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Abstract

Existing models of peer-to-peer (p2p) filesharing as-

sume that individuals are concerned with each others’

wellbeing. Without social preferences (i.e., altruism or

reciprocity), peers are better off freeriding whenever the

cost of sharing content is larger than that of not shar-

ing. In the absence of social preferences this public-goods

problem results in the collapse of the p2p network. Be-

cause p2p networks are composed of millions of individ-

uals who interact anonymously, we find inadequate the

assumption that peers care about each others’ utility. We

present microfoundations for a stylized model of a p2p

network where all peers are endowed with standard pref-

erences and show that the resulting endogenous structure

of the p2p network is conducive to sharing content by a

significant number of peers, even if sharing is costlier than

freeriding. Selfish utility-maximizing peers are better off

sharing because by doing so they face less congestion. We

characterize the endogenous level of sharing and present

comparative statics results. We build on this framework to

analyze the optimal strategy of a profit-maximizing firm,

such as Apple’s i-Tunes, that offers the same content avail-

able on the network. Contrary to the p2p network, the

firm offers downloads on a traditional client-server archi-

tecture and sells content at positive prices. We show that

the firm may be better off setting high prices, allowing

the network to survive, and that the p2p network may

work more efficiently in the presence of the firm than in

its absence.

1 Introduction

Peers in peer-to-peer (p2p) networks face a fun-
damental choice between sharing content or freerid-
ing. When a peer decides to share content –a costly
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activity– she is effectively supplying two different
goods. On the one hand, she provides content. Obvi-
ously, the peer who shares does not benefit from the
content that she is sharing as she already owns it. On
the other hand she also supplies upload bandwidth and
this may result in lower network congestion. Sharing
results in lower congestion if upload bandwidth is a
scarce resource. Based on the available empirical ev-
idence, in this paper we assume this to be the case.
The nature of peer-to-peer networks warrants that
the provision of bandwidth benefits all peers equally
in expected terms. In sum, peers face a trade off:
by sharing they bear costs that could be avoided by
freeriding, but sharing also reduces average network
congestion and this benefits every peer, including the
peer who shares.

Building on this insight, we construct a model
where peers provide bandwidth in addition to content
when they decide to share. Specifically, we consider
a finite population of agents that derive positive and
homogenous utility from digital content. Peers suffer
disutility from the costs associated with download-
ing content. These costs are proportional to the time
required to complete downloads, the level of conges-
tion, which in turn depends on the bandwidth pro-
vision available in the network. Peers may reduce
their expected congestion by providing upload band-
width to other peers. We model this decision as a
binary choice: share content or freeride. By having
agents differ in their disutility of congestion (impa-
tience or opportunity cost of time) we show that an
endogenous level of sharing emerges in the network.
Selfish utility-maximizing peers are better off shar-
ing because by doing so they face less congestion. To
the best of our knowledge, there is no earlier model
of p2p filesharing with endogenous congestion where
peers concerned solely about the impact of their ac-
tions on their own utility decide to share content.

We build on this framework to analyze the opti-
mal strategy of a profit-maximizing firm that offers
the same content available on the network at posi-
tive prices employing a traditional client-server archi-
tecture. In the absence of altruism towards artists,
it is an interesting question why consumers pay to
purchase licensed content online. Towards answer-
ing this question, we derive the shape of the demand
function the firm faces and characterize its optimal

1



pricing strategy. In essence, our framework points to
the central role of ‘convenience’ when accessing and
consuming digital content through the Internet.

The model captures important stylized facts identi-
fied by the literature. First, Asvanund et al. [2] show
that congestion worsens with size as peer-to-peer net-
works grow. Our model endogenously generates this
result. In fact, the effect of network size on conges-
tion helps explain the coexistence of multiple differ-
ent p2p networks. Second, many studies have shown
that heavy users of p2p filesharing networks are more
prone to purchase content online. Our framework not
only suggests that there is no contradiction in this
observed behavior, but also sheds light on the fac-
tors that explain the demand for online content in the
presence of a p2p network. Third, we provide insights
on content pricing and the effectiveness of industry
initiatives such as suing heavy sharers. Finally, our
model shows that filesharing networks strictly benefit
from bandwidth infrastructure improvements. This
suggests that filesharing is indeed a driver for broad-
band demand and helps explain why Internet service
providers have not taken action to limit the spread
of p2p applications and filesharing traffic load. We
believe that our results should be of interest to all
participants in markets for digital information goods.

