

First Workshop on the Economics of Networked Systems (NetEcon06)

A workshop of EC-06: ACM Conference on Electronic Commerce
http://www.cs.duke.edu/nicl/netecon06

June 11, 2006
Ann Arbor, Michigan

NetEcon merges two workshops held in previous years: P2PEcon (Economics of Peer-to-Peer
Systems) and PINS (Practice and Theory of Incentives in Networked Systems). The goal of the
workshop is to promote a cross-disciplinary exchange of ideas on the role of game-theoretic and
economic principles in the design and analysis of networked systems.

The influence of incentives is fundamental when the users of a system have competing interests
and may behave selfishly. In particular, networked systems are often sustained by resources
contributed and controlled by their participants, and their resources are consumed by individual
user choice but are managed as a commons for the benefit of the group. Contexts of particular
interest for this workshop include Internet routing and traffic control, peer-to-peer services,
distributed hosting platforms (utilities or grids), and wireless mesh networks.

We reviewed 26 position papers for NetEcon06 and selected 12 papers to present and discuss at
the workshop. The final versions of the papers are included in this volume and are available on
the workshop website at http://www.cs.duke.edu/nicl/netecon06.

Program Committee

• Jeff Chase, Duke University (co-chair)
• Nick Feamster, Georgia Tech (co-chair)
• Tim Roughgarden, Stanford (co-chair)
• Gagan Aggarwal, Google
• Bobby Bhattacharjee, U. Maryland
• Landon Cox, Duke University
• George Danezis, K.U. Leuven
• Balachander Krishnamurthy, AT&T Labs -- Research
• Ratul Mahajan, Microsoft Research
• Asu Ozdaglar, MIT
• David Parkes, Harvard University
• Rahul Sami, University of Michigan
• Christian Scheideler, Technical University of Munich
• Emin Gun Sirer, Cornell
• Alex Snoeren, UCSD
• Don Towsley, U. Mass Amherst
• Xiaowei Yang, UC Irvine

Program for the First Workshop on Economics of Networked Systems (NetEcon06)

9:00 - 9:10 Welcome and intro

9:10 - 10:20 Mechanism Design and Networking

• Assessing the assumptions underlying mechanism design for the Internet page 3
Steven Bauer (MIT), Peyman Faratin (MIT), Robert Beverly (MIT)

• Punishment in Selfish Wireless Networks: A Game Theoretic Analysis page 9
Dave Levin (University of Maryland, College Park)

• Discussion (15 minutes)

10:40 - 12:30 Sustainable Peer-to-Peer File Sharing

• Why Share in Peer-to-Peer Networks? page 15
Lian Jian (School of Information, University of Michigan), Jeffrey MacKie-Mason
(School of Information, University of Michigan)

• Peer-to-Peer Filesharing and the Market for Digital Information Goods page 23
Ramon Casadesus-Masanell (Harvard Business School), Andres Hervas-Drane
(Universitat Autònoma de Barcelona)

• Improving Robustness of Peer-to-Peer Streaming with Incentives page 31
Vinay Pai (Stony Brook University), Alexander E. Mohr (Stony Brook University)

• Dandelion: Secure Cooperative Content Distribution with Robust Incentives page 37
Michael Sirivianos (University of California, Irvine), Xiaowei Yang (University of
California, Irvine), Stanislaw Jarecki (University of California, Irvine)

2:00 - 3:20 Games and Markets

• Rational Secret Sharing, Revisited: "I'll Tell You if You'll Tell Me" page 45
S. Dov Gordon (University of Maryland), Jonathan Katz (University of Maryland)

• Path Auction Games When an Agent Can Own Multiple Edges page 48
Ye Du (EECS Department, University of Michigan), Rahul Sami (School of Information,
University of Michigan), Yaoyun Shi (EECS Department, University of Michigan)

• Bootstrapping the Long Tail in Peer to Peer Systems page 56
Bernardo A. Huberman (HP Labs, Palo Alto), Fang Wu (HP Labs, Palo Alto)

3:40 - 5:00 Ranking and Reputation

• Incentive based ranking mechanisms page 62
Rajat Bhattacharjee (Stanford University), Ashish Goel (Stanford University)

• Havelaar: A Robust and Efficient Reputation System for Active Peer-to-Peer Systems
Dominik Grolimund (ETH Zurich) Luzius Meisser (ETH Zurich), Stefan Schmid (ETH
Zurich), Roger Wattenhofer (ETH Zurich)

• Manipulability of PageRank under Sybil Strategies page 75
Alice Cheng (Cornell), Eric Friedman (Cornell)

Assessing the assumptions underlying mechanism design
for the Internet

Steven J. Bauer
Massachusetts Institute of

Technology
77 Mass Ave

Cambridge, MA

bauer@mit.edu

Peyman Faratin
Massachusetts Institute of

Technology
77 Mass Ave

Cambridge, MA

peyman@mit.edu

Robert Beverly
Massachusetts Institute of

Technology
77 Mass Ave

Cambridge, MA

rbeverly@mit.edu

ABSTRACT
The networking research community increasingly seeks to leverage
mechanism design to create incentive mechanisms that align the in-
terests of selfish agents with the interests of a principal designer. To
apply mechanism design, a principal designer must adopt a vari-
ety of assumptions about the structure of the induced game and the
agents that will be participating. (We focus in this paper on assump-
tions regarding agent preferences and non-repeated vs. repeated
games.) As we demonstrate, such assumptions are central to under-
standing the degree to which theoretical claims based upon mech-
anism design support architectural design decisions or are useful
predictors of real-world system dynamics. This understanding is
central to integrating the theoretical results from mechanism de-
sign into a larger architectural discussion and engineering analy-
sis required in networking research. We present two case studies
that examine how the valid theoretical claims of [7, 18] relate to a
larger, architectural discussion. We conclude with a discussion of
general criteria for designing and evaluating incentive mechanisms
for complex real-world networks like the Internet.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; C.2.1 [Network
Architecture and Design]: Packet-switching networks

General Terms
Economics, Theory

Keywords
network architecture, mechanism design, agent preferences, repeated
games

1. INTRODUCTION
The networking community has often designed architectures and

protocols that rely on the cooperative behaviors of participants (e.g.
TCP). The field of mechanism design, though, suggests that net-
work architectures and protocols can be designed that align the
interests of non-cooperative selfish agents with the interests of a
mechanism designer. This then would seem to be a powerful theory
in which strong claims could be made of agent and system behav-
iors. However, strong claims are contingent upon many assump-
tions about selfish agents that may not hold in practice. Claims are
much weaker if a mechanism only aligns the incentives of the sub-
set of selfish agents that happen to match a principal’s underlying
assumptions.

While adopting simplifying assumptions can enable a network
architect or protocol designer to prove theoretical properties such
as the incentive compatibility or efficiency of a mechanism, these
results may not always be useful predictors of actual agent behav-
iors or system dynamics when a mechanism is deployed in practice.
While the simplifying assumptions of any theory are often easy to
criticize from a practical perspective, the point of this paper is to
not to criticize. Rather we hope to further the use of mechanism
design by the networking community by promoting a better under-
standing of the contexts in which mechanism design succeeds (or
fails) in practice to improve network and protocol designs.

While mechanism design requires simplifying assumptions – ra-
tionality, common knowledge – we focus on what mechanism de-
signers can know about agent preferences and what they assume
about whether the induced game will be a single-shot or repeated
game. We focus on these assumptions because they strongly in-
fluence how applicable the theoretical results of mechanism design
are in practice for the networking community.

The first class of assumptions we examine is the structure and
type of agents’ preferences. We consider how realistic various as-
sumptions about agents’ utilities are in practice. While the ma-
jority of agents participating in a game induced by a mechanism
may match a designer’s assumptions, it is likely that at least some
agents will fail to conform to a mechanism designer’s expectations
in networks as large, complex and diverse as the Internet.

The second class of assumptions we examine deals with whether
the game induced by a mechanism is part of a larger repeated game.
In mechanism design the induced game is typically analyzed as a
single-shot game. However, in networking, agents will interact re-
peatedly with mechanisms experiencing, over time, multiple mech-
anism outcomes. We therefore consider mechanisms which induce
an outcome in a stage-game of a larger repeated game. It is well
known that the equilibria of repeated games can be different than
the equilibria of single-shot games [11]. Indeed, previous research
in the networking community has noted the effect of repeated play
on various routing mechanisms [2]. This paper considers more
broadly the implications of the folk theorem [11] for mechanism
design in any repeated context – a context that is very common in
the real-world networking environments.

The rest of the paper is organized as follows. In §2 we discuss
mechanism design for the Internet. In §3 we examine the assump-
tions about agent’s preferences and provide an example of a mecha-
nism, Re-Feedback [7], in which assumptions about the agents play
a critical role in understanding the incentive compatibility claims.
In §4 we examine assumptions about the number of times an agent
plays the game induced by a mechanism and examine the impli-

Page 3 of 82

cations for an ad-hoc routing and forwarding protocol [18] that is
designed to be incentive compatible. In §5 we discuss the impact
of our arguments on mechanism design for the Internet. In §6 we
conclude with a summary.

2. MECHANISM DESIGN
Since this paper is targeted primarily at the networking commu-

nity we begin with a brief review of mechanism design. As de-
scribed in Fudenberg [11], mechanism design can be viewed as
a multi-step game of incomplete information where agent “types”
are private information. In the first step of the game the mecha-
nisms designer, or principal, designs a “mechanism”, “contract” or
“incentive scheme.” The objective of this mechanism is to illicit
“messages” or “behaviors” from agents such that the mechanism’s
designer, or principal’s expected utility is maximized. In the case
of a benevolent principal, the expected utility that is maximized is
some notion of social welfare. As network architects we often opti-
mistically view ourselves as such benevolent principals, designing
mechanisms to improve some notion of overall social welfare for
the network.

In next step of the game, each agent either accepts or rejects the
mechanism designed by the principal. Agents that accept enter the
third step and play the game induced by the mechanism. Playing
the game entails sending messages that are selected based upon an
agent’s private “type.” In a networking context, one can interpret
sending a message to a mechanism as engaging in a behavior that is
observable to the network providers or other network participants.

The outcome of the game induced by the mechanism is called an
“allocation” or “decision” k which is computed by the mechanism
from the agent messages. The allocation consists of an assignment
of goods and transfers of numeraire [13]. The allocation, for in-
stance, in a VCG-based lowest-cost routing mechanism [8] consists
of a selection of routing path and numeraire transfers of monetary
payments to each of the nodes on the lowest-cost path. More gen-
erally, numeraire can be in terms of anything the agent values; of-
ten these are monetary transfers, but they can also be tokens that
are valuable within the context of the mechanism. For instance, in
mechanisms designed for the Internet these tokens might represent
the right to transmit in a wireless network or they might be tokens
employed in a traffic-shaping token-bucket.

The problem facing the mechanism designer is how to construct
the message space and allocation rules such that it is in the interest
of agents to truthfully reveal the private information that the princi-
pal conditions it’s allocation decisions upon. Said another way, the
mechanism must be designed to align the interests, behaviors, and
actions of the agents with the interests of the mechanism designer.

In designing a mechanism, the principal is assumed to have some
leverage over the agents that influences the agents’ choice of mes-
sages or behaviors. This leverage is rooted in the principal’s control
over how goods and transfers are allocated to the agents. When de-
signing a mechanism for the Internet then, an important question
is what can a principal assume with confidence about agent prefer-
ences? The answer to this question is critically important to both
the design of the mechanism as well as the equilibria that will result
in the induced game. These are the topics that we consider in the
following section.

3. ASSUMPTIONS ABOUT PREFERENCES
In the game of mechanism design, each agent has a private type

θi that determines the agent’s preferences over different alloca-
tions.1 Agent types are assumed to be drawn from a known set
1See (23.B) “The Mechanism Design Problem” [16], for a more

of types θi ∈ Θi. The vector of all agents types is denoted as θ =
(θ1, ...θI) drawn from a vector of possible types θ ∈ Θ1 ×· · ·×ΘI
with a probability density function φ(·). Each agent is also assumed
to be an expected utility maximizer where the agent’s utility func-
tion for an allocation k from the mechanism is denoted ui(k,θi).

Many mechanisms designed by the networking community have
further assumed that the structure of agents’ utility functions have
a quasilinear form:

ui(k,θi) = v(k,θi)+(mi + ti) (1)

where mi is the agents i’s initial endowment of the numeraire, k
is the allocation of the good, v() is the agent’s valuation function
for the allocation, and ti is transfer of numeraire to/from agents.
Quasilinear utility functions are popularly adopted because utility
can be transfered across agents through transfers of the numeraire.

A key underlying assumption is that the probability density func-
tion φ(·), the complete sets of possible types for each agent Θ1, ...,ΘI ,
and the structure of the utility functions ui(·,θi) are all common
knowledge. In other words, all of this information is known by all
agents and the principal. The only private information is the actual
type of each agent θi.

By assuming that the complete set of possible types for each
agent and structure of all utility functions are known, the princi-
pal can theoretically anticipate the effect of incentive mechanisms
upon agent behaviors. If all these assumptions are sound, i.e. the
assumptions accurately represent agents’ utilities and types in the
real world, then the mechanism designer can with confidence pre-
dict and describe the behaviors and equilibria in the game induced
by a mechanism.

3.1 Assessing utility assumptions
The question, from a network architect’s perspective, is what

should be assumed about agents’ utilities in network environments?
In this section we consider mechanisms that assume agent utility
functions are composed of terms representing the value of mone-
tary and/or network goods to an agent.

3.1.1 Monetary utility terms
A monetary term that captures an agent’s increase in utility with

increased monetary assets seems fairly safe to assume in a util-
ity function. Most selfish agents would seemingly prefer a larger
amount of monetary goods to a smaller amount.

However, even this relatively safe assumption may not hold when
considering the time value of money. An agent may be willing to
incur a smaller short-term loss for a larger long-term gain. If agents
are willing to incur loses within the induced game for longer-term
gains realized in a different larger or repeated game that includes
the induced game, a mechanism designer has more limited lever-
age to shape the agents behaviors through monetary incentives. In
effect, the agents will not be playing the game the mechanism de-
signer intended.

This is interesting because it suggests that even monetary re-
wards or penalties may not create the incentives expected by a prin-
cipal. While perhaps most likely to occur over monetary goods, a
tolerance for short-term loses for longer-term benefits also poten-
tially effects how agents value network characteristics such as the
ones discussed in the next section.

3.1.2 Network-based utility terms
The next class of terms in an agent’s utility function we con-

sider are ones that represent the value of network goods. These are
complete introduction to the assumptions summarized in this sec-
tion.

Page 4 of 82

terms that represent the value of network performance characteris-
tics such as throughput, latency, and loss as well as more general
goods such as transmission or access privileges on a network. It
is often assumed that agents’ utilities are an increasing function
of improvements in the network good. Assuming that agents have
traffic they want to send or receive on the network, such assump-
tions seem at first plausible.

However, a lesson from years of quality of service research in
the networking community is that simplistic models of agent util-
ities are inadequate in the real-world [5]. Assuming that agents
always value improvements in any one metric of network perfor-
mance, such as throughput, latency, or network access fails to de-
scribe any one individual agent let alone being a good model for all
agents on the network [5].

Moreover, in most networks today, agents are actively seeking
to send or receive traffic only a small fraction of the time. Dur-
ing these periods, incentives leveraging the fact that agents value
improvements in network performance will be effective. But, this
raises the question of what governs and motivates an agent’s be-
havior during other times? One is tempted to answer that agents
will just cooperate during periods when they themselves are not
selfishly invested in how the network is performing. But such a re-
sponse weakens the strength of claims that can be made regarding
a mechanism, particularly in networked environments, such as we
have today, where actively malicious behaviors are common.

Finally, we note that a mechanism deployed in the real world
cannot selectively admit only those agents that are well modeled by
the utility functions assumed by the principal. Agent utilities and
types are inherently private information. Agents that do not con-
form to a principal’s assumptions may participate in the induced
game. Therefore, the claims that can be made for a practical mech-
anism must be seen as limited to the subset of selfish agents that
match a principal’s underlying assumptions.

3.2 Case study: Re-Feedback
In this section, we provide a concrete example of a mechanism,

Re-Feedback [7], in which assumptions about the agents play a crit-
ical role in understanding the incentive compatibility claims. We
selected Re-Feedback because it was presented at one of the pre-
mier networking conferences and leverages mechanism design in
support of a proposed real-world network architecture. We first
provide a brief overview of the mechanism.

3.2.1 Objectives and incentives
The Re-Feedback framework attempts to add accountability for

causing congestion to transport protocols. It is a technical network
architecture that enables a “receiver-aligned” view of the down-
stream congestion along a path. How this congestion information
is employed is left to the discretion of the network operators. They
could directly charge or shape traffic based upon the congestion
information.

We present a slightly abstracted description of the Re-Feedback
mechanism; for details readers should consult the literature [7].
The framework leverages the Explicit Congestion Notification (ECN)
bits of the IP header and the congestion feedback in the transport
header in a novel manner to expose to network providers along a
path the sender’s “true” expectation of downstream congestion.

In Re-Feedback, the sender of a flow of traffic declares the ex-
pected congestion along the path (i.e. the rate at which the congestion-
experienced (CE) bit will be set by ECN-capable routers) by setting
selected bits (the ECT(0) code point) in the IP header. From replies
sent back from the receiver in the transport protocol, which indi-
cate the actual congestion experienced rate, the sender is capable

Sender Receiver

Shaper(expected congestion) Dropper

ISP ISP ISP

expected congestion

actual congestion((

ISPISP ISP

Figure 1: The incentives of Re-Feedback are designed to in-
duce senders to truthfully report the expected congestion along
a path. A shaper creates an incentive for senders to not over-
state their view of expected congestion. A dropper creates an in-
centive for senders to not understate their view of downstream
congestion.

of accurately adjusting it’s expectation of downstream congestion.
Routers in the framework are unmodified; they are simply assumed
to set the CE bit in packets during periods of congestion.

Of course, without additional components, senders would have
no incentive to accurately state their expectation of the downstream
congestion. Re-Feedback tries to create this incentive through the
addition of shapers and droppers in the network (see Figure 1). A
shaper creates an incentive for senders to not overstate their expec-
tation of downstream congestion by shaping the traffic flow to con-
form to a TCP-friendly rate given the stated expected congestion
rate. A dropper creates an incentive for senders to not understate
their expectation of downstream congestion by dropping enough
traffic to make the rate of congestion marked packets (CE) equal to
the rate of packets marked with expected congestion (ECT(0)) in a
flow of traffic.

Any deviation from truthfully stating the expected downstream
congestion leads to shaping or dropping the sender’s traffic so that
the overall throughput to the receiver is reduced. These incentives
are designed to lead to a maximization of social welfare where the
social welfare function is the global aggregate throughput in the
network.

3.2.2 Claims and analysis
A series of claims are made regarding the behaviors that the Re-

Feedback framework will induce [7].

1. “We have introduced an incentive framework which ensures
that the dominant strategy of selfish parties around the feed-
back loop will be to declare Re-Feedback honestly.” (p.11)

2. “The ingress edge network can rely on downstream conges-
tion declared in the packet headers presented by the sender.”
(p.5)

3. “Inter-domain congestion charging ensures that any network
that harbors compromised “zombie” hosts will have to pay
for the congestion that their attacks cause in downstream net-
works.” (p.9)

We now examine the implicit agent assumptions underlying these
claims. The first assumption is that all agents’ utilities are an in-
creasing functions of throughput (throughput is the good being al-
located by the mechanism). If the ingress network charges for a
sender’s declared expected congestion, the agent utility function
u() has a classic quasilinear form with a valuation function v() in-
creasing with increased throughput and the transfer charges ti in-
creasing as well with increases in the expected congestion rate. The
question, then, is are these sound assumptions for agents on the In-
ternet?

Page 5 of 82

Perhaps, in some scenarios these assumptions would be sound.
But if Re-Feedback is positioned as a general purpose incentive
architecture for the Internet this may not always be the case. Con-
sider, for instance, a prevalent problem on today’s Internet of denial
of service attacks. Agents that participate in such attacks not only
do not value their own throughput, they also want to diminish oth-
ers’ throughput as well.

As indicated by the zombie claims above, the Re-Feedback frame-
work seeks to address such malicious behavior. But consider the
following behavior of an agent that wanted to launch a denial of
service attack on the network infrastructure. All the agent would
have to do would be send network traffic at any rate (up to full ac-
cess line rate) declaring no expected downstream congestion (e.g
the ECT(0) code point is not set on any packets).

But note that this strategy could reasonably be employed by non-
malicious agents as well. An application might be designed that
employed a loss resistance encoding (e.g. erasure coding) and streamed
a large data set across the network. Declaring no expected con-
gestion would result in the Re-Feedback dropper discarding many
packets if the network were congested, but the application would be
able to make use of any available non-congested network periods.

Note the result of this strategy in the Re-Feedback framework.
Even if the ingress network is charging for declaring downstream
congestion, the strategy is cost free as no congestion is ever de-
clared. As no packets are marked with an ECT(0) code-point, the
shapers also have no effect. The flow of traffic will be discarded by
a dropper in the Re-Feedback framework, but, since droppers nec-
essarily maintain flow state (and thus will always likely be closer
to one of the network edges), this may not be until the egress edge
network. (Egress droppers are depicted in the Re-Feedback paper
[7].) This means that no network element before the first dropper
can ever rely on the expected congestion declared for a flow if such
agents are indeed present on the network.

Now consider that to combat this strategy, a dropper is added to
the ingress edge of the network. An agent only has to declare an
expected level of congestion equal to the congestion on the path
from the sender to the ingress dropper. But still no element on the
path from the ingress dropper to the egress dropper can rely on the
congestion information declared by the sender. Adding additional
droppers along the path raises the costs to the sender, but no guar-
antee can ever be made that all elements along a path can rely upon
the declared expected congestion rate being representative of the
actual downstream congestion.

The fundamental issue is that only the agents that seek to max-
imize throughput to a receiver will exhibit the social welfare max-
imizing behaviors. Given that many selfish agents on the Internet
may not conform to these assumptions, the mechanism claims for
Re-Feedback should perhaps be interpreted more narrowly.

Note, though, that we do not consider it a failure that Re-Feedback
does not accommodate all the types of selfish agents on the Inter-
net. Creating an incentive mechanism that aligns the interests of a
subset of agents may be a worthwhile improvement over the cur-
rent Internet that largely assumes full cooperation from all agents.
It is, however, important to understand the limitations.

