obtains more resource is the one who obtained
less at the previous slot, which explains the oscillations that
occur in Figure 3.

7 Conclusions

In this paper, we have designed an auction scheme to
allocate the available bandwidth of a communication link
among several usersover time. Based on the previously de-
fined multi-bid auction mechanism, we adapted the scheme
to the case when the valuation of users for the resource de-
pends on their history since their arrival in the game, in-
cluding also tighter bounds due to a better approximation
of the true valuation functions. The signaling overhead is
low, since users submit a numberM of 3-dimensional bid
once only for all their connection duration, and do not need
to receive any information, unlike in some other schemes.
Moreover, the computational complexity can be controlled,
and the scheme has been proved to satisfy some properties
in terms of incentives and social welfare maximization.

Some more work can be done to take into account
history-dependent valuations: in this paper we assumed
the dependency to be monotone in the history-relevant cri-
terion, in order to define properly the conditional multi-
bid and the conditional valuation function. Adapting the
scheme described here to the case when the dependency is
not monotone would deserve some attention.
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