The paper is organized as follows. Section 2 in-
troduces the building blocks of our model of peer-to-
peer filesharing and describes the game (in the ab-
sence of a profit maximizing firm). In Section 3 we
present a simple approximation to the average con-
gestion in an arbitrary peer-to-peer network. Section
4 derives the equilibrium network configuration and
studies its properties. In Section 5 we further char-
acterize the equilibrium under the assumption that
peers’ time preferences are independently drawn from
a uniform probability distribution. Finally, in Section
6 we introduce a profit maximizing firm that competes
against the p2p network and analyze the interdepen-
dencies that arise in the competition between both
business models.

2 The model

We consider a population of M agents that derive
utility from the consumption of digital information
goods. They all value content equally and differ only
in their disutility of congestion. We model the forma-
tion of a peer-to-peer network in two stages. In the
first stage, agents choose (simultaneously) whether or
not to join the network. Agents who choose to be-
long to the network can either share their content or
freeride. Sharers offer their content on the network
for download by other peers while freeriders do not.
While sharing content is costly, some sharing is re-
quired for the network not to collapse as downloads
can only be realized from other sharers. We will refer

to agents in the network as peers and those outside
as outsiders. We let N ≤ M denote the number of
peers. M −N is the number of outsiders.

In the second stage peers interconnect and down-
loads are realized. The utility of a peer that freerides
is given by

uf
i = ud − (cn + ρi)td, (1)

and that of a peer who shares his content is

us
i = ud − (cn + cs + ρi)td, (2)

where i ∈ N = {1, 2, ..., N}. Outside utility is nor-
malized to zero.

The utility derived from content once a download
has been completed is ud and it is common across all
agents. The time required to complete a download, td,
is endogenous and depends on the level of congestion.
A lower bandwidth transmission speed implies higher
level of congestion resulting in higher download time.
Every peer suffers a positive cost cn of pertaining to
the network. This captures the costs of the comput-
ing resources and the bandwidth for signalling traffic
required to remain connected to the network until a
download completes. Sharers additionally bear cost
cs. This is the cost originating from offering con-
tent for download on a public p2p network (includ-
ing expected costs of legal action against the peer) as
additional computing resources (storage space) and
upload bandwidth is required.

Parameter ρi ≥ 0 reflects the disutility of conges-
tion experienced by peer i. The larger ρi is, the higher
the disutility the peer obtains from an increase in the
time required to complete a download. Hence ρi can
alternatively be interpreted as impatience or oppor-
tunity cost of time: how much peer i values quick ac-
cessibility to content. Without loss of generality we
choose indexes i so that ρi ≤ ρi+1 for all i. All other
costs being equal, peers would prefer to obtain the
downloadable content immediately avoiding conges-
tion delays. An increase in the time required to com-
plete a download reduces the utility obtained from
the network by increasing both the network costs and
the disutility of congestion experienced by all peers.

To solve the second stage we let S ⊂ N be the
set of sharers in the network (given the agents’ first-
stage strategies) and denote by S the number of shar-
ers (the cardinality of S). A downloader exclusively
served by a sharer will download a unit of content
in time θ > 0; that is, td = θ. This can be inter-
preted as θ capturing the relation between the filesize
of content and the bandwidth capacity available to
peers. Thus an improvement in either encoding effi-
ciency reducing filesizes or broadband infrastructure
increasing bandwidth amounts to a reduction in θ.
Download bandwidth is assumed not to be a limiting
factor. If more than one downloader is connected to
a given sharer, bandwidth is shared evenly amongst
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them. This can be interpreted as downloading tak-
ing place simultaneously or, alternatively, the sharer
serving download queues for fractions of content by
turns.

A set of links connecting peers to sharers where ev-
ery peer connects to one sharer only and no sharer
connects to herself is called a network allocation. A
stable network allocation is one where no peer can
be made strictly better off by connecting to a differ-
ent sharer. We assume that following the first stage
(where peers decide whether to share or to freeride) a
stable network allocation ensues. Clearly, if the net-
work allocation was not stable, at least one peer would
have an incentive to connect to a different sharer.

The following mild assumption is required for the
results: ud > (cn+cs+ρi)θ for all i. This ensures that
a p2p network with minimum congestion is always
preferred to the outside option of not pertaining to
the network. With the notation in place, we now
proceed to solving the game by backwards induction.