4. MECHANISM DESIGN FOR REPEATED
GAMES

Classically, mechanism design is viewed as inducing a single-
shot game. However, when mechanism design is applied to the
construction of protocols and architectures for networking prob-
lems, it is actually more likely the same agents will be repeatedly
playing the game induced by the mechanism.

From this perspective, the outcome of a game induced by a mech-
anism must be seen as the outcome of a stage-game i.e. one iter-
ation of a single-shot game, in a larger repeated game. However,
the effect of incentives in a single-shot game can be different then
in a repeated game. The classic example of this is the prisoners’
dilemma game. The only equilibrium in the single-shot game is for
each prisoner to defect and take a plea bargain. However, in the
repeated game, staying silent can also be an equilibrium strategy
[11].

In general, any mechanisms designed by the networking com-
munity that are repeatedly played must be analyzed as repeated
games. This entails that important theoretical results in repeated
games must be considered – namely the “folk theorems” for re-
peated games (see Fudenberg [11] for formal statements of the folk
theorems in repeated games).

The folk theorems assert that, if players are sufficiently patient,
any individually rational, feasible outcome can be enforced by an
equilibrium. To be individually rational, players select actions in
each stage game that minimizes the maximum possible loss that
they will face in the overall repeated game. A feasible outcome
is one in which the rationality condition is satisfied for all agents.
Thus, in a repeated game, almost any outcome can be an equilib-
rium outcome [11].

But since any feasible outcome can be supported for the repeated
game, this raises the question of how much influence the incentives
of the mechanism designer inducing each stage game has over the
overall equilibrium of the repeated game. Consider again the clas-
sic prisoners’ dilemma cast as a mechanism design problem. The
principal representing the justice system wants to allocate prison
sentences in such a way that induces guilty suspects to defect from
their partners and tell the truth about their crimes i.e. the principal
wants to design an incentive compatible mechanism.

However, in the context of a repeated game, prisoners will al-
ways maximize their utility by continuously remaining silent in
each stage-game. Such an equilibrium can be enforced, for in-
stance, if agents adopt tit-for-tat or grim trigger strategies that pun-
ish any agent that ever defects. The principal representing the jus-
tice system in this repeated game cannot design an incentive com-
patible mechanism for a single stage game if the penalty allocated
to two prisoners that both remain silent must always be lower than
the penalties if they both defect.

In different contexts, though, a principal can, to a degree, influ-
ence the equilibrium of the repeated game through the design of
the messages that each agent can send to the mechanism. The work
of Afergan [2], for instance, considers the effect of protocol peri-
ods and field granularity on the equilibrium price computed by a
routing protocol. We are unaware of general results in this area; it
appears that each mechanism must be analyzed individually in the
context of a repeated game to understand what effect the control of
incentives in each stage game will have over the equilibria in the
repeated game.

4.1 Case study: ad-hoc networking
To illustrate the importance of considering repeated games in

the engineering of network protocols we consider the incentives
created in ad-hoc wireless networks by the protocols described by
a 2005 paper in one of the premier conferences on wireless and
mobile networking [18]. We focus in particular on the protocols for
the routing stage. Space limitations preclude us from presenting a
longer overview of the protocol. For specific details, consult the
paper [18].

Page 6 of 82

4.1.1 Ad-hoc routing and forwarding protocols
The goal of the routing stage is to compute the true costs, i.e. the

power levels required for transmission, for each link along a path in
the ad-hoc network. Based upon these costs, the price paid to each
node on the lowest cost path is computed similar to the VCG-like
mechanism presented in [4].

The challenge in wireless ad-hoc networks, the authors note, is
that the cost of a link cannot be determined by the sender alone.
Receivers are an integral part in reporting what power levels the
sender must employ. In certain circumstances, which the authors
describe, receivers have an incentive to misreport the power lev-
els that a sender requires for transmission. To address this chal-
lenge the protocol designers employ a cryptographic solution that
involves sending multiple messages, encrypted under a key shared
with a third party, at increasing power levels. The receiver transmits
all received messages to the third party that decrypts the messages
and computes the true cost of each transmitting node.

4.1.2 Claims and analysis
A series of claims are made regarding the behaviors that these

routing and forwarding protocols will induce [18].

• “We ... design the first incentive-compatible, integrated rout-
ing and forwarding protocol in wireless ad-hoc networks.”
(p.13)

• “We show that following the protocols is a dominant action
for [the routing stage.]” (p.13)

These claims, however, are based upon an analysis of a single-
shot game induced by the protocols. However, routing and for-
warding in an ad-hoc network will unquestionably be a repeated
game. As Afergan [2] notes, agents can advantageously deviate
from the behaviors they would exhibit in a single-shot version of
a VCG-based routing game. Namely, agents that collude (either
implicitly or explicitly) have an incentive to reveal costs that are
higher than their true costs so that they can enjoy larger payments
from the mechanism. Thus, the principal’s goal of truthful reve-
lation of costs is potentially thwarted in a repeated game. Indeed,
collusion between agents can only be supported in the context of a
repeated game.

This is interesting because the cryptographic approach taken in
this purposed protocol represents considerable engineering effort
to align the incentives of a single-shot game. If, in fact, the game is
repeated, admitting other agent behaviors, the considerable effort at
aligning the incentives in the single-shot game appears potentially
less worthwhile in the context of an engineering cost analysis.

5. DISCUSSION
This paper can be seen as an examination of applying theory to

practice. While simplifying assumptions are crucial to employing
theory and models, this necessarily entails that any model will not
capture all details of the real-world. What is crucial is to understand
when theory and models provide support and understanding of a
system design versus when they are no longer applicable.

The theory of mechanism design can “raise the bar” of network-
ing and protocol designs even if it does not accommodate all the
types of selfish agents on the Internet or perform exactly as ex-
pected in a repeated game. We do not consider a mechanism de-
signed for the Internet to be a failure simply because one can con-
struct agents that do not meet the principal’s assumptions. Creat-
ing an incentive mechanism that aligns the interests of a subset of
agents is an improvement over a design that assumes full coopera-
tion.

But understanding the real-world limitations of theoretical claims
is important from an architectural and system engineering perspec-
tive. It is this understanding of the real-world limitations that en-
ables the theoretical claims to be integrated into a larger architec-
tural discussion and engineering cost analysis. While there is not a
rigorous framework in which to conduct this discussion and anal-
ysis, we offer the following criteria for designing and evaluating
incentive mechanisms for complex real-world networks like the In-
ternet.

1. Explicitly state assumptions: Understanding the implications
and applicability of mechanism design requires the underly-
ing assumptions to be explicitly stated so that they can be
analyzed and tested for soundness.

2. Design defensively: Network architectures and protocols should
not rely upon incentives derived from mechanism design alone
to ensure that desirable system dynamics are achieved. At
least some agents in any network environment will not con-
form to a mechanism designer’s assumptions.

3. Understand the limitations of simple models of utility: As-
suming that agents always value improvements in any one
metric of network performance, such as throughput, latency,
or network access is not a realistic model of real-world agents.

4. Analyze the repeated game: Many mechanisms designed for
networks will, in fact, be repeatedly played. The incentives
created by this repeated play must be analyzed as a repeated
game.

6. RELATED WORK
Our work was motivated by considering the implications of de-

ploying, in practical networks, some of many mechanisms that have
been proposed for network environments in recent years. This in-
cludes the work of [4, 7, 8, 10, 18].

While our work focuses on the underlying assumptions about
agents, the work on Distributed Algorithmic Mechanism Design
(DAMD) [9, 10] emphasizes the importance of the algorithmic prop-
erties of mechanisms designed for the Internet. They introduce the
notion of protocol-compatibility which focuses on two aspects of
the practical feasibility of a mechanism: the computational tractabil-
ity and deployability of a mechanism.

The work of Afergan et al. [1, 2, 3] emphasizes the importance
analyzing networking problems as repeated games. One of the fo-
cuses of this work is that the mechanism designer can influence
the equilibria that occur in an incentive-based routing mechanism
by controlling some of the protocol parameters such as the period
lengths and granularity of protocol fields [2]. These results are de-
pendent on other agent assumptions such as the adoption of “trigger
price strategies.”

Practical experiences applying mechanism design and game the-
ory to networking problems are reported in Mahajan et al. and
Huang et al. [12, 15]. Both note that theory does not necessarily
apply as completely or easily as one might initially have hoped.

Potentially more realistic models of agents utilities are consid-
ered in [6]. The work of [17] considers how to prove, under certain
assumptions, that an implementation of a mechanism in real-world
system will match a designer’s specification.

Finally, if a mechanism designer can re-implement a mechanism
repeatedly then any outcome the designer cares about can be imple-
mented in dominant-strategies [14]. This becomes possible because
the principal can learn agents’ preferences by observing their past
behaviors.

Page 7 of 82

7. CONCLUSION
This work focuses attention on the underlying assumptions about

agents and how they will interact with mechanisms in complex net-
works like the Internet. We have emphasized that strong claims are
contingent upon assumptions about the selfish agents and how they
will interact with a mechanism. We have suggested that claims
should perhaps be interpreted more narrowly if mechanisms only
aligns the incentives of a smaller subset of selfish agents that match
a principal’s underlying assumptions. But we emphasize that cre-
ating an incentive mechanism that aligns the interests of a subset
of agents can still be seen as an improvement over a design that as-
sumes full cooperation from all agents. Finally, we emphasize that
mechanism design cannot be a substitute for a systems engineering
perspective.

In summary, the contributions of this paper are the following:

• A study of two classes of assumptions (agent preferences and
repeated vs. single-shot induced games) and their impact on
mechanisms designed for complex, real-world networks

• A consideration of what the folk theorem entails for any mech-
anisms that induce an outcome in a stage-game of larger re-
peated game

• Example case studies that illustrate understanding and evalu-
ating theoretical claims based upon mechanism design in the
context of larger architectural and engineering discussions

• A list of architectural and design criteria to consider when
evaluating or applying mechanism design for networking prob-
lems

8. REFERENCES
[1] M. Afergan. Applying the Repeated Game Framework to

Multiparty Networked Applications. PhD thesis,
Massachusetts Institute of Technology, August 2005.

[2] M. Afergan. Using repeated games to design incentive-based
routing systems. In Proceedings of the 2006 IEEE Infocomm
Conference. IEEE, 2006.

[3] M. Afergan and R. Sami. Repeated-game modeling of
multicast overlays. In Proceedings of the 2006 IEEE
Infocomm Conference. IEEE, 2006.

[4] L. Anderegg and S. Eidenbenz. Ad hoc-VCG: a truthful and
cost-efficient routing protocol for mobile ad hoc networks
with selfish agents. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and
networking, pages 245–259, New York, NY, USA, 2003.
ACM Press.

[5] G. J. Armitage. Revisiting IP QoS: why do we care, what
have we learned? ACM SIGCOMM 2003 RIPQOS
workshop report. SIGCOMM Comput. Commun. Rev.,
33(5):81–88, 2003.

[6] F. Brandt, T. Sandholm, and Y. Shoham. Spiteful bidding in
sealed-bid auctions. In D. Lehmann, R. M”uller, and
T. Sandholm, editors, Computing and Markets, number
05011 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005.

[7] B. Briscoe, A. Jacquet, C. D. Cairano-Gilfedder,
A. Salvatori, A. Soppera, and M. Koyabe. Policing
congestion response in an Internetwork using Re-Feedback.
In SIGCOMM ’05: Proceedings of the 2005 conference on
Applications, technologies, architectures, and protocols for

computer communications, pages 277–288, New York, NY,
USA, 2005. ACM Press.

[8] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A
BGP-based mechanism for lowest-cost routing. In
Proceedings of the 2002 ACM Symposium on Principles of
Distributed Computing., 2002.

[9] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing
the cost of multicast transmissions. Journal of Computer and
System Sciences, 63(1):21–41, 2001.

[10] J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: Recent results and future directions. In
Proceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications.

[11] D. Fudenberg and J. Tirole. Game Theory. MIT Press,
Cambridge, MA.

[12] E. Huang, J. Crowcroft, and I. Wassell. Rethinking incentives
for mobile ad hoc networks. In PINS ’04: Proceedings of the
ACM SIGCOMM workshop on Practice and theory of
incentives in networked systems, pages 191–196, New York,
NY, USA, 2004. ACM Press.

[13] M. Jackson. Optimization an Operations Research, chapter
Mechanism Theory. EOLSS, Oxford, UK, 2003.

[14] E. Kalai and J. O. Ledyard. Repeated implementation.
Journal of Economic Theory, 83(2):308, Apr. 1998.

[15] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Experiences applying game theory to system design. In PINS
’04: Proceedings of the ACM SIGCOMM workshop on
Practice and theory of incentives in networked systems,
pages 183–190, New York, NY, USA, 2004. ACM Press.

[16] A. Mas-Colell, M. Whinston, and J. Green. Microeconomic
Theory. Oxford University Press, New York, NY.

[17] J. Shneidman and D. C. Parkes. Specification faithfulness in
networks with rational nodes. In PODC, pages 88–97, 2004.

[18] S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On designing
incentive-compatible routing and forwarding protocols in
wireless ad-hoc networks: an integrated approach using
game theoretical and cryptographic techniques. In MobiCom
’05: Proceedings of the 11th annual international conference
on Mobile computing and networking, pages 117–131, New
York, NY, USA, 2005. ACM Press.

Page 8 of 82

1

Punishment in Selfish Wireless Networks:
A Game Theoretic Analysis

Dave Levin

Abstract— In currently deployed wireless networks, rational
participants have no incentive to cooperatively forward traffic
for others. Though much work has focused on providing such
incentives, few has done so with adequate focus on the ease of
deployment; often, these systems require trusted third parties or
tamper-proof hardware. In this paper, we use game theory to
analyze two internal incentive mechanisms, which rely only on
the primitives made available by standard 802.11 hardware. We
show that isolating free-riders (i.e., refusing to forward through
or for them) is not sufficient in all scenarios, and we motivate a
new incentive mechanism: punishment via channel jamming. We
also show that jamming yields a fair Nash equilibrium for all
nodes, i.e., that all nodes can provide incentives to their neighbors
to forward their packets. Lastly, we discuss some of the emergent
behaviors in these equilibria, as well as guidelines for the design
of a jamming strategy.

I. INTRODUCTION

Each participant in a wireless ad hoc network is both end-
host (it generates its own data and routing traffic) and in-
frastructure (it forwards traffic for others). Forwarding others’
traffic can consume a considerable amount of battery life,
yet no currently deployed wireless routing protocols provide
incentives for participants to route or forward. Indeed, rational,
self-interested nodes will free-ride from currently deployed
protocols. To ensure cooperation, protocol designers should
build incentives directly into the protocols [15].

Internal vs. External Incentives: Building incentives for
nodes in a wireless ad hoc network to cooperate is not a new
problem, but most existing systems make assumptions that
are simply too strong for a reasonable deployment. These
assumptions generally include introducing one of two new
components to the wireless network: trusted third parties (e.g.,
banks) or trusted, tamper-proof hardware. Since these are
not inherently part of existing wireless networks, we refer
to them as external incentive mechanisms. Few systems have
focused on what one can call internal incentive mechanisms,
which make sole use of the primitives already available in
deployed wireless (802.11) networks. Yet, systems which use
such mechanisms are more likely to experience a timely
deployment.

To better understand internal incentive mechanisms, we
develop in this paper a game theoretic framework in the
form of repeated games played on a strongly connected graph
(Section III). Each player’s strategy set is limited to what can
be feasibly done with standard 802.11 hardware (as opposed
to, say, interacting with a bank). Using this model, we analyze
the predominant internal incentive mechanism: isolating a
node by refusing to forward to or through it [4], [12], [13].
We show in Section IV that isolation does not always yield
system-wide cooperation.

dml@cs.umd.edu. Department of Computer Science, University of
Maryland, College Park. This work is supported by NSF-ITR Award #0426683
and a Sloan Foundation Fellowship awarded to Bobby Bhattacharjee.

A New Internal Incentive: Motivated by this observation,
we introduce a new incentive mechanism in Section V: punish-
ment via channel jamming. Unlike isolation, jamming does not
require any cooperation among nodes to punish a free-rider; a
single jammer suffices. This fundamental difference leads us to
a proof that jamming is a sufficient mechanism for encouraging
cooperation in all conditions, without requiring any trusted
components. We further extend our framework in Section VI
to model noise in wireless networks, which is fundamentally
different from the standard game theoretic notion of trembles.

Our game theoretic model shows that jamming is a viable
means of punishment, but there are of course several consider-
ations that must be taken into account when designing a system
with jamming, such as: When should a node punish another
node? How should a node react to another node’s punishment?
How should a node act to avoid being punished? We discuss
these in Section VII. Designing a system that addresses these
questions is the main focus of our ongoing work; the model
presented in this paper is intended to guide this design.

II. MODEL AND ASSUMPTIONS

We first formalize our assumptions about the network and
the nodes’ preferences over potential outcomes.

A. Network Model

We assume the network to be an arbitrary, connected graph,
G = (V, E), of selfish ad hoc nodes, V . By selfish we mean
that any i ∈ V will act in whatever rational way that will
maximize i’s utility over time. Formally, if (ut

i) and (wt
i) are

sequences representing i’s payoffs at time t = 1, . . . , T , then
i will prefer u to w if and only if there exists some ε > 0
such that 1

T

∑T

i=1(u
t
i −w

t
i) > ε. This condition is also known

as the limit of means criterion [14].1

Edge (u, v) is in E if and only if u and v are within
transmission range of each other. We can safely assume
that edges are bi-directional, since 802.11 requires link-level
acknowledgments [10]. Also, as assumed in the watchdog
mechanism [13] and the Catch system [12] systems, when
a node u ∈ V sends a message (be it broadcast or unicast),
all nodes in its one-hop neighborhood, N 1(u), overhear the
message. We make this assumption so that we can analyze the
resulting equilibria of systems such as Catch.

In terms of end-to-end connections, any two nodes u, v ∈ V

can communicate via some multi-hop path (i.e., G is strongly
connected). We assume that each node u knows its active
connections and acts in a way that maximizes the sum goodput
across these connections.

1Please see [14] for thorough definitions of the game theoretic terms used
in this paper.

Page 9 of 82

2

B. Selfish Nodes’ Preferences

It is not possible to formulate a general utility function
to accurately capture to what degree each node prefers,
say, connectivity over being disconnected. However, here, we
present a reasonable set of preferences and assign nominal
numeric values to different outcomes. A selfish node u can
experience one of four outcomes: being disconnected or not, or
(orthogonally) forwarding for other nodes or not. (We extend
this to include punishment in Section V.) If the cost to forward
is F , the benefit from being connected is C, and the utility
gained from being disconnected is D, we have the following
preferences:

• C > D > F (< 0): Connectivity is the best outcome, but
being disconnected at least does not expend resources,
unlike forwarding.

• C + F > D: Nodes gain more benefit from being
connected than what they lose by forwarding.

We can capture these properties by letting C = 2, D = 0, and
F = −1; we assume each of these for the remainder of the
paper only for ease of exposition, but these specific numbers
do not change any of our fundamental results.

III. AD HOC ROUTING GAMES

We begin by formulating an ad hoc routing game which
captures selfish nodes’ preferences in a multi-hop wireless
network. Such a game has many similarities to the well-known
iterated prisoner’s dilemma [14], repeated infinitely.2 However,
when modeling an ad hoc network, the game differs from most
formulations of N -player games in the following ways:

1) Each node i plays a game with nodes in N
1(i).

2) The game G(i, j) played between i and j ∈ N
1(i) is not

necessarily independent of the games played between
other nodes in i’s two-hop neighborhood, N 2(i).

3) The payoffs of G(i, j) (and therefore the dynamics of
the game itself) depend on whether or not i has any
interest in having j forward i’s packets, and vice versa.

Hence, each game G(i, j) must have an ever-changing set of
payoffs, determined by others’ actions and the desired end-
to-end connections. We now motivate these three differences
from the standard prisoner’s dilemma.

Games are played between neighbors: Standard game
theoretic models of N -player games generally assume that all
N players may (or often must) play against one another. The
network extension of games (see [1] for a nice survey) allows
for a more suitable model of most networking problems, such
as incentives-compatible BGP [8] and network planning [9].
Such a game includes an additional parameter to a game: a
graph G = (V, E), such that |V | = N and games are only
played between i and j if (i, j) ∈ E. We must therefore define
a game for each pair of neighbors, (i, j) ∈ E. As we will see,
games between different neighbors can vary significantly.

2Although, strictly speaking, players would not be expected to play in-
finitely, nodes generally do not know how long they will be in the network,
so the game can be treated as infinite [14].

All of node i’s games are interdependent: Let U
t
i (j)

denote the utility i gains from game G(i, j) at time t.3 If
all such games are independent, then the utility i gains from
the system at time t is simply

∑

j∈N 1(i) U
t
i (j). However,

such games are not generally independent. For instance, i

cannot forward packets for more neighbors at time t than
the capacity of the wireless network allows. We assume for
the remainder of this paper that the capacity of the wireless
network is enough that all interfering nodes may successfully
transmit their data in a given game, though in Section VI,
we approximate interference with noise.4 We make use of
this interdependence when we introduce the notion of channel
jamming as a punishment mechanism; when i is jammed, its
utility for time t, Ui(t), is forced to at most zero, regardless
of the benefit that would have been gained from the sum of
i’s other games at time t.

Neighbors’ interests may be asymmetric: Consider the
example network in Figure 1(a). Node A gains utility from the
system only if nodes B and C forward A’s packets to node
D. However, since B already has its end-to-end connection
established (with C), B has no reason to ask A to forward
its packets. Hence, there is an asymmetry of desire between
A and B; A would gain utility with B’s cooperation, but B

gains no additional connectivity (and therefore no additional
utility) by forwarding for A. Conversely, in the network of
Figure 1(b), B and C have a mutual interest in one another,
as they both would gain benefit from cooperating.

Desired
connection

Established
connection

B

CE
D

A
(b)

A
B C

D(a)

Fig. 1. Sample networks that motivate symmetric and asymmetric versions
of the ad hoc routing game.

To capture players’ varying desires, we use a different game
for each scenario of interests: both are interested, only one
is interested, or neither is interested. When both i and j are
interested in having the other forward their packets, G(i, j) is
the standard prisoner’s dilemma:

Cooperate Defect
Cooperate 1, 1 −1, 2

Defect 2,−1 0, 0

Game 1: The symmetric ad hoc routing game is the
prisoner’s dilemma. The pure strategy Nash equilibrium
is (Defect, Defect).

