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ABSTRACT
We consider the problem of secret sharing among n ratio-
nal players. This problem was introduced by Halpern and
Teague (STOC 2004), who claim that a solution is impossible

for n = 2 but show a solution for the case n ≥ 3. Counter to
their claim, we show a simple protocol for the case of n = 2
players. Our protocol extends to the case n ≥ 3, where it
is both simpler than the Halpern-Teague solution and also
offers a number of other advantages. We also show how to
avoid the continual involvement of the dealer, in either our
own protocol or that of Halpern-Teague.

Our techniques extend to the case of rational players try-
ing to securely compute an arbitrary function, under certain
assumptions on the utilities of the players.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Systems]: General—
security and protection; E.3 [Data]: Data Encryption

General Terms
Security
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1. INTRODUCTION
The classical problem of t-out-of-n secret sharing [10, 1]

involves a “dealer” D who wishes to entrust a secret s to
a group of n players P1, . . . , Pn so that (1) any group of t

or more players can reconstruct the secret without further
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intervention of the dealer, yet (2) any group of fewer than
t players has no information about the secret. As an exam-
ple, consider the scheme due to Shamir [10]: say the secret
s lies in a field

�
, with |

�
| > n. The dealer chooses a ran-

dom polynomial f(x) of degree at most t− 1 subject to the
constraint f(0) = s, and gives the “share” f(i) to player Pi

(for i = 1, . . . , n). Any set of t players can recover f(x) (and
hence s) by interpolation; furthermore, no set of fewer than
t players has any information about s.

The implicit assumption above is that at least t players are
willing to cooperate and pool their shares1 when it is time
to recover the secret; equivalently, at least t players are hon-

est and hence at most n − t players are malicious. Halpern
and Teague [4] consider a scenario in which no one is (com-
pletely) honest, but instead all that is guaranteed is that at
least t players are rational (as before, up to n − t players
may refuse to cooperate altogether). Shamir’s protocol may
no longer succeed in this scenario [4]. Specifically, if all play-
ers prefer to learn the secret above all else, and otherwise
prefer that fewer parties learn the secret, then no player has
any incentive to reveal their share. Consider P1: if strictly
fewer or greater than t− 1 other players reveal their shares,
nothing changes whether P1 reveals his share or not. On the
other hand, if exactly t− 1 other players reveal their shares
then P1 learns the secret regardless (using his share), while
P1 can prevent other players from learning the secret by not
publicly revealing his share. Thus, although for t < n hav-
ing all players reveal their shares is a Nash equilibrium, it is
a weakly dominating strategy for each player not to reveal
its share (and this is the equilibrium likely to be reached).
Note that for t = n, having all players reveal their shares is
not even a Nash equilibrium.

Does there exist any protocol for reconstructing the secret
in which it is in players’ best interests to follow the proto-
col? Generalizing the above, Halpern and Teague rule out
any protocol terminating in a fixed number of rounds. This
leaves open the possibility of probabilistic protocols without
a fixed upper bound on their round complexity, and indeed
Halpern and Teague show such a protocol for n ≥ 3 par-
ties. In contrast, they claim that a solution is impossible for
n = 2 even if probabilistic protocols are allowed.

Our results: We revisit the question of rational secret shar-
ing, in the model of [4]. As perhaps our most surprising

1We assume adversarial behavior is limited to refusal to co-
operate. Reporting an incorrect share is easily prevented by
having the dealer sign the shares.



result, we show a simple, probabilistic protocol for n = 2
parties to reconstruct a shared secret, thus disproving the
claim of Halpern and Teague. Interestingly, their proof ap-
pears to be correct; the problem is that their assumptions

about the types of protocols that might be used are too re-
strictive. By relaxing their assumptions in a reasonable way,
we are able to circumvent their impossibility result.

Our protocol generalizes in a straightforward way to the
case of n ≥ 3 and arbitrary t. Although Halpern and Teague
also claim a general solution of this sort, our solution is much
simpler and has a number of other advantages.

In the Halpern-Teague solution, the dealer is involved pe-
riodically throughout the entire lifetime of the protocol. We
also show how to remove this involvement of the dealer, in
either our own protocol or that of Halpern and Teague.

Our results extend to the case of rational players comput-
ing an arbitrary function, under certain assumptions regard-
ing their utilities. See the full version [3] for more details.

Related work: There has been much recent interest in
bridging cryptography and game theory [6, 5, 7]. While prior
work [6, 5] offers solutions to the problem considered here,
we focus on simplicity and efficiency rather than general-
ity. Our work also makes weaker physical assumptions than
that of [6, 5]: specifically, we assume simultaneous broadcast

(equivalently, we do not allow rushing) rather than “secure
envelopes.” See [3] for further discussion.

Recent and independent work [8] shows how to use essen-
tially the same ideas shown here to obtain a stronger and
more general result.

2. MODEL
We review the model of Halpern and Teague, filling in

some details they omit. We have a dealer D holding a se-
cret s, and n players. A protocol proceeds in a sequence of
iterations, where each iteration consists of multiple rounds.
At the beginning of each iteration, D distributes some in-
formation (privately) to the n players; at this point, any set
of fewer than t players should have no information about s.
The dealer is not involved during an iteration. Instead, some
set of at least t players run the protocol amongst them-
selves by simultaneously broadcasting messages in a series
of rounds. (Halpern-Teague additionally allow private com-
munication between the players but we do not need this.)
At the end of an iteration, the protocol either terminates or
proceeds to the next iteration. We assume the dealer follows
the protocol as specified. To rule out trivial protocols, we
require that if at least t players follow the protocol in each
iteration, the secret is eventually reconstructed.