3 Network foundation

Interconnection occurs in the second stage, after
each peer has decided whether she will share or
freeride. Congestion plays a crucial role in our devel-
opment as peers choose to share taking into consider-
ation the effect that their sharing has on congestion.
Given a network allocation, the bandwidth obtained
by peer i ∈ N can be computed as follows: if the peer
is connected to a sharer to which k other peers are
connected to, then peer i obtains effective bandwidth
1/(k + 1).

Freeriders can connect to every sharer and, thus,
have S possible links available to choose from. Shar-
ers, on the other hand, cannot connect to themselves.
As a consequence, sharers have S − 1 possible links
available. This implies that, in general, the expected
congestion of sharers and freeriders will differ. To
compute the expected bandwidth for freeriders and
sharers in a network with N peers and S sharers, we
begin by computing each peer’s effective bandwidth
in every stable network allocation. We then average
these effective bandwidths assuming that every stable
network allocation is equally likely. Expected conges-
tion, the delay required to complete downloads, td, is
the inverse of the expected bandwidth.

In another paper [3] we derive an exact expression
for the expected effective bandwidth of sharers and
freeriders. There, we show that S/N is a good ap-
proximation to the expected bandwidth of both shar-
ers and freeriders. The accuracy of this approxima-
tion increases with the size of the network. In fact,
already in a network of size N = 10, the expected
effective bandwidth of sharers and freeriders differs
from S/N by, at most, 0.0012. Given this result, we
conclude that all peers obtain an expected download

bandwidth close to S/N . This implies that the ex-
pected time to complete a download for all peers can
be approximated by td = θ/ S

N = θ N
S . It should be

noted that although the expected bandwidth depends
linearly in the number of sharers, the time required
to complete a download does not. This property is
crucial to our results. Technically, it ensures that our
objective function is concave in S, allowing for in-
terior equilibria in which sharing and freeriding may
coexist for certain ranges of N .

4 Equilibrium network configu-
rations

In this section we analyze the first stage of the
game. Every peer i chooses whether to freeride or to
share content (at additional cost cs). In making their
decision, peers consider the effect of their choice on
expected download time θ N

S . Equations (1) and (2)
imply that if expected download time was not affected
by the sharing decision, no peer would ever share and
the peer-to-peer network would not be viable.

In this section we take N as given. This amounts
to assuming that all N peers in the network obtain
positive utility. In general, this will depend on S and
the distribution of ρs. In the following section we
relax this assumption and let peers decide whether or
not to join the network.

Let P = {F,S} be a partition of N. We refer to P
as a network configuration.1 F is the set of freeriders
and S the set of sharers. Obviously, P constitutes a
Nash equilibrium if no i ∈ S prefers to (unilaterally)
become a freerider and no j ∈ F prefers to become a
sharer.

Proposition 1 Every equilibrium network configu-
ration P = {F,S} has the following form: F =
{1, 2, ..., n− 1} and S = {n, n + 1, ..., N} for some
n ∈ N. The system of equations given by Γs identifies
the set S for all equilibrium network configurations,

Γs = {i ∈ I |H (ρi) ⊂ G (ρi)} ,

where

G (ρi) =
{

k ∈ I
∣∣∣∣
cf + ρi−1

cs
≤ k ≤ cf + cs + ρi

cs

}

H (ρi) = N + 1− i.

Proof. All proofs are in the appendix.
The proposition says that if peer i is a sharer in

equilibrium network configuration P , then peer i + 1
must also be a sharer. Moreover, if peer j is a
freerider, then peer j − 1 must also be a freerider.
Thus, the most impatient peers prefer to share while

1Notice that a network configuration can be mapped to
many different network allocations.

3



the more patient peers are better off freeriding. The
reason is simple: by sharing content, peers reduce con-
gestion and the (positive) marginal effect on peer util-
ity implied by lower congestion is proportional to the
value of ρi. Peers for whom the opportunity cost
of time is high, are more inclined to share. This is
true even though given any fixed level of congestion,
all peers (regardless of the value of ρ) are better off
freeriding than sharing.

The system of equations {G(),H()} characterizes
the equilibrium network configurations by pinning
down to the fullest possible extent the set of sharers
S. Note that certain parameter constellations may
exhibit multiple equilibria and Γs may not be a sin-
gleton.