When neither have interest, all payoffs are zero, since neither
would have to spend any utility in forwarding (the other node
will not request it), and neither will gain anything from having
the other forward (since they have no interest), hence the

3For ease of exposition, we are making the simplifying assumption that
time is slotted and that at each slot, a single round of each G(i, j) is played.

4A model that more accurately models capacity would require a nonlinear
program with constraints across all of i’s games, and is an area of future
work.

Page 10 of 82

3

weakly dominant strategy is (Defect, Defect). Lastly, consider
Game 2, where there is an asymmetry of interest; player 1
wants player 2 to forward but player 2 has no interest in player
1. For the uninterested player 2, Defect is a dominant strategy,

Cooperate Defect
Cooperate 2 , -1 0 , 0

Defect 2 , -1 0 , 0

Game 2: An asymmetric ad hoc routing game; pl. 1 wants
pl. 2 to forward, but pl. 2 has no packets to forward
through pl. 1. Defect is a dominant strategy for pl. 2.
since pl. 2 would gain no benefit from pl. 1 for performing
this favor. Hence, the weakly dominant strategy is (Defect,
Defect), meaning that any node i will not have its packets
forwarded by any node who has no interest in i.

Games 1 and 2 are sufficient to analyze systems that use
isolation (defined in the next section) as a means of punish-
ment [12], [13]. We show that isolation does not sufficiently
account for the asymmetric game , and we introduce a new
mechanism that provides incentive for all nodes to cooperate,
independent of their interest in their neighbors.

IV. PUNISHING WITH ISOLATION

An intuitive strategy for enforcing cooperation in an ad hoc
routing game is to isolate a free-rider f by ensuring that all
nodes in N

1(f) play Defect in games against f , such as in
Catch [12]. However, isolation (Defection) is not always a
rational strategy for a node i ∈ N

1(f) to play in game G(i, f).
In particular, if any such G(i, f) is the symmetric game (1),
then i will be able to yield greater short-term utility by not
isolating (Cooperating with) f . In Figure 1, B has no incentive
to forward for A, hence A will attempt to isolate B. However,
since C has no incentive to isolate B (at least, not in the short
term), A’s isolation will fail.

One could argue that, in some cases, there may exist
greater long-term gain for i ∈ N

1(f) by participating in f ’s
punishment. For instance, if the other neighbors of f were
able to detect that i was not participating in f ’s isolation,
then they could subsequently punish i. There are trivial cases
where this does not work, e.g., when f and i have an end-to-
end connection with one another. Also, there are more general
solutions that f and i could employ to make it appear that
i is never forwarding for f . For instance, f could simply
communicate with i over an encrypted channel, in essence
resulting in a one-hop mix network [6].

Hence, as long as free-rider f has at least one neighbor with
a mutual interest, (with whom it plays the symmetric Game 1),
isolation is not a viable punishment. In fact, the only nodes
who are guaranteed to gain no utility once isolation is in effect
are the nodes for whom f was not forwarding in the first place.

V. PUNISHING BY JAMMING

We have shown that isolation does not guarantee cooper-
ation by all rational nodes. Further, deployable isolation sys-
tems, such as Catch [12], seem to require rather strong assump-
tions: no collusion among nodes, MAC-level authentication,
and MAC-level sender anonymity (e.g., that nodes cannot use

transmission power measurements to distinguish amongst its
neighbors). As protocol designers, we are interested in the
question: do there exist punishment strategies that guarantee
cooperation by all rational nodes and can these assumptions
be relaxed?

To this end, we consider channel jamming as a punishment
mechanism. A node jams the channel by sending many broad-
cast packets (generally with no meaningful payload), thereby
occupying the channel for all nodes within carrier sense range
of the jammer (e.g., its two-hop neighbors). Playing Jam
costs J ; we require that jamming costs more than forwarding
(|J | > |F |), and assign J a nominal value of -2. To incorporate
jamming into the ad hoc routing games (Games 1 and 2), we
must capture the fact that whenever node i jams, none of the
nodes in N

2(i) can receive any packets, and hence none gain
utility from their neighbors’ Cooperation. Let cf (t) denote the
number of games in which f cooperatively forwards at time t,
and recall that U t

f (i) is the utility f gains from game G(f, i)
at round t. Then the ad hoc routing game with jamming is:

Uf (t)
def
=

−2 if f is Jamming
−cf (t) ∃i ∈ N

2(f) Jamming
∑

i∈N 2(f) U
t
f (i) otherwise

Game 3: The ad hoc routing game with jamming. When
no one in N

2(f) is jamming, the normal (symmetric or
asymmetric) games are played.

Note that, although f cannot gain utility if any i ∈ N
2(f)

jams, f can still pay the cost of forwarding for others (the
second condition). Of course, f has no incentive to forward in
this case; indeed, f achieves its minmax payoff (0) by playing
Defect whenever any i ∈ N

2(f) jams:
Theorem 1: Any node i forces j ∈ N

1(i) to j’s minmax
payoff by Jamming; j in turn will Defect in all of its games.

Proof: The set of j’s feasible payoffs when being
punished is (−∞, 0], with 0 being obtained when j plays
Defect in all of its symmetric games (Game 1) and asymmetric
games (Game 2) where j is the node without interest. When
being jammed, the asymmetric game where j is the node with
interest have the same outcome, since j will never be asked to
forward a packet; w.l.o.g., we can say j Defects in this case,
as well.

Theorem 1 allows us to apply the well-known folk theorem,
but first we require two definitions. A payoff profile (i.e., a
vector of utilities), p ∈

�
N , is said to be feasible if there exists

a set of strategies that, when each node i plays its assigned
strategy, its payoff is p(i), the i

th component of p. Further,
p is strictly enforceable if, for all i, p(i) is greater than i’s
minmax payoff; in effect, p is enforced by punishing nodes
(forcing them to their minmax payoff) whenever they deviate
from the strategy that would yield p.

Theorem 2 (Folk Theorem [14]): Every feasible, strictly
enforceable payoff profile of a game G is a subgame perfect
Nash equilibrium payoff profile of the infinitely repeated
version of G with the limit of means criterion (Section II).

Theorem 3: There exist subgame perfect Nash equilibria
Page 11 of 82

4

(SPNE) with payoffs greater than system-wide defection that
use jamming to punish free-riders.

Proof: By Theorem 1, jamming yields a minmax payoff.
Any feasible payoff profile with payoffs greater than system-
wide defection is therefore enforceable by jamming. Hence,
by Theorem 2, such a profile is the payoff of at least one
SPNE in which jamming is used as punishment.

Although Theorem 3 states that punishment can yield SPNE,
it (like the folk theorem in general) does not specify precisely
how to obtain these equilibria. Designing protocols (and
punishment strategies) that yield these SPNE is a main focus
of our ongoing work, and we discuss some of the necessary
considerations in Section VII.

The Price of Jamming: To the best of our knowledge,
jamming has only been studied as an attack, and this is not
without reason. Even as a punishment mechanism, it incurs
a loss of efficiency, since it pauses all connections within
the jammer’s two-hop neighborhood for the duration of the
punishment. Additionally, it decreases the expected lifetime
of the network as a whole, as nodes must expend additional
energy to jam. Designing a punishment strategy that balances
between this loss of efficiency and the gain of cooperation is
the goal of our future work.

VI. NOISY GAMES

When all nodes act rationally, and when all actions taken by
i are viewed perfectly by N

1(i), each node will cooperatively
forward for others, and Jam will never be played. However,
since wireless networks are inherently noisy, j will not over-
hear some of the packets i forwards on j’s behalf. In the terms
of our model, this means that with some probability, when i

plays Cooperate in game G(i, j), j will view i’s action as
Defect, even though i has paid the cost to Cooperate, F . For
example, in Figure 1(b), B could have forwarded a packet to
E for C at the same time that D sent a packet to C, resulting
in a collision at C. Hence, although B cooperated, C is not
able to verify; if this happens significantly more than the noise
itself would cause, C must assume that B is defecting.

Nodes may not always cooperate, since they know that
some of their defections could be interpreted as noise. In this
section, we incorporate noise into the ad hoc routing game,
and examine some of the resulting emergent behaviors.

A. Ad Hoc Routing with Noise

The notion of noise in a wireless network is fundamentally
different from the standard game theoretic notion of trembles.
In a game with trembles, when a player i chooses a strategy,
there is some probability p that i tremble, i.e., play a different
strategy instead. If node i chose to Cooperate but trembled, it
would simply play Defect instead, and vice versa, giving us
the following game.5

However, Game 4 does not accurately capture the notion of
noise in a wireless network. To see this difference, observe
that when i’s Cooperation is not viewed by j, i still has to

5Note that, again, the strategies listed correspond to those chosen by the
players, not the strategies that are necessarily played.

Cooperate Defect
Cooperate 1 − p , 1− p 3p− 1 , 2− 4p + p

2

Defect 2− 4p + p
2

, 3p− 1 p , p

Game 4: The symmetric ad hoc routing game with stan-
dard game theoretic trembles with probability p.

pay the cost of forwarding, but does not gain the benefit of
cooperation. Let Uc and Ud denote the utility that a node
gains when it views its opponent playing Cooperate or Defect,
respectively. In the symmetric game and for the interested node
in the asymmetric game, Uc = 2 and Ud = 0 (because they
will have to retransmit), whereas for the uninterested node in
the asymmetric game, Uc = Ud = 0. We will modify slightly
the definition of p: in our model, p represents the probability
that node j views i’s action as Defect, given that i actually
played Cooperate.6 Then the expected utility of cooperation
and defection are:

Ec
def
= E[Cooperate] = F + (1 − p)Uc + pUd

Ed
def
= E[Defect] = Ud

Note that when p = 1, Ec = F +Ud ≤ Ed, so player i should
always defect; the obvious correlation of this is that nodes
ought not attempt to forward packets when the error rate is 1.
We will assume for the remainder of the paper that p < 1. We
can now formulate the following ad hoc routing games with
noise; we derive these values by plugging in the values for Uc

and Ud above.

Cooperate Defect
Cooperate 1− 2p , 1 − 2p -1 , 2 − 2p

Defect 2− 2p , -1 0 , 0

Game 5: The symmetric ad hoc routing game with a more
accurate model of noise. When p = 0, this is Game 1.

Cooperate Defect
Cooperate 2− 2p , -1 0 , 0

Defect 2− 2p , -1 0 , 0

Game 6: The asymmetric ad hoc routing game with a more
accurate model of noise. When p = 0, this is Game 2.

Regardless of p, the minmax payoff for node i is achieved
with (Defect, Jam), resulting in a total of 0 payoff for i at
time t (similarly for j). When p < 1, the pure strategy Nash
equilibrium of Game 5 does not differ from the corresponding
games without noise: (Defect, Defect).

B. Playing with a Watchdog

In practice, detecting a neighbor’s strategy requires a
watchdog-like system [13]. The watchdog mechanism makes
the standard assumption that whenever j forwards a message,
all nodes i ∈ N

1(j) overhear the message, and can therefore
determine if and when j has forwarded a packet on i’s request.
One way to implement a watchdog is as follows: each node i

stores the weighted averages of ri(j), the number of unique
packets that i requested j to forward, and fi(j), the number

6To be precise, p would be a function of i and j, depending on the available
capacity at the two nodes’ respective locations in the network.

Page 12 of 82

5

of these packets that j actually did forward. In a game with no
noise (Game 3), fi(j) = ri(j) for all i, j, since all nodes will
cooperate to avoid punishment by jamming. However, when
there exists noise, nodes will drop as many packets as they
can while still avoiding punishment.

In a watchdog and in Catch [12], each node maintains a
parameter θ, the threshold value that, if fi(j)/ri(j) < θ,
then node i considers j misbehaving. This parameter could
change depending on the capacity of the wireless network,
which depends in part on the bandwidths of neighboring links
and the two-hop neighbors’ desired flow rates [11]. We use
the threshold value θ in defining nodes’ punishment strategy.
First, we show how a low threshold value (or high amount of
noise) can lead to obsequious behavior in the network.

C. Avoiding Punishment with Forward Error Correction

The more a node i’s neighbor perceives a defection from i,
the greater the risk i has of being punished. Nodes can react to
a high error rate (p) by employing some form of forward error
correction (FEC). For ease of exposition, and to gain insight
into what effect FEC has on nodes’ strategies, we consider a
naı̈ve form of FEC, in which node i sends each packet multiple
times, thereby “replacing” p with a smaller value. Of course,
in practice, such a scheme would fail in the presence of high
levels of congestion, but, again for clarity, we will assume
failures are independent and, as stated in Section II, that the
capacity of the network is infinite. Under these assumptions, if
a node retransmits a packet r times (the r-FEC strategy), the
probability that the previous hop will not see any of these is
p

r. The expected utility from cooperating with r-FEC is thus:

E

r
c

def
= E[Coop w/ r-FEC] = rF + p

r
Ud + (1 − p

r)Uc

Since Uc is gained at most once, this captures the fact that
i’s neighbor will not compensate a forwarded packet multiple
times. The r-FEC strategy strictly dominates7 the normal,
single-transmission Cooperation when E

r
c > Ec, or

rF + p

r
Ud + (1 − p

r)Uc > F + pUd + (1 − p)Uc

(Uc − Ud)(p − p

r) > |F |(r − 1) (1)

In other words, nodes will employ forward error correction
whenever the cost to forward the extra r − 1 times (r.h.s.) is
compensated by a greater expected value of utility (l.h.s.).

D. Emergent Behaviors

The resulting system-wide behavior of nodes depends on the
punishment strategies they employ. A punishment strategy is a
tuple (θ, δ), where θ is the threshold of free-riding at which to
begin punishing (larger is more generous), and δ is the duration
of the punishment (smaller is more generous). Hence, the
strength of the punishment is proportional to δ/θ. For instance,
a small θ and a large δ correspond to harsh, long punishments
after the slightest noise or defection. Conversely, a high θ and
low δ correspond to a generous node that punishes rarely and,
if at all, for short durations. Here, we consider the behaviors
that result from three different regimes of punishment strength.

7r-FEC weakly dominates under equality of Eq. (1).

Generosity Leads to Free-Riding: A node can be gener-
ous toward its neighbors by assuming a considerable amount
of noise (i.e., choosing a large θ) and punishing for a short
duration (a small δ). Increased generosity allows for free-
riding, as nodes exploit the large difference between how
much they must forward and how much they are requested
to forward (fi(j) and ri(j) from our watchdog). They do
so without having to pay much price, even when they are
discovered (since δ is small). However, generosity may be
the best strategy when a level of trust is established between
neighbors; this course of action will be the most resilient to
spikes in noise or non-stop failures.

Stronger Punishment Leads to Obsequiousness: When
δ/θ is high, there can be a large difference between Uc and
Ud in Eq. (1), thereby making even our naı̈ve version of FEC
a viable strategy. As δ/θ continues to grow, the obvious price
is the efficiency of the network as a whole; rampant jamming
can vastly degrade capacity, and, since it expends more energy,
the lifetime of the network will decrease, eventually leading to
a disconnected network. One potential method to keep nodes
from excessive jamming is to punish them by jamming in
return, but this of course carries its own loss of efficiency (at
least in the short term, until the nodes react to the punishment
and change their strategy).

Efficiency by Matching Noise Levels: These two extreme
punishment strategies (very low and very high δ/θ) incur a
loss of efficiency: the former due to free-riding, the latter due
to excessive jamming. We expect that the ideal outcome would
be one in which the punishment strategy is as tightly coupled
to the given noise level as possible. Studying such strategies
is a focus of ongoing work.

VII. CHOOSING A JAMMING STRATEGY

Varying punishment strategies can yield vastly different
system-wide behaviors, ranging from incurring low overhead
while allowing rampant free-riding, to punishing beyond any
reasonable expectation of cooperation. Clearly, these two ex-
treme points ought to be avoided, but the fundamental question
as protocol designers is: what punishment strategy yields the
most system-wide efficiency and/or fairness? We do not present
a formal punishment strategy here, but we briefly discuss
some guidelines worth consideration. Recall that a punishment
strategy is a tuple, (θ, δ), consisting of the threshold θ (as
defined by our watchdog) at which to begin punishing, and
the duration of the punishment, δ.

The strategy should be adaptive: A viable punishment
strategy must be adaptive, allowing θ to change as the available
capacity of the wireless network changes to reflect new (or
completed) connections. Along these same lines, the punish-
ment strategy should ideally incorporate measurements of the
available capacity into its calculation of θ. Available capacity
can be measured locally at each node by calculating the link-
level error rates and bandwidths, as well as the fraction of
time for which the wireless channel is idle.

Punishments ought not echo: When node i punishes
some j ∈ N

1(i) by jamming, all of the nodes within carrier
sense range (N 2(i)) are affected and, worse yet, the nodes

Page 13 of 82

6

in N
3(i) \ N

2(i) do not necessarily know that i is even
punishing. Hence, node m ∈ N

3(i) \ N
2(i) could perceive

the defection of k ∈ N
2(i) as a response to G(k, m), and not

as k playing its minmax strategy against i’s punishment. Node
m may therefore punish k, which then raises the same issue
for i, since i ∈ N

3(m), and so on.
In effect, a single node’s jamming can echo throughout the

network, potentially indefinitely. To address this, it may be
necessary to only jam with some probability small enough
to limit the extent of such an echo. Addressing the echo of
jamming is an area of future work.

Sharing one’s views: Given issues such as the hidden
node problem, it is not always the case that i knows when noise
even takes place between itself and its neighbor. To help nodes
understand the level of noise, p, each node i could forward
to each of its neighbors, j, the values i’s watchdog is storing
to compute j’s level of defection: fi(j) and ri(j). This is
precisely what is done to compute link-level error rates for
path metrics such as ETT [7]. Based on fi(j) and ri(j), j

could estimate p and, if need be, choose an r with which to
play r-FEC. An open question is how to ensure truthfulness
in reporting fi(j) and ri(j).

VIII. RELATED WORK

We briefly review existing systems that provide incentives
to forward in wireless networks, as well as some known results
about games played in noisy environments.

Systems with Incentives-Compatible Forwarding: Previ-
ous such systems can be categorized into two classes:
Payment schemes generally involve a trusted third party
(TTP) [2], [17] or tamper-proof hardware [5] that generates
digital currency. Peers pay others with tokens to forward data
and route requests.
Detection and avoidance systems consist of two parts: (i)
a watchdog that each node runs locally to determine when
one of its neighbors is not forwarding data its data, and (ii) a
policy to avoid sending to or forwarding on behalf of these
defectors [4], [12], [13].

Neither of these types of systems can be used to ap-
ply incentives in a general setting. For instance, TTP-based
payment schemes generally assume that wireless nodes have
access (albeit infrequent) to the TTP itself. Perhaps future
hardware will contain trusted, tamper-proof components that
would remove the need for TTPs in payment schemes, but
recent trends in digital rights management (DRM) indicate that
this deployment would be slow, expensive, and hardly trusted
after all [3].

Theory of Games in Noisy Environments: Previous game
theoretic work on noise in the prisoner’s dilemma (Game 1)
has focused on the notion of trembles, some of the most influ-
ential work by Axelrod et al. Wu and Axelrod experimentally
analyzed several strategies in an environment where nodes
trembled, i.e., when a player chose to play an action, the other
action was, with some probability p, played instead [16]. Wu
and Axelrod showed that, in the presence of more trembles,
it is better for nodes to accept their punishment (i.e., play
“contrite tit-for-tat”) when they defect than it is to simply act

generously. This result is reflected in our proposed solution for
stopping the echo of punishments. However, since the notion
of a tremble is so different from that of noise in wireless
networks (Section VI), it is not clear to what extent Wu and
Axelrod’s results apply.

IX. DISCUSSION AND FUTURE WORK

In this paper, we have developed a game theoretic model
to analyze existing internal incentive mechanisms in wireless
networks (i.e., mechanisms that require only the primitives
available in 802.11), and have introduced a new mechanism:
punishment via channel jamming. We showed that isolation
does not always ensure cooperation. On the other hand,
jamming, though seemingly malicious, is a viable means by
which to enforce cooperation of each node in the system,
even when there are neighbors acting in a collusive manner by
communicating only with one another. The price of jamming,
if not engineered in a careful manner, can be high; jamming
could, for example, echo throughout the network, resulting
in a significant loss of efficiency. The main focus of our
future work is in developing a viable punishment strategy
that balances between the price of jamming and the gain of
provable system-wide cooperation.

ACKNOWLEDGMENTS

The author thanks Seungjoon Lee, Vijay Gopalakrishnan,
and Bobby Bhattacharjee for their helpful discussion and
comments throughout this work.

REFERENCES

[1] E. Altman, T. Boulogne, R. Azouzi, and T. Jimenez. A survey on
networking games in telecommunications, 2000.

[2] L. Anderegg and S. Eidenbenz. Ad Hoc-VCG: A Truthful and Cost-
Efficient Routing Protocol for Mobile Ad Hoc Networks with Selfish
Agents. In Proc. of MobiCom, 2003.

[3] R. Anderson. ‘Trusted Computing’ Frequently Asked Questions. Online:
http://www.cl.cam.ac.uk/˜rja14/tcpa-faq.html.

[4] S. Buchegger and J.-Y. L. Boudec. Performance Analysis of the
CONFIDANT Protocol: Cooperation Of Nodes — Fairness In Dynamic
Ad-hoc NeTworks. In MobiHoc, 2002.

[5] L. Buttyán and J.-P. Hubaux. Enforcing Service Availability in Mobile
Ad-Hoc WANs. In Proceedings of ACM MobiHoc, pages 87–96. IEEE
Press, 2000.

[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-
Generation Onion Router. In USENIX Security, 2004.

[7] R. Draves, J. Padhye, and B. Zill. Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks. In Proc. of Mobicom. ACM Press, 2004.

[8] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-
based Mechanism for Lowest-Cost Routing. In PODC, 2002.

[9] A. Gupta, A. Srinivasan, and É. Tardos. Cost-Sharing Mechanisms for
Network Design. In APPROX-RANDOM, 2004.

[10] IEEE. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications. IEEE 802.11 Standard, 1999.

[11] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan.
Algorithmic Aspects of Capacity in Wireless Networks. In ACM
SIGMETRICS, 2005.

[12] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining
Cooperation in Multi-hop Wireless Networks. In NSDI, 2005.

[13] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In MobiCom, 2000.

[14] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[15] C. Papadimitriou. Algorithms, Games, and the Internet. In STOC, 2001.
[16] J. Wu and R. Axelrod. How to Cope with Noise in the Iterated Prisoner’s

Dilemma. Journal of Conflict Resolution, 1995.
[17] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A Simple, Cheat-Proof,

Credit-Based System for Mobile Ad-Hoc Networks. In Infocom, 2003.
Page 14 of 82

Why Share in Peer-to-Peer Networks?