Let ~σ = (σ1, . . . , σn) denote a vector of (possibly random-
ized) strategies used by the players. A protocol corresponds
to the above game along with a prescribed strategy vector ~σ.
As in [4], we are interested in strategy vectors correspond-
ing to a Nash equilibrium that survives iterated deletion of
weakly-dominated strategies. See [9, 4] for definitions.

Let µi(~σ) denote the utility of Pi for the strategy vector
~σ. For a particular outcome o of the protocol, we let δi(o)
be a bit denoting whether or not Pi learns the secret, and
let num(o) = �

i
δi(o). We assume that for all i:

• δi(o) > δi(o
′) ⇒ µi(o) > µi(o

′).

• If δi(o) = δi(o
′),

num(o) < num(o′) ⇒ µi(o) > µi(o
′).

That is, players first prefer outcomes in which they learn the
secret; if this is held fixed, players prefer outcomes in which
the fewest other players learn the secret. Let Ui(~σ) denote
the expected value of the utility of Pi under strategy vector
~σ. We assume rational players wish to maximize this value.

3. PROTOCOLS
We provide a high-level overview of the Halpern-Teague

solution for 3-out-of-3 secret sharing. (Details of their pro-
posed generalization for n > 3, t ≥ 3 are in [4, 3].) At the
beginning of each iteration, the dealer runs a fresh invoca-
tion of the Shamir scheme and sends the appropriate share
to each player. During an iteration, each Pi flips a biased
coin ci with Pr[ci = 1] = α. Players then securely com-
pute p = � ci such that it is impossible to cheat or to learn
information about the {ci} values of the other parties. If
p = ci = 1, player Pi broadcasts his share. If all shares are
revealed, the secret is reconstructed and the protocol ends.
If p = 1 and no shares are revealed, all players terminate the
protocol. In any other case, players proceed to the next iter-
ation. Assuming players act honestly, the expected number
of iterations until the protocol terminates is α−3.

For a quick sketch as to why this works, assume P1, P2

follow the protocol and consider whether P3 should deviate.
One can show that there is no incentive for P3 to change the
distribution of c3. If p = 0 or c3 = 0, there is clearly no in-
centive for P3 to deviate. When p = c3 = 1, player P3 does
not know whether c1 = c2 = 1 (which occurs with prob-

ability α
2

α2+(1−α)2
) or c1 = c2 = 0 (which occurs with the

remaining probability). If P3 does not broadcast its share
it runs the risk of having the protocol terminate without
learning the secret. Setting α appropriately based on P3’s
utility function, it is not in P3’s best interest to deviate.

3.1 Our Solution
Halpern and Teague implicitly assume that the dealer is

restricted to sending valid Shamir shares to the players, and
their impossibility proof for n = 2 therefore focuses only on
what happens during an iteration. Removing this restric-
tion circumvents the impossibility result for n = 2 (and also
drastically simplifies things for the case of general n [3]).

The idea is as follows: with some probability the dealer
shares the actual secret, and with the remaining probability
the dealer shares a “bogus” secret. No player can tell which
is the case given the share he receives. Then, players simply
pool their shares and reconstruct the shared value. If this
is the “actual” secret, the protocol terminates; otherwise,
players continue to the next iteration. (We have to provide
the players with a way to detect whether a reconstructed
value is the actual secret or not; this is quite easy to do.)

We focus on the case n = 2 but it is easy to see that
our idea generalizes to arbitrary t, n. Say the dealer holds a
secret s that lies in a strict subset S of a field

�
(if s lies in a

field
�
′ , this is achieves by taking a larger field

�
containing�

′ as a subfield). At the beginning of each iteration, with
probability β the dealer generates a random sharing of s, and
with probability 1−β the dealer generates a random sharing
of an arbitrary element ŝ ∈

�
\ S. In a given iteration, the

players simply broadcast their shares. If in any iteration
some player does not broadcast their share, both players
immediately terminate the protocol. Otherwise, both shares
were broadcast and the players either reconstruct the secret



s ∈ S and terminate the protocol successfully, or reconstruct
a value ŝ ∈

�
\ S and proceed to the next iteration.

To see why this works, note first that a player cannot
tell from its share whether the dealer has shared the “real”
secret s or the “bogus” secret ŝ. Assume P1 acts honestly
and consider whether P2 has any incentive to deviate. The
only possible deviation is for P2 to refuse to broadcast his
share. In this case, it learns the secret (while P1 does not)
with probability β, but with probability 1 − β it will never
learn the secret. Setting β appropriately depending on P2’s
utility, it is not in P2’s best interest to deviate.

The above shows that following the protocol is a Nash
equilibrium. It is possible to additionally prove that it sur-
vives iterated deletion of weakly dominated strategies [3].

4. DISCUSSION AND EXTENSIONS
We view the main import of our result as a demonstration

that rational secret sharing is, in fact, possible when n = 2;
this serves as an illustration of the sensitivity of an impossi-
bility result to the precise model under consideration. Our
approach also has various other advantages as compared to
the Halpern-Teague solution; chief among these may be its
simplicity. See [3] for additional points of comparison.

In the full version [3], we show how to remove the need
for the dealer to be involved at the beginning of each itera-
tion so that, as in standard secret sharing, the dealer need
only be involved once, at the beginning of the protocol. We
also show how our results may be extended to the case of
secure computation of arbitrary functions (à la [2]) by par-
ties assumed only to be rational (i.e., without making the
assumption that any parties are completely honest [2]).
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