Let S = {n, n + 1, ..., N} be the set of sharers in
an equilibrium network configuration. We refer to
the case n = 1 as a full-sharing network configuration
(or full-sharing equilibrium) and to the case n > 1
as a partial-sharing network configuration (or partial-
sharing equilibrium). In a full-sharing network config-
uration all peers are sharers. In this case, congestion
is minimized as the expected download time for all
peers (td) is equal to θ.

Remark 2 Full-sharing holds in the network if and
only if

N <
cn + cs + ρ1

cs
.

Therefore, if N is sufficiently small, the unique
equilibrium network configuration has all peers shar-
ing content. Notice that as the incremental cost
of sharing cs approaches zero, the maximal network
size that supports full sharing grows without bound.
When N is large, the equilibrium network configura-
tions will typically entail partial sharing. In this case,
expected download time will be larger than θ for all
peers.

5 Equilibrium with ρi ∼ U [0, ρ̄]

In Section 4 we have characterized all equilibrium
network configurations for the general case, without
specific assumptions on the distribution of ρis or the
cardinality of N. In order to ensure tractability when
we introduce a profit maximizing firm (Section 6),
we make the additional assumption that ρis are i.i.d.
U [0, ρ̄]. This allows us to further characterize the set
of equilibrium network configurations.

The first result shows that if the network has many
peers, then the set of equilibrium configurations is a
singleton.

Remark 3 For N large enough, there is a unique
equilibrium network configuration.

The next result identifies the most patient sharer
as a function of the parameters. Identifying precisely

the most patient sharer will allow us to easily analyze
how the different parameters affect network conges-
tion. In particular, we are interested on the effect that
N has on congestion. If congestion decreases when N
grows, then the p2p network becomes gradually more
valuable as the number of peers expands. If, in con-
trast, network congestion grows with N , then the p2p
network exhibits negative (network) externalities.

Proposition 4 Let ρs(N) be the most patient sharer
in equilibrium. Then, for N large,

ρs(N) '
ρ̄ ((N − 1) cs − cn)

ρ̄ + Ncs
,

and the cardinality of S in equilibrium is given by

S =
ρ̄ + cs + cn

1
N ρ̄ + cs

.

Notice that ρs(N) is increasing in N . This implies
that the larger the cardinality of N, the lower is the
proportion of sharers in equilibrium. In other words,
in our model the p2p network exhibits negative net-
work externalities (past the threshold network size of
full sharing): the larger the number of peers in the
network, the lower the average utility that peers ob-
tain. In fact, as N → ∞, ρs(N) → ρ̄. Therefore,
when the network is very large, only the most impa-
tient peer winds up sharing content. Also note that
S < ∞, even as N →∞. Therefore, not only the pro-
portion of sharers dwindles as N grows, but the abso-
lute number of sharers has a cap. As a consequence,
the expected download time for all peers (θ N

S ) grows
without bound as N increases. This means that as
N grows, the peer-to-peer network becomes less and
less attractive. We will now see that this has impor-
tant implications for the equilibrium pricing strategy
of a profit maximizing firm competing for customers
against a p2p network.

6 The firm

We next introduce the problem of an online firm
selling digital information goods also available on the
peer-to-peer network. To the firm, the network is
a competitor because peers that choose to download
files from the network could otherwise become paying
customers. Because content is free on the p2p net-
work, for the firm to persuade users of digital content
to purchase it at positive price, it must offer added
benefits that the p2p network cannot match. In our
view, the most important advantage of the firm is that
it can offer lower download time than the network.
Specifically, we let the firm offer content streaming
based on traditional client-server architecture. That
is, consumption of content acquired through the firm
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can be realized immediately at the moment of pur-
chase. As a consequence, the utility of buyers is:

ui = ud − p. (3)

Notice that (3) is the natural adaptation of (1) and
(2) to the case of streaming. With streaming, the
expected download time td falls down to zero. Thus,
the terms cn + ρi and cs do not appear in (3). On
the other hand, the firm charges a positive price for
content. We assume that the content offered by the
firm is the same as that shared in the p2p network.

Agents may now choose to purchase content instead
of downloading it off the network at zero price. We
modify the timing of the game accordingly. In the
first stage, the firm chooses the price at which con-
tent is sold. In the second stage, agents choose to
either purchase from the firm, enter the network, or
stay outside and not consume content. Agents who
enter the network may share or freeride. In the third
stage, agents in the network interconnect and down-
loads take place.