Lian Jian∗and Jeffrey MacKie-Mason†

May 26, 2006

Abstract

Prior theory and empirical work emphasize the enormous
free-riding problem facing peer-to-peer (P2P) sharing net-
works. Nonetheless, many P2P networks thrive. We ex-
plore two possible explanations that do not rely on altru-
ism or explicit mechanisms imposed on the network: di-
rect and indirect private incentives for the provision of
public goods. The direct incentive is a traffic redistri-
bution effect that advantages the sharing peer. We find
this incentive is likely insufficient to motivate equilibrium
content sharing in large networks. We then approach P2P
networks as a graph-theoretic problem and present suffi-
cient conditions for sharing and free-riding to co-exist due
to indirect incentives we callgeneralized reciprocity.

1 Introduction

Studies of peer-to-peer (P2P) networks as static games
predict these systems should suffer from enormous free-
riding— peers download but do not upload—in the ab-
sence of altruism or explicit incentive mechanisms to en-
courage content uploading [Ranganathan et al., 2003].
The fact that many peers free ride is empirically con-
firmed by [Saroiu et al., 2002] and [Adar and Huber-
man, 2000]. However, in practice P2P networks such as
eDonkey, KaZaa, and Gnutella, persist and flourish de-
spite free-riding. One possible explanation for this puz-
zling phenomenon is that altruism might sustain these net-
works. Rather than rely on this deus ex machina, we ex-
plore two alternative explanations: direct and indirect in-

∗School of Information, University of Michigan, Ann Arbor, MI
48109 USA;ljian@umich.edu

†School of Information, and Dept. of Economics, University of
Michigan, Ann Arbor, MI 48109 USA;jmm@umich.edu

centives for the private provision of public goods.1 2 Our
immediate goal is to understand economic conditions un-
der which networks of self-interested participants might
be sustainable despite equilibrium free-riding. Our ulti-
mate goal is to develop a plausible model of P2P behavior
in order to evaluate various proposed mechanisms to in-
crease sharing, and to develop our own mechanism for the
same.

In the next section, we investigate a direct private in-
centive to provide public goods proposed by Krishnan
et al. [2004], who suggest that sharing redistributes traffic
in the network to the advantage of the sharing peer. We
explore, in Section 3, generalized reciprocity as an indi-
rect incentive explanation of both sharing and free riding
on P2P networks. We close with a discussion of limita-
tions in our work, and plans to continue this research.

2 Direct Private Incentives

Providing files (sharing) to a P2P network is an instance
of theprivate provision of public goods [Bergstrom et al.,
1986].3 Sharing provides direct benefits to others for
which, in the absence of an explicit incentive mechanism,
the sharing peer is not compensated. One suggested ex-
planation for the nonetheless observed sharing is that in

1We are not claiming that altruism does not exist or is unimportant.
Rather, taken as a primitive, it is not susceptible to analysis, and does not
help answer design questions. For example, if sharing occurs solely due
to axiomatic tastes for altruism, we will have nothing to say about how
to encourage increased sharing, unless we have a story aboutwhypeople
want to be altrustic: that is, what incentives do they have for sharing?

2Some P2P protocols impose “altruistic” (always on) sharing as a
default setting. It may be a good design principle to encourage people to
act as if they were altruistic, but that leaves open the incentives question:
why do they not change the default setting?

3We adopt the widely-used convention of referring to uploading as
sharing.

1

Page 15 of 82

the process of providing a benefit to other users, a sharing
peer is simultaneously obtaining a direct private benefit,
similar to the personal incentive to donate, for example,
to support a public radio station. Krishnan et al. [2004]
model a particular form of this, which we call the “of-
fload effect”: sharing redistributes traffic in the network
to the advantage of the sharing peer. In a P2P network,
suppose peers A and B each want a different file, but both
files are available from peer C. If peer A has the file that
B desires, by offering to share with B agent A may get her
file sooner from C, by offloading some of the demand on
C.4

Krishnan et al. show that an offload effect could sup-
port a network in which all peers share is a dominant strat-
egy equilibrium. After modeling the traffic redistribution
and network congestion more precisely, we find it implau-
sible that the offload effect alone is sufficient to motivate
the amount of sharing seen on successful P2P networks.

2.1 Modeling offloading

We construct a four-period game. In period 1,n ≥ 3
players join the network. In period 2, each player chooses
whether to share or not, at a fixed cost ofc or zero, re-
spectively. Capacity is fixed and scaled so that a player
can share at most one unit in a sharing period. In period 3,
each player requests a unit of content from the network.
The network protocol randomly assigns each request to
one player who has decided to share in period 2. For con-
sistency we adopt the important simplifying assumption
made by Krishnan et al. that every node has at least one
file wanted by any other node. Supposek ≥ 2 players
have decided to share their content in period 2; then the
probability that playeri’s request is assigned to sharing
players is 1

k . If multiple requests are assigned to a shar-
ing player, she randomly chooses one to serve. In period
4, files are shared, and payoffs are realized.

Suppose in period 3,i’s request, together withm other
requests, has been assigned to players. s will pick i’s re-
quest to serve with probability 1

m+1 . Given that the event
of any peer’s request being assigned to a sharing peer is1

k ,
this event follows a Bernoulli distribution, and the event

4We take a game-theoretic approach to studying incentives in P2P
networks, and will use graph theory in the next section, so we usepeer,
node andplayer interchangeably.

thatm other players will be assigned to nodes follows a
binomial distribution,m ∼ b(n− 2, p).5

Consider an arbitrary nodei deciding whether to share.
She calculates the expected value from sharing or not (vS

i ,
vN

i). These values are defined as the probability of ob-
taining one unit of content. Ifi shares, the total number
of sharing nodes isk + 1; if she doesn’t, it’sk. Thus, the
probability that another peer will choose the same source
node asi is p = 1

k+1 if i shares, andq = 1
k if i does not

share. Now we need to calculate the expected value fori
of being served bys, or E[(m + 1)−1]. We calculate this
as sum of the probabilities ofm taking on each possible
value on{0, . . . , n−2}, times the probability thati gets a
file from s when there are exactlym other demanders on
s. Thus, the expected values,vS

i andvN
i , are:6

vS
i (n, p) = Σn−2

m=0C
m
n−2p

m(1− p)n−2−m 1
m + 1

=
1− (1− p)n−1

(n− 1)p
(1)

and similarly,

vN
i (n, q) =

1− (1− q)n−1

(n− 1)q
, (2)

whereCy
x is the number of combinations “x choose y”.

We define the marginal benefit of sharing (MBS) as the
difference betweenvS

i andvN
i :

MBSi(n, p, q) = vS
i (n, p)− vN

i (n, q). (3)

2.2 Privately provided public good

If the sharing cost is low enough, nodes will share to ob-
tain the offloading benefit.

Lemma 1. MBSi(n, p, q) > 0.

5The number of trials isn − 2 because there aren downloading
agents, but the set of possibleother agents thani downloading froms
excludesi ands.

6Equations (1) and (2) are a simplified approximation. The differ-
ence is qualitatively unimportant; seehttp://www-personal.
umich.edu/ \∼jmm/papers/NetEcon06-supp-appendix.
pdf .

2

Page 16 of 82

Proof. See appendix.

Lemma 1 implies if the cost of sharing,c, is less than
MBS(n, p, q), there is a dominant strategy equilibrium
in which all peers choose to share. This verifies that
our model is consistent with the results in Krishnan et al.
[2004].

2.3 How large is the offloading benefit?

It is straightforward to show thatMBS is decreasing in
the number of other sharing nodes,k, so the incentive for
a marginal node to share decreases in larger networks. But
the equilibrium outcome of the game depends on the rela-
tive values ofc andMBS. Without an empirical estimate
for c, it is difficult to determine whether the offload effect
is meaningful for a P2P network. We can, however, gain
an appreciation for the magnitude of the offloading effect
by analyzing it as a percentage increase in a non-sharing
peer’s utility. Denote this increase byGi:

Gi(n, p, q) =
MBS(n, p, q)

vN
i (n, q)

(4)

Lemma 2 below characterizes the asymptotic properties
of Gi. As n → ∞, Gi converges to1

k . For example,
whenk = 30, by sharing her content, a player can only
increase the probability of obtaining one unit of content
by 3.3%. It seems implausible that in medium or large
networks this small gain would motivate many peers to
share their content. Further, sincek ≤ n by definition, we
see thatGi converges to zero ask increases, which means
the benefit of sharing vanishes the more other peers are
sharing.

Lemma 2.
lim

n→∞
Gi =

1
k

.

Proof. See appendix.

In Figure 1 we plotGi againstn, for various small val-
ues ofk. This illustrates our point that the gain of sharing
becomes independent of the number of peers in large net-
works, and it decreases in the number of nodes that are
sharing their content. We conclude that although the of-
floading effect may play some role in P2P networks, the
private incentives it suggests are likely insufficient to mo-
tivate equilibrium content sharing in large networks.

3 Indirect Private Incentives: Gen-
eralized Reciprocity

We turn to a different candidate explanation for sharing:
generalized reciprocity in a repeated game. In BitTorrent,
a form of direct reciprocity is implemented by embedding
a tit-for-tat type of strategy in the client software [Cohen,
2003]. This provides a form of direct incentive for upload-
ing, similar to the offloading incentive we studied in the
previous section. One type of indirect incentive for con-
tributing to the public good is “generalized reciprocity”
[Putnam, 2000]:

I’ll do this for you without expecting anything
specific back from you, in the confident expec-
tation that someone else will do something for
me down the road. (p. 21)

In a P2P network, generalized reciprocity may be loosely
described as a cycle in the directed graph in which each
peer contributes to second peer, but receives a contribu-
tion from a third peer. We shall formally characterize
conditions on the topology of the graph such that it has
an equilibrium in which some self-interested peers con-
tribute while others free-ride. Generalized reciprocity can
arise when direct reciprocity is impossible, for example
when demands between node pairs are very asymmetric.

We suppose there is no private benefit from sharing
(i.e., no altruism, and no offloading effect), but that peers
are interconnected through a network topology, and an-
ticipate participating for an indefinite length of time.
Feigenbaum and Shenker [2002] suggested graph theory

100 200 300 400 500 600 700
n

0.2

0.4

0.6

0.8

1
Gi The gain of sharing

k=2 k=4 k=6 k=8 k=10 k=12

Figure 1:The gain of sharing for playeri.

3

Page 17 of 82

to model incentives in network problems because peer
incentives might affect the formation of the graph. We
follow Shneidman and Parkes [2003] who suggest graph
configuration may affect incentive structures. In partic-
ular, we characterize a family of graphs that support a
generalized reciprocity equilibrium. Like us, Afergan and
Sami [2006] use repeated games theory to study problems
on network topologies.

We illustrate with the simple graph in Figure 2. Each
labeled, directed link represents the direction and volume
of the traffic between the two end nodes of the link. In a
repeated game of indefinite duration, B and C want a file
from each other and both want a file from A. A, however,
is a free rider. Suppose peers restrict themselves to either
sharing with every node or not sharing at all.7 Suppose
further that the benefit of receiving one unit of content
is significantly higher than the cost of sharing it. With
these assumptions B and C sharing is an equilibrium as
long as they are receiving enough content. If say, B stops
sharing, C will find it unprofitable to share, hence will
also stop sharing. Thus the network breaks down due to
B’s deviation.

3.1 Definitions and assumptions

We model peers’ interactions as an infinitely repeated
game with a fixed time discount factorδ adopted by
all peers.8 A set of demand relationships among the
n peers in the network is given exogenously, and re-
mains constant through out. These relationships can
be represented as a directed graph,D. Loosely speak-
ing, a directed graph is a set ofnodes connected by di-
rectededges [Deo, 1974]. Apath is a sequence of con-

7We remove this assumption for Proposition 2.
8With an appropriate increase to the discount rate, we can accom-

modate a finite but random time in the network, rather than an infinite
horizon.

A

CB

1

1

1

1

Figure 2:A simple example

secutive nodes and edges, with no nodes repeated. A
path which ends at the node it begins is called acy-
cle. Two cycles areindependent if they do not share
any nodes in common. A graph isconnected if there
is an undirected path connecting every pair of nodes. A
graph that is not connected can be divided into connected
components, each of which is a connected subgraph.
For example, Figure 3 is a directed connected graph
with independent cycles (1, a12, 2, a23, 3, a34, 4, a41) and
(10, a1011, 11, a1110). The link label values are the de-
mand quantities. The graph has an equivalent representa-
tion as ann × n adjacency matrix with each elementσij

the demand from peerj to peeri.

3.2 Game setup

For simplicity, we define matrixB as a binary demand
matrix obtained by converting the positive link intensities
in D into 1, with elementbij the demand fromj to i. We
focus on an arbitrarycomponent of the graph with the ad-
jacency matrixK associated with it.K is thus connected
and consists ofk players. K remains constant through
out the game and its member peers have complete infor-
mation ofK. In each stage game, permissible actions for
playeri, aij , are defined as follows,

aij =
{

1 if σij 6= 0 andi shares to j
0 if σij = 0 or i does notshare to j

In each round, the stage game is played and then pay-

1

2

3

4

5

6

7

8

9

10

11

a
12

a
23

a
34

a
41

a
35

a
16

a
17

a
48

a
49

a
10_9

a
10_11

a
11_10

Figure 3:An example of equilibrium action graph

4

Page 18 of 82

offs are realized. Players observe all players’ actions in
the previous round before the next round starts. Each peer
receives a positive value ofv when she obtains a unit of
file, and incurs a positive cost ofc when she shares a unit
of file to any other peer.

In round t, the actions chosen by the peers constitute
a k × k action matrix,A, which again corresponds to
a directed graph. For nodei, Σk

i=1aij is its out-degree
andΣk

i=1aji is its in-degree. WhenΣk
i=1aij = 0, which

means peeri does not share her file to any other peer, she
is considered afree-rider; otherwise she is considered a
sharing peer. We also define a parameterρi as the ratio

betweeni’s out-degree and in-degree,ρi = Σk
i=1aij

Σk
i=1aji

.

3.3 Equilibrium analysis

We propose that an action matrixA∗ can be sustained in
equilibrium, if its corresponding graph satisfies the fol-
lowing properties,

P.1 No nodes have an in-degree of zero, and
maxi{ρi} < δv

c .

P.2 Any two cycles in the graph are independent.

P.3 Any leaf node is connected to a node that par-
ticipates in a cycle.

Figure 3 shows a graph that satisfies properties P.1–P.3.
The condition on the out-degree/in-degree ratio in P.1 lim-
its consideration to networks in which users get enough
net benefit that participating is better for them than is
dropping out of the network. This condition can surely
be relaxed to accommodate altruistic users. Property P.2
is purely to simplify the analysis, and we know from ex-
amples that there are networks in which users participate
in more than one cycle and yet the result of our propo-
sition still holds. We are working to relax this condition
in ongoing research. Property P.3 rules out an agent who
does not provide anything that “comes back around”; the
node uploading to such an agent (e.g., node 6 uploading
to some other leaf, say 12, in Figure 3) would always be
better off to stop contributing since there is no generalized
return on the contribution.

We claim that free-riding on such a graph may exist in
equilibrium even without altruistic players or the offload-
ing effect. We formalize this intuition in Proposition 1,

as asubgame perfect Nash equilibrium (SPNE). A profile
of strategies is a SPNE if it is a Nash equilibrium of the
game itself, and if it induces a Nash equilibrium in every
subgame [Fudenberg and Tirole, 1991].

Proposition 1. In an infinitely repeated game with the
afore-mentioned stage game, if the action matrixA satis-
fies property P.1–P.3, there exists a SPNE which can have
both sharing peers and free-riders.

Proof. See appendix.

Thus even without altruistic peers, an offloading effect
or an explicit incentive mechanism to encourage sharing,
sharing can exist due to generalized reciprocity. More-
over, free-riding may exist too. The intuition is simple:
peers care a lot about fulfilling their demands, and the
cost of sharing is low, so they can tolerate free-riding to
a certain extent. More free-riding does not occur because
of the threat of alocal grim trigger strategy(LGTS)9: if
a node stops uploading to A, node A will leave the net-
work forever, which through the generalized reciprocity
cycle punishes the miscreant node, discouraging it from
free-riding in the first place (see proof).

We derived Proposition 1 under restrictive conditions:
all nodes could observe all flows (theflow topology), and
nodes may only choose from a strategy space restricted to
either upload to every requestor, or upload to none. These
two assumptions taken together are clearly not very gen-
eral: if nodes know the entire flow topology then why
punish all requestors when a single node deviates? Like-
wise, if node 4 knows node 8 is a free-rider in Figure 3,
why not cut off only node 8 rather than all nodes?

We are working on a model of generalized reciprocity
with incomplete information about the flow topology, and
with an unrestricted space of strategies. These assump-
tions seem reasonable for the pseudonymous Internet. We
have one preliminary result that illustrates how general-
ized reciprocity can support P2P networks with equilib-
rium free-riding in more general settings. We assume
peers only know the flows in which they participate and
each peer selectively shares to other peers to maximize
her value.

9Or others; LGTS is sufficient to support the equilibrium, but may
not be unique.

5

Page 19 of 82

Proposition 2. In an infinitely repeated game, with only
local knowledge of the flow graph and selective strategies,
the flow graph depicted in Figure 4.(a) is a weak perfect
Bayesian equilibrium.

Proof. See appendix.

4 Discussion

We have shown the existence of an equilibrium in a con-
strained family of network topologies, under two different
game forms. Both cases are restrictive. We would like to
characterize theset of equilibria to assess the plausibil-
ity of outcomes with a mixture of sharing and free-riding.
Further, we would like to characterize other families of
network topologies, to uncover those features (size, con-
nectedness, overlapping cycles, etc.) that affect the equi-
librium configurations. Of course, we would also like to
address the question we asked about the offloading effect:
is generalized reciprocity important enough to explain the
amount of sharing we see in large networks?

Our ultimate goal is to use the model as a principled
foundation to explore the design and performance of var-
ious incentive mechanisms to encourage sharing in P2P
networks.

References

Eytan Adar and Bernardo A. Huberman. Free riding on
Gnutella.First Monday, 5, 2000.

Mike Afergan and Rahul Sami. Repeated-game modeling
of multicast overlays. InINFOCOM. IEEE, 2006.

A

B C

D

Figure 4:An equilibrium example

Theodore Bergstrom, Lawrence Blume, and Hal R. Var-
ian. On the private provision of public goods.Journal
of Public Economics, 29:25–49, 1986.

Bram Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics of Peer-to-Peer systems, CA,
June 2003. Berkeley.

Narsingh Deo.Graph Theory with Applications to Engi-
neering and Computer Science. Prentice-Hall, Engle-
wood Cliffs, N.J., 1974.

Joan Feigenbaum and Scott Shenker. Distributed algorith-
mic mechanism design: Recent results and future direc-
tions. In6th Intl Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications,
pages 1 – 13, New York, NY, 2002. ACM Press.

D. Fudenberg and J. Tirole.Game Theory. MIT Press,
1991.

Ramayya Krishnan, Michael D. Smith, Zhulei Tang, and
Rahul Telang. The virtual commons: Why free-riding
can be tolerated in file sharing networks. Carnegie-
Mellon Univ., November 2004.

Robert D. Putnam.Bowling Alone : The Collapse and
Revival of American Community. Simon & Schuster,
New York, 2000.

Kavitha Ranganathan, Matei Ripeanu, Ankur Sarin, and
Ian Foster. To share or not to share : An analysis of
incentives to contribute in collaborative file-sharing en-
vironments. InWorkshop on Economics of Peer-to-Peer
Systems, CA, June 2003. Berkeley.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Grib-
ble. A measurement study of peer-to-peer file sharing
systems. InMultimedia Computing and Networking
2002, January 2002.

Jeffrey Shneidman and David C. Parkes. Rationality and
self-interest in peer to peer networks. In2nd Int. Work-
shop on Peer-to-Peer Systems, 2003.

6

Page 20 of 82

APPENDIX

Proof of Lemma 1

vS
i (n, p) =

1− (1− p)n−1

(n− 1)p
(5)

=
1− (1− p)n−1

(n− 1)(1− (1− p))

=
1 + (1− p) + · · ·+ (1− p)n−2

n− 1
.

Here we used the sum of a geometric series
∑n

k=0 rk =
1−rn+1

1−r . Let In,p = 1+(1− p)+ · · ·+(1− p)n−2. Then
vS

i (n, p) simplifies tovS
i (n, p) = In,p/(n− 1). Simi-

larly, letIn,q = 1+(1−q)+· · ·+(1−q)n−2, thenvN
i (n, q)

can be written asvN
i (n, q) = In,q/(n− 1). Sincep =

1
k+1 < q = 1

k , 1 − p > 1 − q and(1 − p)x > (1 − q)x,
x = 0, · · · , n− 2. ThereforeMBS(n, p, q) > 0.

Proof of Lemma 2

lim
n→∞

MBS(n, p, q)
uN

i (n, q)

= lim
n→∞

1−(1−p)n

p

1−(1−q)n

q

− 1 =
1
k

.

Proof of Proposition 1

Two types of nodes in any graphA satisfy properties P.1
∼ P.3. We label the nodes on the cycle ascycle nodes
and the nodes that do not have child nodes asleaf nodes.
We restricts peers in each round to play either Share or
Not Share with all demanding nodes: ifi plays Share,
aij = bij , ∀j 6= i; and if i plays Not Share,aij = 0, ∀j.

We consider two peer strategies, Not Share and the lo-
cal grim trigger strategy (LGTS). In LGTS peeri plays
Share in the first round and continues sharing as long as
ρi < δv

c . We show that a strategy profile in which the
cycle nodes play LGTS and the leaf nodes play Not Share
is a SPNE. First, leaf nodes, by playing Not Share while
receiving value from their parent nodes do not have any
incentive to deviate.

Second, cycle nodei can either follow LGTS or deviate
by playing Not Share. We calculate the continuation pay-
offs of each from roundt onwards, asut

i. If she follows
the equilibrium strategy, LGTS, her continuation payoff
is,

ut
i = vΣk

i=1aji − cΣk
i=1aij (6)

If player i deviates from LGTS in roundt, the other nodes
in the same cycle will know before roundt+1 that she has
deviated. Therefore in roundt + 1 no nodes will share to
her. This is due to P.2, which implies that a peer belongs to
no more than one cycle, such that once one peer deviates
from LGTS, the cycle is going to be broken. Foreseeing
this happening, no peer in the cycle will share in round
t + 1. Thus playeri’s continuation payoff is,

ut
i = (1− δ)vΣk

i=1aji (7)

The cycle nodes will choose to follow LGTS if the fol-
lowing inequality holds,

vΣk
i=1aji − cΣk

i=1aij > (1− δ)vΣk
i=1aji, (8)

which is equivalent to ,

ρi <
δv

c
(9)

Inequality (9) is satisfied by property P.1. For com-
pleteness, we can easily verify that once a cycle node or
a leaf node has deviated, there is no incentive for her to
return to the equilibrium strategy. In this equilibrium, the
cycle nodes are sharing peers and the leaf nodes are free-
riders.

If P.3 is not satisfied, then there will be a third type of
node in the graph: a sub-leaf node that receives a file from
a leaf node, but does not participate in a cycle.10 A graph
with sub-leaf nodes will not be an SPNE because the leaf
node providing only to sub-leaves will be unambiguously
better off not uploading any files, and thus will deviate
from the proposed equilibrium.

Proof of Proposition 2 (sketch)

Suppose all the peers adopt individual grim-trigger strat-
egy (IGTS). Whenever a pair of peers each demand one

10The sub-leaf may upload a file to another node, but at some point a
node in that chain will be a terminal leaf node.

7

Page 21 of 82

unit of content from each other, IGTS requires they start
by sharing with each other and stop sharing forever if one
has deviated in the previous period. Suppose further that
a node has diffuse (uniform) priors over the distribution
of possible flow topologies (each possibility is equally
likely). These beliefs will be sustained in equilibrium be-
cause there are no moves by nature and the problem is
stationary so there are no changes in flows that are infor-
mative about the unobserved links. The proof follows 5
steps:

Step.1 Show that node B in Figure 5(a) will choose
to stop sharing to C. This can be done by exam-
ining Figure 5(c), (d), (e), and (f), which repre-
sent all of B’s possible beliefs. Given that each
peer is individually rational, in (c), (e), and (f)
B can gain by cutting off C. In (d), B can gain
by cutting off either A or C. Thus it is profitable
for B to stop sharing to C.

Step.2 Following the same logic in Step. 1, show
that node B in Figure 5.(b) will choose not to
deviate and continue sharing to A.

Step.3 To show that Figure 4 can be sustained in
a weak perfect Bayesian equilibrium, we only
need to show that node B in both Figure 6.(a)
and (b) will not deviate, since these two cases
represent scenarios for all nodes in Figure 4.

Step.4 In Figure 6.(a), B only knows the links that
she participates in, and the total number of
nodes in the graph. There are 64 possible flow
graphs in total, out of which only 28 are ratio-
nal according to the results of Step.1 and 2.11

In 19 scenarios B gains by cutting off either A
or D. And in 2 cases B gains by not sharing to
any nodes — she free-rides. Thus the gain of
cutting off A or D is 19

28 × (v− c)− (v− 2c).12

And the gain of free-riding is2v
28 − (v − 2c).

Apparently the gain of free-riding is too small

11see http://www-personal.umich.edu/ \∼jmm/
papers/NetEcon06-supp-appendix.pdf for an analysis
of all 64 graphs.

12This is an approximate calculation for illustration purpose only.
For detailed calculations please refer tohttp://www-personal.
umich.edu/ \∼jmm/papers/NetEcon06-supp-appendix.
pdf .

to be interesting. And only ifc > 9v
37 , it is prof-

itable for B to cut off A or D. Assuming thatv
is sufficiently larger thanc, this condition is not
satisfied. Hence the most profitable strategy is
not to deviate.

Step.5 Similar logic applies to Figure 6.(b).

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

(a) (b) (c)

(d) (e) (f)

Figure 5:Three Node Scenarios

(a) (b)

A

B C

D

A

B C

D

Figure 6:Node B’s Beliefs

8

Page 22 of 82

Peer-to-Peer Filesharing and the Market for Digital Information Goods∗

Ramon Casadesus-Masanell† Andres Hervas-Drane‡

May 8, 2006

Abstract

Existing models of peer-to-peer (p2p) filesharing as-

sume that individuals are concerned with each others’

wellbeing. Without social preferences (i.e., altruism or

reciprocity), peers are better off freeriding whenever the

cost of sharing content is larger than that of not shar-

ing. In the absence of social preferences this public-goods

problem results in the collapse of the p2p network. Be-

cause p2p networks are composed of millions of individ-

uals who interact anonymously, we find inadequate the

assumption that peers care about each others’ utility. We

present microfoundations for a stylized model of a p2p

network where all peers are endowed with standard pref-

erences and show that the resulting endogenous structure

of the p2p network is conducive to sharing content by a

significant number of peers, even if sharing is costlier than

freeriding. Selfish utility-maximizing peers are better off

sharing because by doing so they face less congestion. We

characterize the endogenous level of sharing and present

comparative statics results. We build on this framework to

analyze the optimal strategy of a profit-maximizing firm,

such as Apple’s i-Tunes, that offers the same content avail-

able on the network. Contrary to the p2p network, the

firm offers downloads on a traditional client-server archi-

tecture and sells content at positive prices. We show that

the firm may be better off setting high prices, allowing

the network to survive, and that the p2p network may

work more efficiently in the presence of the firm than in

its absence.

1 Introduction

Peers in peer-to-peer (p2p) networks face a fun-
damental choice between sharing content or freerid-
ing. When a peer decides to share content –a costly

∗This abridged draft was prepared for the 2006 Workshop
on the Economics of Networked Systems (NetEcon06). An ex-
panded version is available from the authors.
We thank seminar participants at the 2005 Bosphorus Work-
shop on Economics Design, the 2005 CoCombine conference on
the Economics of the Internet, London Business School, Har-
vard Business School and MIT. We are grateful for financial
support from the HBS Division of Research, the Fundación
BBVA and the FPU program of the Spanish Ministry of Edu-
cation and Science.

†Harvard Business School. (casadesus@gmail.com)
‡Universitat Autònoma de Barcelona.

(andresonline@gmail.com)

activity– she is effectively supplying two different
goods. On the one hand, she provides content. Obvi-
ously, the peer who shares does not benefit from the
content that she is sharing as she already owns it. On
the other hand she also supplies upload bandwidth and
this may result in lower network congestion. Sharing
results in lower congestion if upload bandwidth is a
scarce resource. Based on the available empirical ev-
idence, in this paper we assume this to be the case.
The nature of peer-to-peer networks warrants that
the provision of bandwidth benefits all peers equally
in expected terms. In sum, peers face a trade off:
by sharing they bear costs that could be avoided by
freeriding, but sharing also reduces average network
congestion and this benefits every peer, including the
peer who shares.

Building on this insight, we construct a model
where peers provide bandwidth in addition to content
when they decide to share. Specifically, we consider
a finite population of agents that derive positive and
homogenous utility from digital content. Peers suffer
disutility from the costs associated with download-
ing content. These costs are proportional to the time
required to complete downloads, the level of conges-
tion, which in turn depends on the bandwidth pro-
vision available in the network. Peers may reduce
their expected congestion by providing upload band-
width to other peers. We model this decision as a
binary choice: share content or freeride. By having
agents differ in their disutility of congestion (impa-
tience or opportunity cost of time) we show that an
endogenous level of sharing emerges in the network.
Selfish utility-maximizing peers are better off shar-
ing because by doing so they face less congestion. To
the best of our knowledge, there is no earlier model
of p2p filesharing with endogenous congestion where
peers concerned solely about the impact of their ac-
tions on their own utility decide to share content.

We build on this framework to analyze the opti-
mal strategy of a profit-maximizing firm that offers
the same content available on the network at posi-
tive prices employing a traditional client-server archi-
tecture. In the absence of altruism towards artists,
it is an interesting question why consumers pay to
purchase licensed content online. Towards answer-
ing this question, we derive the shape of the demand
function the firm faces and characterize its optimal

1

Page 23 of 82

pricing strategy. In essence, our framework points to
the central role of ‘convenience’ when accessing and
consuming digital content through the Internet.

The model captures important stylized facts identi-
fied by the literature. First, Asvanund et al. [2] show
that congestion worsens with size as peer-to-peer net-
works grow. Our model endogenously generates this
result. In fact, the effect of network size on conges-
tion helps explain the coexistence of multiple differ-
ent p2p networks. Second, many studies have shown
that heavy users of p2p filesharing networks are more
prone to purchase content online. Our framework not
only suggests that there is no contradiction in this
observed behavior, but also sheds light on the fac-
tors that explain the demand for online content in the
presence of a p2p network. Third, we provide insights
on content pricing and the effectiveness of industry
initiatives such as suing heavy sharers. Finally, our
model shows that filesharing networks strictly benefit
from bandwidth infrastructure improvements. This
suggests that filesharing is indeed a driver for broad-
band demand and helps explain why Internet service
providers have not taken action to limit the spread
of p2p applications and filesharing traffic load. We
believe that our results should be of interest to all
participants in markets for digital information goods.

The paper is organized as follows. Section 2 in-
troduces the building blocks of our model of peer-to-
peer filesharing and describes the game (in the ab-
sence of a profit maximizing firm). In Section 3 we
present a simple approximation to the average con-
gestion in an arbitrary peer-to-peer network. Section
4 derives the equilibrium network configuration and
studies its properties. In Section 5 we further char-
acterize the equilibrium under the assumption that
peers’ time preferences are independently drawn from
a uniform probability distribution. Finally, in Section
6 we introduce a profit maximizing firm that competes
against the p2p network and analyze the interdepen-
dencies that arise in the competition between both
business models.

2 The model

We consider a population of M agents that derive
utility from the consumption of digital information
goods. They all value content equally and differ only
in their disutility of congestion. We model the forma-
tion of a peer-to-peer network in two stages. In the
first stage, agents choose (simultaneously) whether or
not to join the network. Agents who choose to be-
long to the network can either share their content or
freeride. Sharers offer their content on the network
for download by other peers while freeriders do not.
While sharing content is costly, some sharing is re-
quired for the network not to collapse as downloads
can only be realized from other sharers. We will refer

to agents in the network as peers and those outside
as outsiders. We let N ≤ M denote the number of
peers. M −N is the number of outsiders.

In the second stage peers interconnect and down-
loads are realized. The utility of a peer that freerides
is given by

uf
i = ud − (cn + ρi)td, (1)

and that of a peer who shares his content is

us
i = ud − (cn + cs + ρi)td, (2)

where i ∈ N = {1, 2, ..., N}. Outside utility is nor-
malized to zero.

The utility derived from content once a download
has been completed is ud and it is common across all
agents. The time required to complete a download, td,
is endogenous and depends on the level of congestion.
A lower bandwidth transmission speed implies higher
level of congestion resulting in higher download time.
Every peer suffers a positive cost cn of pertaining to
the network. This captures the costs of the comput-
ing resources and the bandwidth for signalling traffic
required to remain connected to the network until a
download completes. Sharers additionally bear cost
cs. This is the cost originating from offering con-
tent for download on a public p2p network (includ-
ing expected costs of legal action against the peer) as
additional computing resources (storage space) and
upload bandwidth is required.

Parameter ρi ≥ 0 reflects the disutility of conges-
tion experienced by peer i. The larger ρi is, the higher
the disutility the peer obtains from an increase in the
time required to complete a download. Hence ρi can
alternatively be interpreted as impatience or oppor-
tunity cost of time: how much peer i values quick ac-
cessibility to content. Without loss of generality we
choose indexes i so that ρi ≤ ρi+1 for all i. All other
costs being equal, peers would prefer to obtain the
downloadable content immediately avoiding conges-
tion delays. An increase in the time required to com-
plete a download reduces the utility obtained from
the network by increasing both the network costs and
the disutility of congestion experienced by all peers.

To solve the second stage we let S ⊂ N be the
set of sharers in the network (given the agents’ first-
stage strategies) and denote by S the number of shar-
ers (the cardinality of S). A downloader exclusively
served by a sharer will download a unit of content
in time θ > 0; that is, td = θ. This can be inter-
preted as θ capturing the relation between the filesize
of content and the bandwidth capacity available to
peers. Thus an improvement in either encoding effi-
ciency reducing filesizes or broadband infrastructure
increasing bandwidth amounts to a reduction in θ.
Download bandwidth is assumed not to be a limiting
factor. If more than one downloader is connected to
a given sharer, bandwidth is shared evenly amongst

2

Page 24 of 82

them. This can be interpreted as downloading tak-
ing place simultaneously or, alternatively, the sharer
serving download queues for fractions of content by
turns.

A set of links connecting peers to sharers where ev-
ery peer connects to one sharer only and no sharer
connects to herself is called a network allocation. A
stable network allocation is one where no peer can
be made strictly better off by connecting to a differ-
ent sharer. We assume that following the first stage
(where peers decide whether to share or to freeride) a
stable network allocation ensues. Clearly, if the net-
work allocation was not stable, at least one peer would
have an incentive to connect to a different sharer.

The following mild assumption is required for the
results: ud > (cn+cs+ρi)θ for all i. This ensures that
a p2p network with minimum congestion is always
preferred to the outside option of not pertaining to
the network. With the notation in place, we now
proceed to solving the game by backwards induction.

3 Network foundation

Interconnection occurs in the second stage, after
each peer has decided whether she will share or
freeride. Congestion plays a crucial role in our devel-
opment as peers choose to share taking into consider-
ation the effect that their sharing has on congestion.
Given a network allocation, the bandwidth obtained
by peer i ∈ N can be computed as follows: if the peer
is connected to a sharer to which k other peers are
connected to, then peer i obtains effective bandwidth
1/(k + 1).

Freeriders can connect to every sharer and, thus,
have S possible links available to choose from. Shar-
ers, on the other hand, cannot connect to themselves.
As a consequence, sharers have S − 1 possible links
available. This implies that, in general, the expected
congestion of sharers and freeriders will differ. To
compute the expected bandwidth for freeriders and
sharers in a network with N peers and S sharers, we
begin by computing each peer’s effective bandwidth
in every stable network allocation. We then average
these effective bandwidths assuming that every stable
network allocation is equally likely. Expected conges-
tion, the delay required to complete downloads, td, is
the inverse of the expected bandwidth.

In another paper [3] we derive an exact expression
for the expected effective bandwidth of sharers and
freeriders. There, we show that S/N is a good ap-
proximation to the expected bandwidth of both shar-
ers and freeriders. The accuracy of this approxima-
tion increases with the size of the network. In fact,
already in a network of size N = 10, the expected
effective bandwidth of sharers and freeriders differs
from S/N by, at most, 0.0012. Given this result, we
conclude that all peers obtain an expected download

bandwidth close to S/N . This implies that the ex-
pected time to complete a download for all peers can
be approximated by td = θ/ S

N = θ N
S . It should be

noted that although the expected bandwidth depends
linearly in the number of sharers, the time required
to complete a download does not. This property is
crucial to our results. Technically, it ensures that our
objective function is concave in S, allowing for in-
terior equilibria in which sharing and freeriding may
coexist for certain ranges of N .

4 Equilibrium network configu-
rations

In this section we analyze the first stage of the
game. Every peer i chooses whether to freeride or to
share content (at additional cost cs). In making their
decision, peers consider the effect of their choice on
expected download time θ N

S . Equations (1) and (2)
imply that if expected download time was not affected
by the sharing decision, no peer would ever share and
the peer-to-peer network would not be viable.

In this section we take N as given. This amounts
to assuming that all N peers in the network obtain
positive utility. In general, this will depend on S and
the distribution of ρs. In the following section we
relax this assumption and let peers decide whether or
not to join the network.

Let P = {F,S} be a partition of N. We refer to P
as a network configuration.1 F is the set of freeriders
and S the set of sharers. Obviously, P constitutes a
Nash equilibrium if no i ∈ S prefers to (unilaterally)
become a freerider and no j ∈ F prefers to become a
sharer.

Proposition 1 Every equilibrium network configu-
ration P = {F,S} has the following form: F =
{1, 2, ..., n− 1} and S = {n, n + 1, ..., N} for some
n ∈ N. The system of equations given by Γs identifies
the set S for all equilibrium network configurations,

Γs = {i ∈ I |H (ρi) ⊂ G (ρi)} ,

where

G (ρi) =
{

k ∈ I
∣∣∣∣
cf + ρi−1

cs
≤ k ≤ cf + cs + ρi

cs

}

H (ρi) = N + 1− i.

Proof. All proofs are in the appendix.
The proposition says that if peer i is a sharer in

equilibrium network configuration P , then peer i + 1
must also be a sharer. Moreover, if peer j is a
freerider, then peer j − 1 must also be a freerider.
Thus, the most impatient peers prefer to share while

1Notice that a network configuration can be mapped to
many different network allocations.

3

Page 25 of 82

the more patient peers are better off freeriding. The
reason is simple: by sharing content, peers reduce con-
gestion and the (positive) marginal effect on peer util-
ity implied by lower congestion is proportional to the
value of ρi. Peers for whom the opportunity cost
of time is high, are more inclined to share. This is
true even though given any fixed level of congestion,
all peers (regardless of the value of ρ) are better off
freeriding than sharing.

The system of equations {G(),H()} characterizes
the equilibrium network configurations by pinning
down to the fullest possible extent the set of sharers
S. Note that certain parameter constellations may
exhibit multiple equilibria and Γs may not be a sin-
gleton.

Let S = {n, n + 1, ..., N} be the set of sharers in
an equilibrium network configuration. We refer to
the case n = 1 as a full-sharing network configuration
(or full-sharing equilibrium) and to the case n > 1
as a partial-sharing network configuration (or partial-
sharing equilibrium). In a full-sharing network config-
uration all peers are sharers. In this case, congestion
is minimized as the expected download time for all
peers (td) is equal to θ.

Remark 2 Full-sharing holds in the network if and
only if

N <
cn + cs + ρ1

cs
.

Therefore, if N is sufficiently small, the unique
equilibrium network configuration has all peers shar-
ing content. Notice that as the incremental cost
of sharing cs approaches zero, the maximal network
size that supports full sharing grows without bound.
When N is large, the equilibrium network configura-
tions will typically entail partial sharing. In this case,
expected download time will be larger than θ for all
peers.

5 Equilibrium with ρi ∼ U [0, ρ̄]

In Section 4 we have characterized all equilibrium
network configurations for the general case, without
specific assumptions on the distribution of ρis or the
cardinality of N. In order to ensure tractability when
we introduce a profit maximizing firm (Section 6),
we make the additional assumption that ρis are i.i.d.
U [0, ρ̄]. This allows us to further characterize the set
of equilibrium network configurations.

The first result shows that if the network has many
peers, then the set of equilibrium configurations is a
singleton.

Remark 3 For N large enough, there is a unique
equilibrium network configuration.

The next result identifies the most patient sharer
as a function of the parameters. Identifying precisely

the most patient sharer will allow us to easily analyze
how the different parameters affect network conges-
tion. In particular, we are interested on the effect that
N has on congestion. If congestion decreases when N
grows, then the p2p network becomes gradually more
valuable as the number of peers expands. If, in con-
trast, network congestion grows with N , then the p2p
network exhibits negative (network) externalities.

Proposition 4 Let ρs(N) be the most patient sharer
in equilibrium. Then, for N large,

ρs(N) '
ρ̄ ((N − 1) cs − cn)

ρ̄ + Ncs
,

and the cardinality of S in equilibrium is given by

S =
ρ̄ + cs + cn

1
N ρ̄ + cs

.

Notice that ρs(N) is increasing in N . This implies
that the larger the cardinality of N, the lower is the
proportion of sharers in equilibrium. In other words,
in our model the p2p network exhibits negative net-
work externalities (past the threshold network size of
full sharing): the larger the number of peers in the
network, the lower the average utility that peers ob-
tain. In fact, as N → ∞, ρs(N) → ρ̄. Therefore,
when the network is very large, only the most impa-
tient peer winds up sharing content. Also note that
S < ∞, even as N →∞. Therefore, not only the pro-
portion of sharers dwindles as N grows, but the abso-
lute number of sharers has a cap. As a consequence,
the expected download time for all peers (θ N

S) grows
without bound as N increases. This means that as
N grows, the peer-to-peer network becomes less and
less attractive. We will now see that this has impor-
tant implications for the equilibrium pricing strategy
of a profit maximizing firm competing for customers
against a p2p network.

6 The firm

We next introduce the problem of an online firm
selling digital information goods also available on the
peer-to-peer network. To the firm, the network is
a competitor because peers that choose to download
files from the network could otherwise become paying
customers. Because content is free on the p2p net-
work, for the firm to persuade users of digital content
to purchase it at positive price, it must offer added
benefits that the p2p network cannot match. In our
view, the most important advantage of the firm is that
it can offer lower download time than the network.
Specifically, we let the firm offer content streaming
based on traditional client-server architecture. That
is, consumption of content acquired through the firm

4

Page 26 of 82

can be realized immediately at the moment of pur-
chase. As a consequence, the utility of buyers is:

ui = ud − p. (3)

Notice that (3) is the natural adaptation of (1) and
(2) to the case of streaming. With streaming, the
expected download time td falls down to zero. Thus,
the terms cn + ρi and cs do not appear in (3). On
the other hand, the firm charges a positive price for
content. We assume that the content offered by the
firm is the same as that shared in the p2p network.

Agents may now choose to purchase content instead
of downloading it off the network at zero price. We
modify the timing of the game accordingly. In the
first stage, the firm chooses the price at which con-
tent is sold. In the second stage, agents choose to
either purchase from the firm, enter the network, or
stay outside and not consume content. Agents who
enter the network may share or freeride. In the third
stage, agents in the network interconnect and down-
loads take place.

We assume that the firm faces zero marginal costs.
All infrastructure and running costs related to the ser-
vice are fixed and independent of the activity level.
The assumption captures the fact that selling addi-
tional copies of digital content has negligible incre-
mental costs.

The problem of the firm is to quote the price p that
maximizes profits. The following proposition summa-
rizes the firm’s optimal strategy as a function of the
parameters.

Proposition 5 Let

pfc := θ(cn + cs) (full market coverage)
phc := 1

2θ(ρ̄ + cn + cs) (high market coverage)
plc := 1

2θ(ρ̄ + Mcs) (low market coverage)
poc := ud (outsiders only coverage)

The optimal pricing strategy is given by:

• If ρ̄ > cn + cs, then

phc if M < Mb

plc if Mb ≤ M < Mc

poc if M ≥ Mc

• If ρ̄ ≤ cn + cs, then

– If ud ≤ 2θ(cn + cs), then

pfc if M < Md

poc if M ≥ Md

– If ud > 2θ(cn + cs), then

phc if M < Mb

plc if Mb ≤ M < Mc

poc if M ≥ Mc

where Ma = 4(cn+cs)−ρ̄
cs

, Mb = (cn+cs)(2ρ̄+cn+cs)
ρ̄cs

,

Mc = 2ud−θρ̄
θcs

and Md = u2
d−θρ̄(ud−θ(cn+cs))
θcs(ud−θ(cn+cs)) .