We assume that the firm faces zero marginal costs.
All infrastructure and running costs related to the ser-
vice are fixed and independent of the activity level.
The assumption captures the fact that selling addi-
tional copies of digital content has negligible incre-
mental costs.

The problem of the firm is to quote the price p that
maximizes profits. The following proposition summa-
rizes the firm’s optimal strategy as a function of the
parameters.

Proposition 5 Let

pfc := θ(cn + cs) (full market coverage)
phc := 1

2θ(ρ̄ + cn + cs) (high market coverage)
plc := 1

2θ(ρ̄ + Mcs) (low market coverage)
poc := ud (outsiders only coverage)

The optimal pricing strategy is given by:

• If ρ̄ > cn + cs, then

phc if M < Mb

plc if Mb ≤ M < Mc

poc if M ≥ Mc

• If ρ̄ ≤ cn + cs, then

– If ud ≤ 2θ(cn + cs), then

pfc if M < Md

poc if M ≥ Md

– If ud > 2θ(cn + cs), then

phc if M < Mb

plc if Mb ≤ M < Mc

poc if M ≥ Mc

where Ma = 4(cn+cs)−ρ̄
cs

, Mb = (cn+cs)(2ρ̄+cn+cs)
ρ̄cs

,

Mc = 2ud−θρ̄
θcs

and Md = u2
d−θρ̄(ud−θ(cn+cs))
θcs(ud−θ(cn+cs)) .

Equilibrium profits are:

πfc = Mθ(cn + cs) (full market coverage)
πhc = Mθ(ρ̄+cn+cs)2

4ρ̄ (high market coverage)
πlc = 1

4Mθ(ρ̄ + Mcs) (low market coverage)
πoc = ud(1− ud

θ(ρ̄+Mcs) )M (outsiders only coverage)

The firm’s demand curve is downward sloping as
expected. Agents with sufficiently high disutility of
congestion prefer to purchase instead of belonging to
the network. The lower the price the firm quotes, the
higher the number of agents who prefer to purchase.
The agents who obtain higher surplus from purchas-
ing are those with larger values of ρ, agents who may
have potentially remained outsiders in the absence of
the firm. The size of the network is affected by the
presence of the firm, as only those individuals with
lower disutility of congestion remain as peers; agents
who would otherwise share content may now leave the
p2p network and purchase from the firm. As sharers
leave, peers that might have otherwise been freeriders
are now better off sharing.

The demand curve exhibits a non-derivability. Two
ranges exist over which congestion in the network dif-
fers. In the lower price range, full sharing holds and
congestion is not affected by peers entering or exiting
to purchase. In the higher price range, only partial
sharing holds. In this case congestion varies with the
size of the network and this effect is taken into account
by agents; the smaller the network, the lower the level
of congestion. As an example, consider the effect of
a reduction in price. In the full sharing range, peers
who switch to purchase are not affecting the conges-
tion experienced by those remaining. But in the case
of partial sharing, peers leaving are (indirectly) re-
ducing congestion by reducing the size of the network.
This effect ensures that less peers will react to a price
reduction in the case of partial sharing.

Proposition 5 shows that the optimal pricing strat-
egy depends critically on market size. The firm will
only quote a low price and cover the entire market
if it is sufficiently small. The bigger the market, the
more profitable it is for the firm to target agents with
a higher disutility of congestion by quoting higher
prices. If the market is sufficiently large, it is opti-
mal for the firm to serve outsiders exclusively. The
intuition for this result lies on the mechanisms that
drive congestion in a peer-to-peer network. As the
size of the network increases, so does the congestion
experienced by all peers. As a consequence, the sur-
plus that the firm can extract by targeting agents who
most suffer congestion grows more than that obtained
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by covering the whole market by quoting a low price.
The fact that this result arises under a uniform dis-
tribution of ρ suggests that it is quite general.