Equilibrium profits are:

πfc = Mθ(cn + cs) (full market coverage)
πhc = Mθ(ρ̄+cn+cs)2

4ρ̄ (high market coverage)
πlc = 1

4Mθ(ρ̄ + Mcs) (low market coverage)
πoc = ud(1− ud

θ(ρ̄+Mcs))M (outsiders only coverage)

The firm’s demand curve is downward sloping as
expected. Agents with sufficiently high disutility of
congestion prefer to purchase instead of belonging to
the network. The lower the price the firm quotes, the
higher the number of agents who prefer to purchase.
The agents who obtain higher surplus from purchas-
ing are those with larger values of ρ, agents who may
have potentially remained outsiders in the absence of
the firm. The size of the network is affected by the
presence of the firm, as only those individuals with
lower disutility of congestion remain as peers; agents
who would otherwise share content may now leave the
p2p network and purchase from the firm. As sharers
leave, peers that might have otherwise been freeriders
are now better off sharing.

The demand curve exhibits a non-derivability. Two
ranges exist over which congestion in the network dif-
fers. In the lower price range, full sharing holds and
congestion is not affected by peers entering or exiting
to purchase. In the higher price range, only partial
sharing holds. In this case congestion varies with the
size of the network and this effect is taken into account
by agents; the smaller the network, the lower the level
of congestion. As an example, consider the effect of
a reduction in price. In the full sharing range, peers
who switch to purchase are not affecting the conges-
tion experienced by those remaining. But in the case
of partial sharing, peers leaving are (indirectly) re-
ducing congestion by reducing the size of the network.
This effect ensures that less peers will react to a price
reduction in the case of partial sharing.

Proposition 5 shows that the optimal pricing strat-
egy depends critically on market size. The firm will
only quote a low price and cover the entire market
if it is sufficiently small. The bigger the market, the
more profitable it is for the firm to target agents with
a higher disutility of congestion by quoting higher
prices. If the market is sufficiently large, it is opti-
mal for the firm to serve outsiders exclusively. The
intuition for this result lies on the mechanisms that
drive congestion in a peer-to-peer network. As the
size of the network increases, so does the congestion
experienced by all peers. As a consequence, the sur-
plus that the firm can extract by targeting agents who
most suffer congestion grows more than that obtained

5

Page 27 of 82

by covering the whole market by quoting a low price.
The fact that this result arises under a uniform dis-
tribution of ρ suggests that it is quite general.

For the case of a large market, we should expect the
firm to quote a high price, close to the actual valua-
tion of content. Such a pricing strategy does indeed
internalize the presence of the network. As a result,
the firm will not directly affect the size of the net-
work, as agents who purchase would otherwise choose
to stay outside, although the profits of the firm would
strictly increase if the p2p network did not exist. The
strategic effect of the presence of a p2p network on
the firm can be likened to a low quality firm compet-
ing against a vertically differentiated competitor. The
firm has strong incentives to offer high quality service
by investing to minimize congestion and to quote a
high price. The net effect of the network’s presence
on consumer welfare is unambiguously positive.2

It is of interest to look at the effect on firm’s profit
of changes in the technology parameter θ and the
marginal cost of sharing cs. A technology improve-
ment captured by a decrease in θ strictly decreases the
firm’s profit. All other factors equal, a technology im-
provement in either broadband infrastructure or the
efficiency of digital encoding reduces effective down-
load delays in the network making it more attractive.
Similarly, profits are increasing in the marginal cost
of sharing under all market configurations. Because
cs measures the efficiency of the network, or how well
the network scales with size, a higher marginal cost
of sharing implies higher levels of congestion. This
benefits the firm by generating higher surplus to be
extracted out of potential purchasers. These effects
provide strong incentives for the firm to intervene.
Strategies that may serve this purpose include traf-
fic discrimination on broadband networks, prioritizing
the firm’s data, and randomly suing sharers thereby
increasing the expected cost of sharing for all agents.

References

[1] Antoniadis, P. and Courcoubetis, C. and Ma-
son, R. (2004), ‘Comparing Economic Incentives
in Peer-to-Peer Networks,’ Computer Networks,
Vol.46, pp.133-146.

[2] Asvanund, A. and Clay, K. and Krishnan, R.
and Smith, M. D. (2004), ‘An Empirical Analysis
of Network Effects in Peer-to-Peer Music-Sharing
Networks,’ Information Systems Research, Vol.15,
pp.155-174.

2It is important to stress that in our framework the produc-
tion of content is unaffected by the free exchange of content
between peers in the p2p network. If lower royalties imply
lower incentive by artists to produce quality content, then the
net effect of the presence of the p2p network is ambiguous.

[3] Creus Mir, A. and Casadesus-Masanell, R. and
Hervas-Drane, A. (2006), ‘Bandwidth Allocation in
Peer-to-Peer Filesharing Networks,’ Mimeo, Har-
vard Business School.

[4] Cunningham, B. M. and Alexander, P. J. and
Adilov, N. (2004), ‘Peer-to-Peer File Sharing
Communities,’ Information Economics and Policy,
Vol.16, Issue 2, pp.197-221.

[5] Feldman, M. and Lai, K. and Chuang, J. and Sto-
ica, I., ‘Quantifying Disincentives in Peer-to-Peer
Networks,’ 1st Workshop on Economics of Peer-to-
Peer Systems (2003).

[6] Feldman, M. and Papadimitriou, C. and Chuang,
J. and Stoica, I. (2004), ‘Free-riding and White-
washing in Peer-to-Peer Systems,’ PINS ’04: Pro-
ceedings of the ACM SIGCOMM workshop on
Practice and theory of incentives in networked sys-
tems, pp.228-236.

[7] Golle, P. and Leyton-Brown, K. and Mironov, I.
and Lillibridge, M. (2001), ‘Incentives for Sharing
in Peer-to-Peer Networks,’ Lecture Notes in Com-
puter Science, Vol.2232, pp.75+.

[8] Krishnan, R. and Smith, M. D. and Tang, Z. and
Telang, R. ‘The Virtual Commons: Understand-
ing Content Provision in Peer-to-Peer File Sharing
Networks,’ November 2004.

A Appendix

Proof of Proposition 1. Sharer i ∈ S will not free
ride iff:

ud − (cf + cs + ρi) θ
N

S
≥ ud − (cf + ρi) θ

N

S − 1
, (4)

or
S

S − 1
≤ cf + ρi

cf + cs + ρi
.

Notice that

d
(

cf +ρi

cf+cs+ρi

)

dρi
=

cs

(cf + cs + ρi)
2 > 0. (5)

Therefore, if (4) is satisfied for sharer i ∈ S it is also
satisfied for all sharers i′ with ρi′ ≥ ρi. Thus, the
more impatient a sharer is, the less the incentive to
become a freerider.

A freerider j ∈ F will not want to become a sharer
iff:

ud − (cf + ρj) θ
N

S
≥ ud − (cs + ρj) θ

N

S + 1
, (6)

or
S

S + 1
≥ cf + ρj

cf + cs + ρj

.

6

Page 28 of 82

Notice that (5) implies that if (6) is satisfied for peer
j ∈ F it is also satisfied for all peers j′ ∈ F with
ρj′ ≤ ρj . Thus, the more patient a freeriding peer is,
the less the incentive to become a sharer.

We now further characterize the equilibrium net-
work configurations by pinning down to the fullest
possible extent the cardinality of S. Let P = {F,S}
be an equilibrium network configuration. Let ρi be
the most patient sharer in S. Equations (4) and (6)
imply that

S ≤ cf + cs + ρi

cs
and S ≥ cf + ρi−1

cs
.

Thus,
cf + ρi−1

cs
≤ S ≤ cf + cs + ρi

cs
. (7)

Let I be the set of integers. The following two ob-
jects are useful in what follows:

G (ρi) =
{

k ∈ I
∣∣∣∣
cf + ρi−1

cs
≤ k ≤ cf + cs + ρi

cs

}

(8)
and

H (ρi) = N + 1− i. (9)

Correspondence G indicates the cardinality of S if
the sharer with lowest impatience has time preference
parameter ρi. Function H tells us the number of peers
with parameter ρj larger than or equal to that of peer
i. The solution to the system of equations given by G
and H pins down the set of most patient sharers for
all equilibrium network configurations:

Γs = {i ∈ I |H (ρi) ⊂ G (ρi)} .

Because G (ρi) is a correspondence, Γs may not be a
singleton. Clearly, the cardinality of the set of equi-
librium network configurations, coincides with that of
Γs.

Proof of Remark 2. For a full-sharing network
configuration to obtain, every peer must realize higher
utility sharing than freeriding. In particular, the most
patient peer (ρ1) must be better off sharing than
freeriding (given that everybody shares):

ud − (cn + cs + ρ1) θ ≥ ud − (cn + ρ1) θ
N

N − 1
.

Solving for N we obtain:

N ≤ cn + cs + ρ1

cs
. (10)

Sketch of Proof of Remark 3. Recall that the
set of equilibrium network configurations is given by

Γs = {i ∈ I |H (ρi) ⊂ G (ρi)} .

H is a decreasing function of ρi. G is an increasing
correspondence. However, when N is large ρi−1 is
close to ρi. In fact as N →∞, |ρi−1 − ρi| → 0. Thus,
when N is large,

G (ρi) =
{

k ∈ I
∣∣∣∣
cf + ρi

cs
≤ k ≤ cf + ρi

cs
+ 1

}
.

Given this, G (ρi) is single-valued except at those ρi

such that cf +ρi

cs
is a natural number. Suppose that

at ρ′i,
cf +ρ′i

cs
∈ I. Then, for all ε > 0, cf+ρ′i+ε

cs
/∈ I

and cf+ρ′i−ε
cs

/∈ I. Thus, G (ρi) is a step function with
‘continuous jumps’ at ρi ∈ [0, ρ̄] such that cf+ρi

cs
∈ I.

As a consequence, Γs is a singleton.

Proof of Proposition 4. We look for ρs(N) such
that the set of peers with i ≥ s (N) all want to share.
Because ρs(N) is the most patient sharer, the cardi-
nality of the set of sharers is S = N − s (N) + 1.

For S to be the set of sharers of a stable partition,
we need that the most patient sharer does not want
to freeride:

ud−
(
cn + cs + ρs(N)

)
θ
N

S
≥ ud−

(
cn + ρs(N)

)
θ

N

S − 1

This expression implies that

ρs(N) ≥ (N − s (N)) cs − cn.

Therefore, for S = N − s (N) + 1 to be stable, ρs(N)

must satisfy ρs(N) ≥ (N − s (N)) cs − cn.
We also need that the most impatient freerider does

not want to share:

ud−
(
cn + ρs(N)−1

)
θ
N

S
≥ ud−

(
cn + cs + ρs(N)−1

)
θ

N

S + 1

This expression implies that

ρs(N)−1 ≤ (N − s (N) + 1) cs − cn.

Suppose now that all ρis are drawn from a uni-
form distribution ρi ∼ U [0, ρ̄]. When N is large
we have that s (N) − 1 ' ρs(N)−1

ρ̄ N . Furthermore,
large N also implies that ρs(N) ' ρs(N)−1. Therefore
s (N) ' ρs(N)−1

ρ̄ N + 1 ' ρs(N)

ρ̄ N + 1. Substituting in
the expression above, we obtain

(
N − ρs(N)

ρ̄
N − 1

)
cs − cn ≤ ρs(N)

ρ̄ ((N − 1) cs − cn)
ρ̄ + Ncs

≤ ρs(N).

When N is large we have that s (N)−2 ' ρs(N)−2

ρ̄ N .
Furthermore, large N also implies that ρs(N)−1 '
ρs(N)−2. Therefore s (N)− 2 ' ρs(N)−2

ρ̄ N ' ρs(N)−1

ρ̄ N

or −s (N)+1 ' −ρs(N)−1

ρ̄ N −1. Now, substituting in
the expression above, we obtain

ρs(N)−1 ≤ (N − s (N) + 1) cs − cn

ρs(N)−1 ≤ ρ̄ ((N − 1) cs − cn)
ρ̄ + Ncs

7

Page 29 of 82

So, when N is large we have that

ρs(N)−1 ≤
ρ̄ ((N − 1) cs − cn)

ρ̄ + Ncs
≤ ρs(N).

We conclude that when N is large

ρs(N) '
ρ̄ ((N − 1) cs − cn)

ρ̄ + Ncs
.

To identify the cardinality of S, we have that S =

N − s (N) + 1 and s (N)− 1 ' ρs(N)−1

ρ̄ N . Therefore,

S = N − (N − 1) cs − cn

ρ̄ + Ncs
N

= N

(
ρ̄ + cs + cn

ρ̄ + Ncs

)
.

Proof of Proposition 5. An agent with disutility
of congestion ρi will only purchase from the firm if:

ud − p ≥ ud − (cn + cs + ρi)td.

Because td ≥ θ is positive, if the condition is satis-
fied for peer i it will also be satisfied for peer i + 1.
To solve for demand given a price p we proceed by
identifying the indifferent buyer, denoted by ρb. If
p = ud, only outsiders buy from the firm, as all other
agents obtain strictly positive utility in the network.
If p > ud purchasing yields negative utility and the
firm faces no demand. To obtain demand when p ≤ ud

we must solve for ρb, given by:

ud − p = ud − (cn + cs + ρb)td. (11)

Because either full or partial sharing may hold in the
network, we consider two separate cases. We begin
with the partial sharing case. Substituting td = θ N

S
in (11) and taking into account that congestion will
depend on ρb, as only agents such that ρi ≤ ρb are
present in the network:

ud − p ' ud − (cn + cs + ρps
b) θ

N (ρps
b)

S (ρps
b)

,

where

N (ρps
b) =

ρps
b

ρ̄
M ,

and

S (ρps
b) = N (ρps

b)
(

ρps
b + cs + cn

ρps
b + N (ρps

b) cs

)
.

Solving for ρps
b yields:

ρps
b =

pρ̄

θ(ρ̄ + Mcs)
.

We next consider the full sharing case and solve for
the indifferent buyer by substituting td = θ in (11):

ud − p ' ud −
(
cn + cs + ρfs

b

)
θ,

thus

ρfs
b =

p− θ(cn + cs)
θ

.

The demand function for the firm is given by:

D = (1− ρb

ρ̄
)M . (12)

Substituting ρps
b we obtain the expression for demand

in the partial sharing range:

Dps = (1− p

θ(ρ̄ + Mcs)
)M .

And substituting ρfs
b in (12) we obtain demand in the

full sharing range:

Dfs = (1− p− θ(cn + cs)
θρ̄

)M .

Full market coverage is obtained when ρfs
b = 0, which

implies:
pfc = θ(cn + cs).

A lower price will also ensure that the market is cov-
ered.

We next consider the optimal pricing strategy of
the firm. Given that either full or partial sharing may
hold in the network, the firm faces two separate cases.
Profits in the lower price range, under full sharing, are
given by Dfs:

πlr = p(1− p− θ(cn + cs)
θρ̄

)M , (13)

which has a maximum at

phc =
1
2
θ(ρ̄ + cn + cs).

We denote the maximum by phc, as high coverage of
the market is obtained in this price range. In the
higher price range, under partial sharing, profits are
given by Dps:

πhr = p(1− p

θ(ρ̄ + Mcs)
)M , (14)

which has a maximum at

plc =
1
2
θ(ρ̄ + Mcs).

As market coverage is lower in this range, we denote
the maximum by plc

To solve the firm’s optimal price strategy, profits
given by the optimal price in both ranges need to be
compared under all feasible parameter configurations.
Solving the systems of inequalities implied determines
the profit-maximizing price as a function of all the
parameters.

8

Page 30 of 82

Improving Robustness of Peer-to-Peer Streaming with Incentives

Vinay Pai Alexander E. Mohr

Stony Brook University
{vinay, amohr}@cs.stonybrook.edu

Abstract

In this paper we argue that a robust incentive mechanism
is important in a real-world peer-to-peer streaming system
to ensure that nodes contribute as much upload bandwidth
as they can. We show that simple tit-for-tat mechanisms
which work well in file-sharing systems like BitTorrent do
not perform well given the additional delay and bandwidth
constraints imposed by live streaming. We present pre-
liminary experimental results for an incentive mechanism
based on the Iterated Prisoner’s Dilemma problem that al-
lows all nodes to download with low packet loss when there
is sufficient capacity in the system, but when the system is
resource-starved, nodes that contribute upload bandwidth
receive better service than those that do not. Moreover, our
algorithm does not require nodes to rely on any information
other than direct observations of its neighbors’ behavior to-
wards it.

1 Introduction

In recent years, BitTorrent [4], a peer-to-peer file sharing
protocol has become one of the most widely used tools for
bulk data dissemination to large numbers of nodes. Bit-
Torrent allows a large number of nodes to simultaneously
download a large file by breaking it into chunks and having
different nodes exchange chunks among each other.

While BitTorrent is effective for transferring files, the file
is not downloaded in sequence and is therefore generally
unusable till the download is complete. Moreover the band-
width delivered often varies over time, making it unsuitable
for applications like streaming video.

Many peer-to-peer streaming protocols [2, 6, 5, 10] have
been proposed. However, in order to perform well, most
of them assume a resource-rich environment where there is
sufficient upload capacity in the system to support all down-
loaders.

However, several studies [1, 11] have shown that users
of peer-to-peer networks tend to be selfish and try to bene-
fit from a system without contributing resources in return.
Moreover, several nodes are unable to contribute as much

upload bandwidth as the download bandwidth they con-
sume because they are using an asymmetric Internet con-
nection like a consumer cable-modem or ADSL line.

This could result in a system where the demand for
download bandwidth exceeds the supply of available up-
load bandwidth, making it impossible to satisfy all demand.
In such a system we would like to give nodes an incentive
to upload as much as they can by making the probability of
suffering packet loss inversely proportional to the upload
bandwidth contributed.

To achieve this, we tried to design an incentive scheme
for peer-to-peer streaming on top of the Chainsaw [9]
streaming protocol. We found that due to the strict time
and bandwidth constraints and intolerance to long delays in
streaming, incentive schemes designed for file-sharing pro-
tocols perform very poorly in streaming systems. In this
paper, we start by presenting some of our unsuccessful at-
tempts along with our reasoning of why they failed to per-
form well, in the hope of generating discussion.

In addition, we present an incentive scheme called Token
Stealing based on an Iterated Prisoner’s Dilemma that ap-
pears promising based on our preliminary experiments on
PlanetLab [3].

2 Background

We implement our incentive schemes on top of Chain-
saw [9], a streaming protocol based on an unstructured
mesh network. Chainsaw uses a simple request-response
protocol which is briefly described here.

Chainsaw Streaming Protocol

Chainsaw is designed to deliver a stream of data from one
node (called the seed) to a large number of recipients.
While Chainsaw may be generalized to multiple seeds, as
well as many-to-many multicast, in this paper we only con-
sider one-to-many multicast with a single seed. We refer to
the set of nodes to which a peer is connected as its neigh-
bors.

1

Page 31 of 82

Every node maintains a list of packets that its neighbors
are willing to provide. To ensure that this list is updated
properly, whenever a node receives a new packet, it broad-
casts a NOTIFY message to its neighbors to inform them
of the change. The seed obviously does not receive pack-
ets, but does generate new packets periodically. The seed
sends out NOTIFY messages to its neighbors every time it
generates a new packet.

Every node also maintains a window of interest, which is
the set of sequence numbers that the node is interested in
acquiring at the current time. The node slides its window
of interest forward over time as new packets stream in. If
a packet has not been received by the time it “falls off”
the trailing edge of the window, the node will consider that
packet lost and will no longer try to acquire it.

For every neighbor, a node creates a list of desired pack-
ets, i.e. a list of packets that the node requires that the
neighbor is able to provide. It will then pick one or more
packets from the list at random and request them via a RE-
QUEST message.

A node keeps track of which packets it has requested
from which neighbor to ensures that it does not request
the same packet from multiple neighbors. It also limits the
number of outstanding requests with a given neighbor to en-
sure that requests are spread out over all neighbors. Finally,
when a node receives a REQUEST message, it responds
with a corresponding DATA packet as bandwidth permits.

Chainsaw has no global routing tables, so it does not de-
pend on any specific network topology. In this paper, we
will assume a topology in which every node repeatedly con-
nects to a randomly picked node from the list of known
hosts until a predefined minimum number of neighbors (the
node degree) is reached. This network has the advantage
of being very easy to construct and maintain even in the
face of the sudden departure of a large fraction of nodes.
Many practical peer-to-peer networks like BitTorrent and
Gnutella use an unstructured random graph topology.

3 Poor Performance: Naı̈ve Tit-for-
Tat

Chainsaw’s request-response protocol is similar to that used
by BitTorrent, as well as SWIFT[12], a pairwise currency
mechanism for file-sharing that we showed to be more ef-
fective at providing fairness in file-sharing than BitTorrent’s
incentive mechanism.

In SWIFT, every node maintains credit for each of
its neighbors and honors packets requests only when the
neighbor has enough credit. Whenever it receives a packet
from a neighbor, the node extends it α packets worth of
credit. In addition, trading is jump-started by initializing
neighbors with γ packets worth of credit instead of zero,

and deadlocks are avoided by periodically extending nodes
a small fraction β of their total upload capacity in credit
every second, regardless of data received from it.

As long as nodes consistently upload, they will keep
earning credit with their neighbors and be able to down-
load. However, nodes that do not upload will soon deplete
their credit with their neighbors and not be able to down-
load anymore, except for small trickle of free credit they
receive from their neighbors in the form of β.

While SWIFT was very effective at ensuring fairness in
file-transfer applications, we found a similar mechanism to
perform very poorly when applied to streaming. In our sim-
ulations we found that over time, a large fraction of nodes
started to suffer severe (> 50%) packet loss even in a sys-
tem where every node tried to upload as much as their ca-
pacity allowed. This was caused by small imbalances be-
tween nodes (eg. due to different delay characteristics, dis-
tance from seed, number of neighbors) being amplified by
an undesired positive-feedback loop.

For instance, consider a pair of nodes A and B, where
A is closer to the seed than B. In this situation, node A is
likely to receive new packets before node B. As a result,
node B has fewer opportunities to upload packets to node
A, resulting in a net loss of credit. Eventually, node B runs
out of credit and is no longer able to download from node
A. However, given its proximity to the seed, it is likely that
node A was a source of packets that was of interest to node
B’s other neighbors. Therefore, the loss of node A as a trad-
ing partner puts node B in a less favorable position to trade
with the rest of its partners. This creates a positive feedback
loop where a slight disadvantage is ultimately amplified to
the point where a node is unable to earn enough credit to
avoid packet loss.

4 Partial Success: Compensating for
Trading Imbalances

We experimented with a number of mechanisms for com-
pensating for these small imbalances.

4.1 Preferential Uploading

In the naı̈ve tit-for-tat experiments, we found that nodes ran
out of credit because they were unable to upload enough
packets to some of their neighbors to maintain a stable sup-
ply of credit. Therefore, we implemented a system where
nodes aggressively tried to upload to neighbors they were
running out of credits with by giving requests from those
neighbors a higher priority. Quickly satisfying existing re-
quests results in more requests for packets from that neigh-
bor because nodes limit the number of requests outstanding
with a given neighbor at any time.

2

Page 32 of 82

Unexpectedly, this strategy made the problem worse.
Some nodes were at an advantage with respect to most of
their neighbors, which led to an “arms race” among neigh-
bors to upload as quickly as possible to the advantaged
node. This created a new positive feedback loop where ad-
vantaged nodes were put at an increasingly greater advan-
tage by neighbors aggressively uploading to them. Eventu-
ally, the neighbors that lost the arms race ran out of credits
as they did in the naı̈ve tit-for-tat system.

4.2 Advantaged Nodes Back Off

Our next approach was to have advantaged nodes attempt
to reduce the number of packets they uploaded rather than
increase the number of packets their disadvantaged neigh-
bors uploaded to them. We did this by having nodes keep
track of every neighbor’s balance ratio,

balance-ratio =
total-download

total-upload + total-download

Note that this calculation is done purely based on di-
rect local observations of a neighbor’s behavior towards the
node.

Nodes with balance-ratio < 0.5 have been uploading
more than they have been downloading. By default, nodes
send NOTIFY messages to all their neighbors when they
receive a new packet to enable them to download it. How-
ever, as the balance-ratio fell below 0.5, we linearly reduced
the number of neighbors notified. This ensured that the ad-
vantaged nodes only uploaded a small number of copies of
every packet.

This is beneficial to the advantaged node, disadvantaged
node, and the system as a whole. The advantaged nodes
benefit by having some of the burden of uploading taken
off them, while the disadvantaged nodes benefit by having
a greater opportunity to upload packets to their neighbors
and earn credit. The overall amount of upload bandwidth
in the system is generally not reduced because some of the
burden of uploading packets is shifted from the advantaged
to the disadvantaged nodes. The advantaged node is then
able to use its upload bandwidth to rapidly propagate new
packets rather than multiple copies of old packets.

This scheme worked very well in our simulations, and
we were able to maintain a balance-ratio between 0.45 and
0.55 across all pairs of neighbors in the network. Unfortu-
nately, the algorithm failed to produce a significant benefit
in real-world tests on real a implementation of the proto-
col on the PlanetLab testbed. We found that the variation in
bandwidth capacity and round-trip delays between different
pairs of nodes in the network so great that it was not pos-
sible to accommodate the slowest nodes without dragging
down the performance of the entire system.

5 Promising: Token Stealing Algo-
rithm

Our next attempt was an algorithm we call Token Stealing,
which builds on the standard token bucket model commonly
used to allocate limited bandwidth among competing pro-
cesses. The Token Stealing algorithm sets up local mar-
kets at every node where neighbors compete for the node’s
upload capacity. When the demand for bandwidth from
the node exceeds the node’s capacity, nodes that upload
receive preferred service, while this constraint is relaxed
when there is adequate bandwidth to fulfill all requests.

We first outline the standard token bucket algorithm.
The token bucket algorithm works by having a virtual

bucket into which tokens are added periodically. When-
ever a packet is transmitted, an equivalent number of to-
kens must be removed from the bucket—packets may only
be transmitted when there are a sufficient number of tokens
available in the bucket. Thus, the overall bandwidth can be
controlled by controlling the rate at which tokens are added
to the bucket.

The number of tokens that may accumulate in the bucket
is limited to some maximum value to prevent a large num-
ber of tokens from accumulating during periods when there
is low demand for bandwidth.

The basic token bucket algorithm only ensures that the
overall bandwidth doesn’t exceed a specified limit. We aug-
ment this with the Token Stealing algorithm to give a higher
priority to nodes that have been consistently uploading than
those that haven not.

The Token Stealing algorithm is a simple extension of
the token bucket algorithm. In this algorithm, every node
maintains a standard token bucket that we refer to as the
shared bucket into which tokens are added periodically. In
addition, the node maintains a separate bucket for each of
its neighbors. We refer to these as private buckets. When-
ever a node receives a packet from one of its neighbors, it
removes tokens from the shared bucket and transfers them
to that neighbor’s private bucket. This has the effect of re-
serving a portion of the node’s upload bandwidth to repay
the neighbor for the packets it has uploaded.

To prevent neighbors from reserving large amounts of
bandwidth that they never utilize (for example, because
they are connected to other nodes with large upload capac-
ities), there is a limit on the size of the private buckets. To-
kens that overflow the private buckets are returned to the
shared bucket.

Which Bucket First?

The question of which bucket to deduct tokens from when a
neighbor requests a packet is interesting. One may choose

3

Page 33 of 82

to first deduct tokens from the private bucket and dip into
the shared bucket only if there are not enough tokens in the
private bucket, or one may use up tokens from the shared
bucket first.

In our experiments we found that the both strategies give
the neighbors that upload (and therefore have tokens in their
private buckets) an advantage, but that advantage is consid-
erably greater in the latter case. When tokens are deducted
from the private buckets first, neighbors that upload do not
compete in the market for the shared tokens unless their pri-
vate buckets are empty. This makes it easier for neighbors
that do not upload to receive a portion of the bandwidth.

When tokens are deducted from the shared bucket first,
all neighbors compete equally in the market for shared to-
kens before dipping into their private buckets, which act as
a “reserve”. This amplifies the priority given to the nodes
that upload.

Therefore, the strategy we choose is to deduct tokens
from the shared bucket first and only dip into the private
bucket when the shared bucket is empty.

5.1 Analysis

With the Token Stealing algorithm, the total upload capac-
ity of the node is still limited by the rate at which tokens
are added to the token bucket, i.e. the upload bandwidth
limit. However, unlike a simple token bucket system where
all nodes have an equal opportunity to use up tokens from
the bucket, the Token Stealing algorithm favors neighbors
that upload.

Whenever a neighbor uploads a packet to a node, the
node reserves tokens for that neighbor’s use. Every packet
the neighbor uploads serves to a node increases the chances
that the neighbor will be able to download a packet in the
future.

If all neighbors upload equally, all private buckets will
have the same number of tokens in them, which gives all
neighbors equal priority. However, a neighbor that does not
upload will not have tokens in its private bucket and will be
limited to competing with other neighbors for tokens from
the shared bucket.

Whether or not the non-uploading neighbor succeeds in
downloading depends on the total supply and demand at
that node:

5.1.1 Node has excess upload capacity

If the node has more than enough upload capacity to fulfill
the demand of all of its neighbors, the shared bucket will
have tokens in it and the neighbor that does not upload will
still be able to download. This ensures that a node’s upload
capacity is utilized as much as possible.

It is possible for a few nodes, known as free-riders to try
to leach off the system by selectively connecting to nodes
with excess capacity. This strategy will work so long as the
number of free-riders is small. If a large number of nodes
attempt to leach off the system, they will compete among
each other for tokens from the shared token bucket. This
makes the effect of free-riders self-limiting.

5.1.2 Node has limited upload capacity

If the node does not have enough capacity to satisfy all
requests, most of the tokens will be moved to the private
buckets of the neighbors that do upload, and the shared
bucket will generally be empty. As a result, the neighbors
that upload will be able to use the tokens from their private
buckets to download packets, but nodes that do not upload
will be forced to compete for the scarce tokens from the
shared bucket.

5.2 Prisoner’s Dilemma

The Token Stealing Algorithm may be modeled as an Iter-
ated Prisoner’s Dilemma problem. If all of a node’s neigh-
bors defect (refuse to upload), they all share the common
pool and none of the neighbors has an advantage. However,
a neighbor that chooses to upload (cooperate) can “steal”
tokens away from the shared bucket. The neighbor will
still compete equally for the remaining tokens in the shared
bucket, but will have a private reserve for itself in addition
to the tokens it receives from the shared bucket. In this case,
the best strategy for the other neighbors to upload in order
to move tokens to their own private buckets. Thus, when-
ever the upload capacity at a node is scarce, the dominant
strategy for every neighbor is to upload to that node, i.e. to
cooperate.

6 Experimental Evaluation

To evaluate the performance of the Token Stealing algo-
rithm, we build an application and deployed it on 350 nodes
across the globe on the PlanetLab[3] testbed. All nodes
joined the network before the seed (source node) started
broadcasting data, and connected to an average of 15 neigh-
bors each. The stream was divided into 4 kilobyte packets
at a rate of 25 packet/second to give a total stream rate of a
100 kilobytes/sec.

We did not constrain the download capacity of nodes in
any way, but capped the upload capacity of nodes to put
them in one of two classes:

1. Fast Nodes: Maximum upload capacity = 200 kilo-
bytes/sec

4

Page 34 of 82

Figure 1: In a resource-rich system both fast and slow nodes
are able to download with very little packet loss.

2. Slow Nodes: Maximum upload capacity = 25 kilo-
bytes/sec

6.1 Resource-Rich System

In our first experiment, the system had 75% of fast nodes
and 25% of slow nodes. This made the average supply of
upload capacity 156.25 kB/node. The demand from every
node regardless of their upload capacity was the full 100
kB/sec stream rate. Thus, the system had approximately
one and a half time the supply as demand.

We ran this system for 300 seconds and measured the
packet loss rate experienced by different nodes. Note
that machines on PlanetLab are shared between many re-
searchers and are often very heavily loaded, resulting in se-
vere and unpredictable constraints on available bandwidth
and CPU time. This causes some nodes to suffer severe
packet loss even when there are adequate resources in the
system.

In this system, over 90% of the fast nodes as well as
slow nodes suffered less than 10% packet loss regardless of
whether or not the Token Stealing algorithm was used. This
shows that the Token Stealing algorithm does not harm the
performance of a resource-rich system.

6.2 Resource-Starved System

In our second experiment, the system had 25% of fast nodes
and 75% of slow nodes. This made the average supply of
upload capacity 68.75 kB/node. Thus, the system had ap-
proximately two third the supply as demand.

In this system, there is a major benefit to having the To-
ken Stealing algorithm enabled. Without token stealing,
barely 3% of fast and 6% of slow nodes had less than 10%
packet loss. With Token Stealing enabled, things improved
dramatically for the fast nodes—68% of them had less than
10% packet loss. Clearly, in a resource-starved system with

Figure 2: In a resource-starved system without Token Steal-
ing, both fast and slow nodes suffered heavy packet loss.
Barely 3% of fast nodes and 6% of slow nodes were able
to download with less than 10% packet loss. With Token
Stealing enabled, however, 68% of the fast nodes and 14%
of the slow nodes suffered a packet loss rate under 10%.

Token Stealing enabled, nodes have a big incentive to up-
load as much as they can.

7 Discussion

Our investigations have shown that despite the many
similarities between BitTorrent-like file-sharing systems
and mesh-based peer-to-peer streaming systems, incentive
schemes used in file-sharing can not be easily applied to
streaming.

Simple tit-for-tat schemes do not work well because of
the additional constraints imposed by live streaming. For
example, in a file-sharing network, every packet is useful
until all nodes in the system have downloaded that packet.
In streaming, however, packets quickly become obsolete.

Our preliminary work with the Token Stealing algorithm
has shown promising results. We find that it allows nodes
that are unable to contribute much upload bandwidth to still
download the stream with low packet loss so long as the
supply of bandwidth in the system exceeds the demand.
This allows the system to take advantage of altruistic nodes
that contribute more upload bandwidth than the stream rate,
and to avoid imposing harsh penalties on nodes that are un-
able to upload (for example ADSL nodes).

However, when the system is resource-constrained be-
cause there aren’t enough altruistic nodes to close the gap
between the supply of and demand for bandwidth, it is
impossible for all nodes to download the stream with no
packet loss. Under these circumstances, nodes that con-
tribute upload bandwidth to the system are given a higher
priority and tend to suffer much lower packet loss.

So far we have only investigated this algorithm under

5

Page 35 of 82

very limited circumstances. While our initial results are
promising, we still need to investigate the effect of many
real-world conditions, such as the fact that node bandwidths
do not fall into a small number of well-defined categories,
and that available bandwidth varies over time. Moreover,
we have yet to investigate the ways in which nodes may
game the system.

We believe that every practically deployed peer-to-peer
streaming system needs to give nodes an incentive to up-
load as much as they can in order to ensure that the system
remains resource-rich and operates well. However, it is bet-
ter to avoid shutting out nodes that are unable to upload as
fast as they download unless there are insufficient altruistic
nodes in the system to make up the deficit.

8 Related Work

Traditional multicast approaches have relied on building
spanning trees over the network and pushing data over
those trees in order to minimize delay. This creates parent-
child relationships that make it hard to identify and penalize
nodes that do not upload based purely on local observations.

However, Ngan, Wallach, and Druschel propose a gen-
eral reputation-based system [8] to detect and penalize free-
riders. Their solution can be applied to any tree-based mul-
ticast system. However, their solution require the multicast
trees to be rebuilt continuously. We believe our system to be
easier to implement in a decentralized manner in practice.

Levin, Sherwood and Bhattacharjee describe an interest-
ing overlay structure[7] for file swarming that is a radical
departure from BitTorrent and other tit-for-tat approaches.
However, in the current form it has two severe limitations.
Firstly they assume that every node in the system has ex-
actly the same upload capacity. Secondly, the disincentive
to defect comes from the collapse of the entire system when
a single node defects. As the authors acknowledge, these
drawbacks make the system impractical in its current form,
but these problems may be alleviated with further research.

9 Conclusion

We argue that in order for a peer-to-peer streaming system
to be robust, it is important to have an effective mecha-
nism to give nodes an incentive to upload as much as they
can. Our investigations show that naı̈ve application of tit-
for-tat mechanisms that work well in file-sharing systems
do not perform satisfactorily in streaming systems due to
additional bandwidth and delay constraints. We have out-
lined an algorithm called “Token Stealing” that runs locally
on every node and relies only on direct observations with-
out the need for network-wide or third-party coordination.

Our experiments show that this algorithm helps reduce the
packet loss for nodes that contribute upload bandwidth in a
resource-constrained system, while not shutting nodes with
poor upload capacities out of resource-rich systems.

References

[1] E. Adar and B. A. Huberman. Free Riding on
Gnutella. First Monday, 5(10), Oct 2000.

[2] M. Castro, P. Druschel, A. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-
Bandwidth Multicast in Cooperative Environments.
In SOSP, 2003.

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an over-
lay testbed for broad-coverage services. SIGCOMM
Computer Communication Review, 2003.

[4] B. Cohen. BitTorrent, 2001.
http://www.bitconjurer.org/BitTorrent/.

[5] J. Jannotti, D. K. Gifford, K. L. Johnson, M. Frans
Kaashoek, and J. O’Toole, Jr. Overcast: Reliable mul-
ticasting with an overlay network. In OSDI, 2000.

[6] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: high bandwidth data dissemination using an
overlay mesh. In SOSP, 2003.

[7] Dave Levin, Rob Sherwood, and Bobby Bhattachar-
jee. Fair file swarming with fox. In Fifth International
Workshop on Peer-to-Peer Systems, 2005.

[8] T. Ngan, D. S. Wallach, and P. Druschel. Incentives-
compatible Peer-to-Peer Multicast. In Second Work-
shop on the Economics of Peer-to-Peer Systems, 2004.

[9] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay
Sambamurthy, and Alexander E. Mohr. Chain-
saw: Eliminating trees from overlay multicast. In
Fourth International Workshop on Peer-to-Peer Sys-
tems, 2004.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
In ACM SIGCOMM, 2001.

[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A mea-
surement study of peer-to-peer file sharing systems.
Proceedings of Multimedia Computing and Network-
ing, 2002.

[12] K. Tamilmani, V. Pai, and A. E. Mohr. SWIFT: A sys-
tem with incentives for trading. In Second Workshop
on the Economics of Peer-to-Peer Systems, 2004.

6

Page 36 of 82

Dandelion: Cooperative Content Distribution with Robust Incentives

Michael Sirivianos Xiaowei Yang Stanislaw Jarecski
Department of Computer Science
University of California, Irvine

{msirivia,xwy,stasio}@ics.uci.edu

Abstract

Online content distribution has increasingly gained pop-
ularity among the entertainment industry and the con-
sumers alike. A key challenge in online content distribution
is a cost-efficient solution to handle demand peaks. To ad-
dress this challenge, we propose Dandelion, a system for ro-
bust cooperative (peer-to-peer) content distribution. Dan-
delion explicitly addresses two crucial issues in coopera-
tive content distribution. First, it provides robust incentives
for clients who possess content to serve others. A client
that honestly serves other clients is rewarded with credit
that can be redeemed for future downloads at the content
server. Second, Dandelion discourages unauthorized con-
tent distribution. A client that uploads to another client is
rewarded for its service only after the server has verified the
other client’s legitimacy. Our preliminary evaluation of a
prototype system running on commodity hardware with 120
KB/sec upload rate indicates that Dandelion can achieve
aggregate client download throughput three orders of mag-
nitude higher than the one achieved by an HTTP/FTP-like
server.

1 Introduction
Content distribution via the Internet is becoming increas-
ingly popular among the industry and the consumers alike.
A survey showed that Apple’s iTunes music store sold more
music than Tower Records and Borders in the US in the
summer of 2005 [18]. A number of key content produc-
ers, (e.g. CBS, Disney, Universal), are now selling films
online [2, 3, 6].

A challenging issue for online content distribution is a
cost-effective solution to handle peak usage by promotions
or new releases. A 45-minute DVD-quality episode easily
exceeds one GB. Even if each user is provisioned with a
1 Mbps, it takes more than two hours to download 1 GB.
Overprovisioning for one additional user during peak usage
may require at least an additional 1Mbps bandwidth, which
often costs up to $100 per month [5, 13]. However, a TV

episode is commonly sold at less than two dollars. One
solution is to purchase service from a content distribution
network (CDN) such as Akamai. However, CDNs’ services
are also costly, and free CDNs such as Coral, CoDeen, and
CobWeb [11, 20, 26, 31] lack a viable economic model to
scale.

This work explores a cost-effective approach for han-
dling flashcrowds. We present the design and a preliminary
evaluation of Dandelion, a cooperative content distribution
system. Rather than using a third party service, a Dandelion
server utilizes its clients’ bandwidth. During a flash crowd
event, a server redirects a request from a client to the clients
that have already downloaded the same content. This ap-
proach is similar in spirit to previous work on cooperative
content distribution [12, 16, 24, 27, 28], most notably Bit-
Torrent [8]. However, with the exception of BitTorrent, the
above approaches do not provide incentives for a client to
upload to other clients. BitTorrent employs tit-for-tat incen-
tives, but these are susceptible to manipulation [15, 17, 25]
and does not motivate clients to upload content after the
completion of their download (i.e., seeding).

The primary contribution of our work is that we pro-
vide robust incentives for clients to upload to others. By
robust, we mean that the incentive mechanism does not rely
on clients being altruistic or honest. Its secondary contri-
bution is that Dandelion discourages unauthorized content
sharing. Our design gives no incentives to clients to up-
load to unauthorized clients, but provides explicit rewards
for them to upload to authorized clients, e.g., clients that
have purchased content at a server.

Dandelion’s incentive mechanism is based on a crypto-
graphic fair exchange mechanism, which uses only efficient
symmetric cryptography. A client uploads content to other
clients in exchange of virtual credit. The credit can be re-
deemed for future service by other clients, or for service by
the server itself, or other rewards. This incentive mecha-
nism discourages unauthorized content exchange, because
a client is rewarded for its service only after the server has
verified that the client has uploaded to an authorized client.

We have implemented a prototype of a Dandelion client
and server and conducted a preliminary evaluation on Plan-

1
Page 37 of 82

etLab [7]. We compare the throughput of a Dandelion
server with a server that runs a simple request-response pro-
tocol, such as HTTP. Our preliminary evaluation shows that
Dandelion can improve the throughput of a commodity PC
server with 1 Mbps bandwidth by three orders of magni-
tude. However, as a trade-off of providing robust incentives
and discouraging unauthorized content distribution, a Dan-
delion server is less efficient than a BitTorrent tracker. As a
result, a Dandelion system is less scalable than BitTorrent,
with respect to the number of active clients supported by a
single server/tracker.

The rest of this paper is organized as follows. Section 2
describes the design of Dandelion. Section 3 briefly dis-
cusses our implementation and its performance. Section 4
compares our work with related work. We conclude in Sec-
tion 5. In the Appendix we provide a detailed description of
our protocol and discuss its security.

2 Design
This section describes the design of a Dandelion server and
client at a high-level. Please see the Appendix for the de-
tailed protocol description.

2.1 Overview
A Dandelion server is optimized to provide large static files.
It behaves similar to a web/ftp server under normal work
load, responding to clients’ requests with content. When
a Dandelion server is overloaded, it enters a peer-serving
mode. Upon receiving a request, the server redirects the
client to clients that are able to serve the request.

A Dandelion server maintains a virtual economy. It re-
wards cooperative clients that upload to others with virtual
credit to provide robust incentives. The credit is used as
“virtual money” to purchase future downloads from other
clients or from the server itself (at a high credit cost when
the server is overloaded), or used as other types of rewards.

Similar to BitTorrent, a Dandelion server splits a large
file into multiple chunks, and disseminates them indepen-
dently. This allows clients to participate in uploading
chunks as soon as they receive a small portion of the file,
increasing the efficiency of the distribution pipeline. Fur-
thermore, this incentivizes clients to upload chunks to oth-
ers, as they need credit to acquire the missing ones.