For the case of a large market, we should expect the
firm to quote a high price, close to the actual valua-
tion of content. Such a pricing strategy does indeed
internalize the presence of the network. As a result,
the firm will not directly affect the size of the net-
work, as agents who purchase would otherwise choose
to stay outside, although the profits of the firm would
strictly increase if the p2p network did not exist. The
strategic effect of the presence of a p2p network on
the firm can be likened to a low quality firm compet-
ing against a vertically differentiated competitor. The
firm has strong incentives to offer high quality service
by investing to minimize congestion and to quote a
high price. The net effect of the network’s presence
on consumer welfare is unambiguously positive.2

It is of interest to look at the effect on firm’s profit
of changes in the technology parameter θ and the
marginal cost of sharing cs. A technology improve-
ment captured by a decrease in θ strictly decreases the
firm’s profit. All other factors equal, a technology im-
provement in either broadband infrastructure or the
efficiency of digital encoding reduces effective down-
load delays in the network making it more attractive.
Similarly, profits are increasing in the marginal cost
of sharing under all market configurations. Because
cs measures the efficiency of the network, or how well
the network scales with size, a higher marginal cost
of sharing implies higher levels of congestion. This
benefits the firm by generating higher surplus to be
extracted out of potential purchasers. These effects
provide strong incentives for the firm to intervene.
Strategies that may serve this purpose include traf-
fic discrimination on broadband networks, prioritizing
the firm’s data, and randomly suing sharers thereby
increasing the expected cost of sharing for all agents.

References

[1] Antoniadis, P. and Courcoubetis, C. and Ma-
son, R. (2004), ‘Comparing Economic Incentives
in Peer-to-Peer Networks,’ Computer Networks,
Vol.46, pp.133-146.

[2] Asvanund, A. and Clay, K. and Krishnan, R.
and Smith, M. D. (2004), ‘An Empirical Analysis
of Network Effects in Peer-to-Peer Music-Sharing
Networks,’ Information Systems Research, Vol.15,
pp.155-174.

2It is important to stress that in our framework the produc-
tion of content is unaffected by the free exchange of content
between peers in the p2p network. If lower royalties imply
lower incentive by artists to produce quality content, then the
net effect of the presence of the p2p network is ambiguous.

[3] Creus Mir, A. and Casadesus-Masanell, R. and
Hervas-Drane, A. (2006), ‘Bandwidth Allocation in
Peer-to-Peer Filesharing Networks,’ Mimeo, Har-
vard Business School.

[4] Cunningham, B. M. and Alexander, P. J. and
Adilov, N. (2004), ‘Peer-to-Peer File Sharing
Communities,’ Information Economics and Policy,
Vol.16, Issue 2, pp.197-221.

[5] Feldman, M. and Lai, K. and Chuang, J. and Sto-
ica, I., ‘Quantifying Disincentives in Peer-to-Peer
Networks,’ 1st Workshop on Economics of Peer-to-
Peer Systems (2003).

[6] Feldman, M. and Papadimitriou, C. and Chuang,
J. and Stoica, I. (2004), ‘Free-riding and White-
washing in Peer-to-Peer Systems,’ PINS ’04: Pro-
ceedings of the ACM SIGCOMM workshop on
Practice and theory of incentives in networked sys-
tems, pp.228-236.

[7] Golle, P. and Leyton-Brown, K. and Mironov, I.
and Lillibridge, M. (2001), ‘Incentives for Sharing
in Peer-to-Peer Networks,’ Lecture Notes in Com-
puter Science, Vol.2232, pp.75+.

[8] Krishnan, R. and Smith, M. D. and Tang, Z. and
Telang, R. ‘The Virtual Commons: Understand-
ing Content Provision in Peer-to-Peer File Sharing
Networks,’ November 2004.

A Appendix

Proof of Proposition 1. Sharer i ∈ S will not free
ride iff:

ud − (cf + cs + ρi) θ
N

S
≥ ud − (cf + ρi) θ

N

S − 1
, (4)

or
S

S − 1
≤ cf + ρi

cf + cs + ρi
.

Notice that

d
(

cf +ρi

cf+cs+ρi

)

dρi
=

cs

(cf + cs + ρi)
2 > 0. (5)

Therefore, if (4) is satisfied for sharer i ∈ S it is also
satisfied for all sharers i′ with ρi′ ≥ ρi. Thus, the
more impatient a sharer is, the less the incentive to
become a freerider.

A freerider j ∈ F will not want to become a sharer
iff:

ud − (cf + ρj) θ
N

S
≥ ud − (cs + ρj) θ

N

S + 1
, (6)

or
S

S + 1
≥ cf + ρj

cf + cs + ρj

.
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Notice that (5) implies that if (6) is satisfied for peer
j ∈ F it is also satisfied for all peers j′ ∈ F with
ρj′ ≤ ρj . Thus, the more patient a freeriding peer is,
the less the incentive to become a sharer.

We now further characterize the equilibrium net-
work configurations by pinning down to the fullest
possible extent the cardinality of S. Let P = {F,S}
be an equilibrium network configuration. Let ρi be
the most patient sharer in S. Equations (4) and (6)
imply that

S ≤ cf + cs + ρi

cs
and S ≥ cf + ρi−1

cs
.

Thus,
cf + ρi−1

cs
≤ S ≤ cf + cs + ρi

cs
. (7)

Let I be the set of integers. The following two ob-
jects are useful in what follows:

G (ρi) =
{

k ∈ I
∣∣∣∣
cf + ρi−1

cs
≤ k ≤ cf + cs + ρi

cs

}

(8)
and

H (ρi) = N + 1− i. (9)

Correspondence G indicates the cardinality of S if
the sharer with lowest impatience has time preference
parameter ρi. Function H tells us the number of peers
with parameter ρj larger than or equal to that of peer
i. The solution to the system of equations given by G
and H pins down the set of most patient sharers for
all equilibrium network configurations:

Γs = {i ∈ I |H (ρi) ⊂ G (ρi)} .

Because G (ρi) is a correspondence, Γs may not be a
singleton. Clearly, the cardinality of the set of equi-
librium network configurations, coincides with that of
Γs.

Proof of Remark 2. For a full-sharing network
configuration to obtain, every peer must realize higher
utility sharing than freeriding. In particular, the most
patient peer (ρ1) must be better off sharing than
freeriding (given that everybody shares):

ud − (cn + cs + ρ1) θ ≥ ud − (cn + ρ1) θ
N

N − 1
.

Solving for N we obtain:

N ≤ cn + cs + ρ1

cs
. (10)

Sketch of Proof of Remark 3. Recall that the
set of equilibrium network configurations is given by

Γs = {i ∈ I |H (ρi) ⊂ G (ρi)} .

H is a decreasing function of ρi. G is an increasing
correspondence. However, when N is large ρi−1 is
close to ρi. In fact as N →∞, |ρi−1 − ρi| → 0. Thus,
when N is large,

G (ρi) =
{

k ∈ I
∣∣∣∣
cf + ρi

cs
≤ k ≤ cf + ρi

cs
+ 1

}
.

Given this, G (ρi) is single-valued except at those ρi

such that cf +ρi

cs
is a natural number. Suppose that

at ρ′i,
cf +ρ′i

cs
∈ I. Then, for all ε > 0, cf+ρ′i+ε

cs
/∈ I

and cf+ρ′i−ε
cs

/∈ I. Thus, G (ρi) is a step function with
‘continuous jumps’ at ρi ∈ [0, ρ̄] such that cf+ρi

cs
∈ I.

As a consequence, Γs is a singleton.

Proof of Proposition 4. We look for ρs(N) such
that the set of peers with i ≥ s (N) all want to share.
Because ρs(N) is the most patient sharer, the cardi-
nality of the set of sharers is S = N − s (N) + 1.

For S to be the set of sharers of a stable partition,
we need that the most patient sharer does not want
to freeride:

ud−
(
cn + cs + ρs(N)

)
θ
N

S
≥ ud−

(
cn + ρs(N)

)
θ

N

S − 1

This expression implies that

ρs(N) ≥ (N − s (N)) cs − cn.

Therefore, for S = N − s (N) + 1 to be stable, ρs(N)

must satisfy ρs(N) ≥ (N − s (N)) cs − cn.
We also need that the most impatient freerider does

not want to share:

ud−
(
cn + ρs(N)−1

)
θ
N

S
≥ ud−

(
cn + cs + ρs(N)−1

)
θ

N

S + 1

This expression implies that

ρs(N)−1 ≤ (N − s (N) + 1) cs − cn.

Suppose now that all ρis are drawn from a uni-
form distribution ρi ∼ U [0, ρ̄]. When N is large
we have that s (N) − 1 ' ρs(N)−1

ρ̄ N . Furthermore,
large N also implies that ρs(N) ' ρs(N)−1. Therefore
s (N) ' ρs(N)−1

ρ̄ N + 1 ' ρs(N)

ρ̄ N + 1. Substituting in
the expression above, we obtain

(
N − ρs(N)

ρ̄
N − 1

)
cs − cn ≤ ρs(N)

ρ̄ ((N − 1) cs − cn)
ρ̄ + Ncs

≤ ρs(N).

When N is large we have that s (N)−2 ' ρs(N)−2

ρ̄ N .
Furthermore, large N also implies that ρs(N)−1 '
ρs(N)−2. Therefore s (N)− 2 ' ρs(N)−2

ρ̄ N ' ρs(N)−1

ρ̄ N

or −s (N)+1 ' −ρs(N)−1

ρ̄ N −1. Now, substituting in
the expression above, we obtain

ρs(N)−1 ≤ (N − s (N) + 1) cs − cn

ρs(N)−1 ≤ ρ̄ ((N − 1) cs − cn)
ρ̄ + Ncs

7



So, when N is large we have that

ρs(N)−1 ≤
ρ̄ ((N − 1) cs − cn)

ρ̄ + Ncs
≤ ρs(N).

We conclude that when N is large

ρs(N) '
ρ̄ ((N − 1) cs − cn)

ρ̄ + Ncs
.

To identify the cardinality of S, we have that S =

N − s (N) + 1 and s (N)− 1 ' ρs(N)−1

ρ̄ N . Therefore,

S = N − (N − 1) cs − cn

ρ̄ + Ncs
N

= N

(
ρ̄ + cs + cn

ρ̄ + Ncs

)
.

Proof of Proposition 5. An agent with disutility
of congestion ρi will only purchase from the firm if:

ud − p ≥ ud − (cn + cs + ρi)td.

Because td ≥ θ is positive, if the condition is satis-
fied for peer i it will also be satisfied for peer i + 1.
To solve for demand given a price p we proceed by
identifying the indifferent buyer, denoted by ρb. If
p = ud, only outsiders buy from the firm, as all other
agents obtain strictly positive utility in the network.
If p > ud purchasing yields negative utility and the
firm faces no demand. To obtain demand when p ≤ ud

we must solve for ρb, given by:

ud − p = ud − (cn + cs + ρb)td. (11)

Because either full or partial sharing may hold in the
network, we consider two separate cases. We begin
with the partial sharing case. Substituting td = θ N

S
in (11) and taking into account that congestion will
depend on ρb, as only agents such that ρi ≤ ρb are
present in the network:

ud − p ' ud − (cn + cs + ρps
b ) θ

N (ρps
b )

S (ρps
b )

,

where

N (ρps
b ) =

ρps
b

ρ̄
M ,

and

S (ρps
b ) = N (ρps

b )
(

ρps
b + cs + cn

ρps
b + N (ρps

b ) cs

)
.

Solving for ρps
b yields:

ρps
b =

pρ̄

θ(ρ̄ + Mcs)
.

We next consider the full sharing case and solve for
the indifferent buyer by substituting td = θ in (11):

ud − p ' ud −
(
cn + cs + ρfs

b

)
θ,

thus

ρfs
b =

p− θ(cn + cs)
θ

.

The demand function for the firm is given by:

D = (1− ρb

ρ̄
)M . (12)

Substituting ρps
b we obtain the expression for demand

in the partial sharing range:

Dps = (1− p

θ(ρ̄ + Mcs)
)M .

And substituting ρfs
b in (12) we obtain demand in the

full sharing range:

Dfs = (1− p− θ(cn + cs)
θρ̄

)M .

Full market coverage is obtained when ρfs
b = 0, which

implies:
pfc = θ(cn + cs).

A lower price will also ensure that the market is cov-
ered.

We next consider the optimal pricing strategy of
the firm. Given that either full or partial sharing may
hold in the network, the firm faces two separate cases.
Profits in the lower price range, under full sharing, are
given by Dfs:

πlr = p(1− p− θ(cn + cs)
θρ̄

)M , (13)

which has a maximum at

phc =
1
2
θ(ρ̄ + cn + cs).

We denote the maximum by phc, as high coverage of
the market is obtained in this price range. In the
higher price range, under partial sharing, profits are
given by Dps:

πhr = p(1− p

θ(ρ̄ + Mcs)
)M , (14)

which has a maximum at

plc =
1
2
θ(ρ̄ + Mcs).

As market coverage is lower in this range, we denote
the maximum by plc

To solve the firm’s optimal price strategy, profits
given by the optimal price in both ranges need to be
compared under all feasible parameter configurations.
Solving the systems of inequalities implied determines
the profit-maximizing price as a function of all the
parameters.
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