2.2 Robust incentives
A key challenge in designing a credit system is to prevent
client cheating, while keeping both a server and a client’s
processing and bandwidth costs low. A dishonest client
that does not upload to others or uploads garbage may at-
tempt to claim credit at the server, and to be robust, the
server must not award credit to such cheating behavior. To
address this challenge, Dandelion employs a cryptographic
fair exchange mechanism. A Dandelion server serves as the

Figure 1: The peer-serving protocol. The numbers on the
arrows correspond to the listed protocol messages. The
messages are sent in the order they are numbered.

trusted third party mediating the exchanges of content for
credit among its clients. When a client A uploads to a client
B, it sends encrypted content to client B. To decrypt, B must
request keys from the server. The requests for keys serve as
the “proof” that A has uploaded some content to B. Thus,
when receiving a key request, the server credits A for up-
loading to B, and charges B for the content.

A problem occurs if a malicious client A sends invalid
content to B. B can discover that the content is invalid only
after receiving the decryption key and being charged. To
address this problem, our design includes a non-repudiable
complaint mechanism. If A intentionally sents garbage to
B, A cannot deny it. In addition, B is prevented from falsely
claiming that A has sent it garbage. For clarity, we describe
the complaint mechanism after we describe the normal mes-
sage exchange in a Dandelion system.

Figure 1 shows how messages are exchanged in a Dan-
delion system. We assume that each client has a password-
protected account with the server and that it establishes a
secure channel (e.g SSL), over which it obtains shared ses-
sion keys with the server. During a flash crowd event, the
Dandelion server keeps track of the clients that are cur-
rently downloading or seeding offered files. The message
exchange proceeds as follows:
Step 1: A client (B in Figure 1) sends a request for a file to
the server.
Step 2: When the server receives the request, it returns di-
gests of the file chunks for integrity checking [8], a ran-
dom list of other clients that can serve the file, and crypto-
graphic authorizations, namely tickets that enable B to re-
quest chunks from these clients.
Step 3: Upon receiving the server’s response, B connects to
the listed clients to request the file. We use client A as an
example in Figure 1.
Step 4: If B’s tickets verify that the server has authorized B
to request chunks from A, B and A will run a chunk selection
protocol similar to that in BitTorrent [8]. A reports period-

2
Page 38 of 82

ically to B what chunks it has. B determines which chunks
it wishes to download and from which peers according to a
chunk scheduling algorithm such as rarest first.
Step 5: B sends a request for the chunk to A.
Step 6: If B’s ticket verifies, A chooses a random key k,
and encrypts it with the session key KSA, it shares with the
server. Client A sends to B the chunk encrypted with k,
the encryption of the key k, and its cryptographic commit-
ment to the encrypted chunk. A generates the commitment
by computing a message authentication code (MAC), keyed
with the shared session key KSA, over the digest of the en-
crypted chunk and the encryption of k
Step 7: To retrieve k, B sends a decryption key request to
the server. The request contains the encryption of the key k,
a digest of the encrypted chunk, and A’s commitment.
Step 8: Upon receiving B’s request, the server checks
whether A’s commitment matches the one computed over
B’s digest of the encrypted chunk and the encryption of key
k, using KSA. If the commitment verifies and B has suffi-
cient credit, the server sends the key to B. At the same time,
it rewards A with credit and charges B.

If A’s commitment does not verify, the server cannot de-
termine whether the discrepancy is caused by a transmission
error, or client A or B is misbehaving. The server simply
warns B of the discrepancy, and does not return the encryp-
tion key k. It updates neither A’s or B’s credit. B can re-
request the chunk from A or try another client.

If B repeatedly receives invalid commitments from A, it
should disconnect from A and blacklist it. Similarly, if the
server repeatedly receives decryption requests from B with
invalid commitments from a specific A, the server knows
that B is misbehaving because B should have blacklisted A.
The server will blacklist B.

Next, we explain the complaint mechanism. After B re-
ceives the key k, it decrypts the chunk and validates its in-
tegrity. If the chunk is invalid, B can complain to the server,
and A cannot repudiate it. This is because B’s complaint
message contains A’s commitment, the digest of the en-
crypted chunk, and the encryption of key k, all received in
the message from A in Step 6. The server can easily validate
whether A has sent the commitment, as the commitment is
a MAC computed with the session key KSA shared between
the server and A. B cannot forge a valid commitment. If
the commitment fails, the server knows that B is misbehav-
ing, since it should have abandoned the transaction in step
8. If the commitment verifies, A cannot repudiate that it has
sent the commitment to B. All the server needs to check
is whether A has computed the commitment over a valid
chunk. To verify this, the server retrieves and encrypts the
chunk that B complains about, using the key k and computes
the MAC using the shared key KSA. If this recomputed com-
mitment matches A’s commitment, it proves that A has sent
the valid content, and B is framing A; otherwise, it proves

that A has sent invalid content to B.

2.3 Credit Management
Dandelion can be used to distribute both free and paid con-
tent. Each usage dictates a distinct credit management pol-
icy. In the free-content case, we require that a client must
have sufficient credit units to download either from a server
or from a peer client. This is to incentivize a client to ac-
cumulate credit units by uploading to others. Each client is
given an initial small amount of credit when it first regis-
ters at the server. This initial credit enables a new user to
download a few chunks when it joins the Dandelion swarm.
Clients spend ∆c > 0 credit units for each chunk they down-
load from a peer client and earn ∆r > 0 credit units for
each chunk they upload to a peer. Consequently, clients
are forced to upload chunks proportionally to the number of
chunks they want to download. In our system, a client can
obtain a chunk only if its credit is greater or equal to the
chunk’s cost. To prevent collusions we set ∆c = ∆r, so that
two colluders cannot increase the sum of their credit.

In the paid content case, if a client has already spent real
money at the server to purchase content, a client may not
be charged credit units to download file chunks. That is,
a server rewards a client that uploads a chunk with ∆r > 0
credit units, but may charge ∆r = 0 for a client that down-
loads a chunk. To incentivize a client to accumulate credit
units, a server may redeem a client’s credit for monetary
awards, such as discounts on content prices or service mem-
bership fees, similar to the mileage programs of airline com-
panies. How to convert virtual credit to rewards depends on
the economic goals of each Dandelion deployment. Note
that collusions among clients are still not effective. If a
client wishes to boost another client’s credit, it would need
to request decryption keys for certain chunks. Since a pay-
ing client aims at downloading the complete content, a col-
luder would have to send multiple decryption key requests
for a certain chunk. The server can detect and punish this
behavior, deterring collusion among rational clients.

2.4 Discouraging unauthorized content dis-
tribution

In Dandelion, rational authorized clients are discouraged
from serving content to unauthorized clients. This is be-
cause a server does not award them credit for illegitimate
transactions. Clients are able to verify the legitimacy of re-
quests for service (as described in Section 2.2), hence they
can avoid wasting bandwidth to send encrypted chunks to
unauthorized peers. Furthermore, due to this ability, clients
can be held liable if they choose to send plaintext contents
to unauthorized clients. These properties discourage users
from using Dandelion for illegal content replication and
make our solution appealing to distributors of copyright-
protected digital goods.

3
Page 39 of 82

Dandelion Server
Dandelion Operation Size Time (ms)

Decrypt decryption key 40 bytes 0.1
MAC decryption key request 138 bytes 0.02

Transmit decryption key response 92 bytes ∼ 0.84
Query and update credit base (SQLite) N/A 1.08

Transmit chunk 256 KB ∼ 2330

Dandelion Client
Dandelion Operation Size Time (ms)

Encrypt/decrypt chunk 256 KB 4.1
Encrypt/decrypt chunk 16 KB 0.35

Commit to chunk (Hash and MAC) 256 KB 1.45

Table 1: Timings of per-chunk Dandelion operations.

3 Preliminary Evaluation
We implemented a prototype of Dandelion in C under
Linux, and conducted a preliminary evaluation of its per-
formance on PlanetLab. This section describes our imple-
mentation and the results of our PlanetLab experiments.

3.1 Prototype Implementation
We implemented Dandelion’s cryptographic operations us-
ing the openssl C library and the credit management system
using the lightweight database engine in the sqlite library.

Our server implementation draws from the Flash [19]
web server’s Asymmetric Single Process Event Driven Ar-
chitecture and the Staged Event Driven Architecture [10].
Both architectures assign thread pools to specific tasks.

When a disk read or a database operation is required by a
request, Dandelion’s main thread dispatches the request to a
synchronized producer-consumer queue served by a pool of
helper disk access or database access threads, respectively.

When a helper thread finishes its operations, it dispatches
the request to another thread pool (next stage) for subse-
quent processing. To avoid multiple copies between ker-
nel and user space during reading and sending a file chunk,
we use the sendfile() system call. Owing to sendfile(), both
reading a chunk from file and writing it to the network are
executed by the same thread.

This design exploits parallelism and maintains good per-
formance when both small and cached files or large disk-
residing files are requested from the server itself. In addi-
tion, it does not bind the number of concurrent connections
or pending requests to the number of processes/threads that
the OS can efficiently accomodate simultaneously.

3.2 Experimental Results
We first evaluate the computational costs of a Dandelion
server. In a flash crowd event, the main task of a Dande-
lion server is to process key decryption requests and send

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100

C
lie

nt
 d

ow
nl

oa
d

th
ro

ug
hp

ut
 (

K
B

/s
ec

)

Request rate (req/sec)

Decrypting key for 256 KB chunk
Decrypting key for 16 KB chunk

Transmitting 256 KB chunk

Figure 2: The y axis shows the achievable aggregate content
download throughput of Dandelion clients when the server
responds to: a) requests for keys used to decrypt 256 KB
encrypted chunks; b) requests for keys used to decrypt 16
KB encrypted chunks; and c) requests for chunks. The x
axis is the request rate received by the Dandelion server.

short responses to those requests. To process one decryp-
tion request, a server performs one HMAC operation and
one block cipher decryption on small messages. Further-
more, it performs one query and two update operations on a
credit database. Lastly, it transmits the decryption key.

In our experiments, we deployed a Dandelion system
with one server and 100 clients. The server runs on Linux
2.6.14 on a 1.7 GHZ/2 MB Pentium M CPU and one GB
RAM. To stress our design and emulate a typical resource-
limited server with 1 Mbps access link, we rate limited
our server’s upload rate to 120 KB/s. We let the Dan-
delion clients send the following two types of requests to
the server and benchmarked the client download through-
put along with the processing costs. The first type was re-
quests for decryption key, which emulate the load on the
server during peer-serving. The second type was requests
for file chunks directly from the server. Each client sent re-
quests at a rate ranging from 0.001 to 1 requests/sec. As the
client chunk request rate increased, the client would send a
new request prior to downloading the previously requested
chunk. For each rate, the experiment duration was 10 min-
utes and the results were averaged over 10 experiments.

Table 1 shows the cost for each operation. As can be
seen, the cryptographic operations of Dandelion are highly
efficient, as only symmetric cryptography is involved. A
Dandelion client can encrypt and decrypt a 256 KB chunk
much faster than download it or transmit it at 1 Mbps. This
result suggests that the client’s processing overhead does
not affect its upload or download throughput.

Figure 2 compares the case in which Dandelion clients
send decryption key requests to a server, as if they peer-
serve each other, with the case in which clients request
the file directly from the server, i.e., the HTTP/FTP-like
downloading. The curves show that with a chunk size of

4
Page 40 of 82

256 KB, the Dandelion clients’ download throughput would
be almost 200 times higher than the throughput obtained
when the clients request the file directly from the server. A
smaller chunk size reduces the performance gain, as a server
must process more decryption key requests. We note that
the performance of Dandelion can be further improved. Fig-
ure 2 was obtained using a version of the Dandelion server
that was optimized for directly serving file chunks, but was
poorly tuned for processing decryption key requests. In our
latest version of the implementation we configured the sys-
tem to commit the SQLite credit database to the disk much
less frequently. This resulted to the credit query and update
operation requiring 1 ms instead of 10 ms (Table 1). Our
latest preliminary results indicate a five fold increase in the
throughput of decryption key response. This means that a
commodity server with a 1 Mbps access link could process
up to ∼500 decryption key requests per second, effectively
serving up to ∼2000 clients downloading 256 KB chunks at
64 KB/s from other clients.

The cost of a complaint is higher because it involves
reading a chunk, encrypting it with the sender client’s key
and hashing the encrypted chunk. However, the server
blacklists misbehavers, thus it does not repeatedly incur the
cost of complaints sent by them.

4 Related Work
This section briefly compares our work with related work.

Swarm file downloading protocols. Dandelion is in-
spired by swarm downloading protocols such as Bittor-
rent [8] and Slurpie [24]. A key difference of our work is
its robust incentive mechanism. Slurpie does not provide
incentives for peer-serving. Although Bittorrent employs
rate-based “tit-for-tat” incentives, these do not punish free
riders [15] due to the specifics of its unchoking mechanism.
In addition, a free rider can enhance its advantage by obtain-
ing a larger than normal initial partial view of the BitTorrent
network. In this way, a peer can discover many seeders and
choose to connect to them only [17], increasing his down-
load rate. It can also increase the frequency with which it
gets optimistically unchoked by connecting to all leechers
in its large view [25].

Furthermore, as there is no robust mechanism to moti-
vate seeding in BitTorrent, the number of clients that seed
for long periods of times is very small [21]. In contrast,
credit in a Dandelion system provides robust incentives for
clients to seed files, which we believe will improve file
availability when the swarm size is small.

Lastly, Dandelion has the desirable feature that rational
clients have no incentives to serve unauthorized peers, as in
such case the server will not reward them. In BitTorrent,
content access policies are enforced by requiring password-
based authentication with the tracker. However, an unautho-
rized peer can join the network simply by finding a single

colluding peer that is willing to share its swarm view with
it. The unauthorized peers can then download content from
authorized peers, which have the incentives to serve them as
long as the unauthorized peer is tit-for-tat compliant. As a
result, a single authorized but misbehaving peer can facili-
tate illegal content replication at a large scale. In an upcom-
ing BitTorrent version, access policies are implemented by
accelerating legitimate content transfers through the use of
strategically placed caches, which can be accessed only by
authorized clients [1, 4]. Our scheme does not require third
party infrastructure.

Escrow services in peer to peer networks. Horne
et al. [14] proposed an encryption-based fair-exchange
scheme for peer-to-peer file exchanges. Dandelion shares
similarities regarding motivation and the general approach
with their work, but differs in specific protocol design.
Their scheme divides and transmits a file in chunks to en-
able erasure-code-based techniques for detecting cheaters
that upload invalid content, whereas we divide files to
support efficient and incentivized peer-to-peer distribution.
Their scheme detects cheating with probabilistic guaran-
tees, whereas Dandelion deterministically detects and pun-
ishes cheaters. In addition, their scheme requires that all
chunks for a given file come from a single peer, which ren-
ders the distribution pipeline inefficient.

Fair-exchange schemes. Among the proposed solutions
for the classic cryptographic fair-exchange problem, our
scheme bears the most similarity with the one by Zhou et
al. [32]. Their scheme also encrypts the content to be ex-
changed and uses an online trusted third party (TTP) to re-
lay the decryption key. A key difference is that Zhou et
al.’s scheme uses public key cryptography for encryption
and for commiting to messages, and both of the exchange
parties need to communicate with the TTP for each transac-
tion. In contrast, our scheme uses efficient symmetric key
encryption, and only one client needs to communicate with
the TTP per transaction. The technique they use to deter-
mine whether a message originates from a party is similar
to the one used by our complaint mechanism, but our work
also addresses the specifics of determining the validity of
the message.

Pairwise credit-based incentives. Swift [29] introduces
a pairwise credit-based trading mechanism (barter) for peer-
to-peer file sharing networks and examines the available
peer strategies. Scrivener [9] is also an architecture in which
peers maintain pairwise credit balances to regulate con-
tent exchanges among each other. In contrast, a Dandelion
server maintains a central credit bank for all clients.

Global credit-based incentives. Similar to Dandelion,
Karma [30] employs a global credit bank, with which
clients maintain accounts. It distributes the credit auditor
set of a peer among the peer’s k closest neighbors in a DHT
overlay [22]. Karma uses certified-mail-based [23] fair ex-

5
Page 41 of 82

change of content for reception proofs, which requires both
peers to communicate with the mediating auditor set for
each exchange. Unlike Dandelion, Karma requires public
key cryptographic operations at the peer side. Karma pro-
vides probabilistic guarantees with respect to the integrity
of the credit-base. In the presence of numerous malicious
bank nodes or in a highly dynamic network, the credit-base
becomes difficult to maintain reliably.

5 Conclusion and Future Work
This paper describes a cooperative content distribution sys-
tem: Dandelion. Dandelion’s primary function is to offload
a server during a flash crowd event, effectively increasing
availability without overprovisioning. A server delegates a
client with available resources to serve other clients. We
use a cryptographic fair-exchange technique to provide ro-
bust incentives for client cooperation. The server rewards
a client that honestly serves other clients with credit. A
client can redeem its credit for further service or mone-
tary rewards. In addition, the design of Dandelion discour-
ages unauthorized content exchange. Since a server medi-
ates all fair exchanges, clients who serve unauthorized re-
quests are not rewarded, therefore it is in their best interests
not to waste their upload bandwidth to serve unauthorized
clients. A preliminary evaluation shows that Dandelion has
low processing and bandwidth costs on the server side. A
commodity server with 1 Mbps access link may support up
to two thousand simultaneous clients. We are in the process
of evaluating and fine-tuning Dandelion’s prototype imple-
mentation on PlanetLab.

6 Acknowledgements
We thank Nikitas Liogkas and anonymous reviewers for
their useful feedback on early drafts of this paper. We also
thank Jonathan Park and Rex Chen for their assistance with
PlanetLab experiments.

References
[1] Bittorrent announces authorized rollout. http://www.slyck.com/

news.php?story=1090, Feb. 2006.

[2] CBS to sell new survivor episodes on own site. http://www.msnbc.
msn.com/id/11134875/, Feb. 2006.

[3] Disney does big business selling tv episodes online. http:
//www.showbizdata.com/contacts/picknews.cfm/40484/
DISNEY_DOES_BIG_%BUSINESS_SELLING_TV_EPISODES_ONLINE,
Jan. 2006.

[4] Ntl, bittorrent and cachelogic announce joint technology trial. http:
//www.cachelogic.com/news/pr100206.php, 2006.

[5] Quote from PACIFIC BELL: $18000 per month for an OC3 line.
http://shopforoc3.com/, Mar. 2006.

[6] Universal announces a new download-to-own service. http:
//edition.cnn.com/2006/TECH/03/23/movie.download/
index.html, Mar. 2006.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman. Planetlab: an overlay testbed for broad-
coverage services. In SIGCOMM CCR, pages 3–12, 2003.

[8] B. Cohen. Incentives build robustness in bittorrent. In P2P Econ,
2003.

[9] P. Druschel, A. Nandi, T.-W. J. Ngan, A. Singh, and D. Wallach.
Scrivener: Providing incentives in cooperative content distribution
systems. In Middleware, 2005.

[10] M. W. et al. Seda: An architecture for well-conditioned, scalable
internet services. In SOSP, 2001.

[11] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing
content publication with coral. In NSDI, March 2004.

[12] C. Gkantsidis and P. Rodriguez. Network coding for large scale con-
tent distribution. In INFOCOM, 2005.

[13] J. Gray. Distributed computing economics. Technical report, Mi-
crosoft Research, 2003. MSR-TR-2003-24.

[14] B. Horne, B. Pinkas, and T. Sander. Escrow services and incentives
in peer-to-peer networks. In EC, pages 85–94, 2001.

[15] S. Jun and M. Ahamad. Incentives in bittorrent induce free riding. In
P2P Econ, pages 116–121, 2005.

[16] K. Kong and D. Ghosal. Pseudo-serving: a user-responsible
paradigm for internet access. In WWW, pages 1053–1064, 1997.

[17] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting bittorrent
for fun (but not profit). In IPTPS, 2006.

[18] S. Morris. iTunes outsells CD stores as digital revolution gath-
ers pace. http://arts.guardian.co.uk/netmusic/story/0,
13368,1649421,00.html, Nov. 2005.

[19] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable Web server. In USENIX, 1999.

[20] K. Park and V. S. Pai. Scale and performance in the coblitz large-file
distribution service. In NSDI, 2006.

[21] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The
bittorrent p2p file-sharing system: Measurements and analysis. In
IPTPS, pages 205–216, 2005.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Middle-
ware, pages 329–350, 2001.

[23] B. Schneier. Applied Cryptography, 2nd edition, 1995.

[24] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative
bulk data transfer protocol. In INFOCOM, 2004.

[25] J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in internet
algorithms. In PINS, 2004.

[26] Y. J. Song, V. Ramasubramanian, and E. G. Sirer. Cobweb: a proac-
tive analysis-driven approach to content distribution. In SOSP, pages
1–3, 2005.

[27] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching schemes
to address flash crowds. In IPTPS, 2002.

[28] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust p2p
system to handle flash crowds. In ICNP, pages 226–235, 2002.

[29] K. Tamilmani, V. Pai, and A. Mohr. Swift: A system with incentives
for trading. In P2P Econ, 2004.

[30] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. Karma: A se-
cure economic framework for p2p resource sharing. In P2P Econ,
2003.

[31] L. Wang, K. Park, R. Pang, V. S. Pai, and L. L. Peterson. Reliability
and security in the codeen content distribution network. In USENIX,
pages 171–184, 2004.

[32] J. Zhou and D. Gollmann. A fair non-repudiation protocol. In IEEE
Symposium on Research in Security and Privacy, pages 55–61, 1996.

6
Page 42 of 82

A Appendix
A.1 Detailed Protocol Description
This section provides a detailed description of the Dande-
lion peer-serving protocol.

A.1.1 Setting and Assumptions

We assume that the server S keeps a table matching any
file F with a pool of available clients currently download-
ing or seeding the file. A client A gets a temporaty shared
key KSA with S. KSA can be efficiently computed as KSA =
H(KS,〈A〉,〈i〉). The notation 〈X〉 denotes a client X’s Dan-
delion ID, KS is S’s master secret key, H is a cryptographic
hash function such as SHA-1, and 〈i〉 refers to a time pe-
riod. Our protocol enables S to tolerate some lag in the 〈i〉
assumed by a client. The temporary shared keys are deliv-
ered from the server to the client over a secure channel. For
every client, the server S maintains database entries of that
client’s credit, virtual money which can be used to purchase
more services.

A.1.2 Client-Serving Protocol

The protocol starts with the client B sending a request for
file 〈F〉 to S.

1) B −→ S: [server file request] 〈F〉

If B has access to F, S chooses a random short list of
clients 〈A〉list, which are currently downloading or seed-
ing the file. Each list entry, besides the Dandelion ID of
the client, also contains the clients inbound internet ad-
dress. Also for every client in 〈A〉list, S sends a ticket
TSA = MACKSA [〈A〉,〈B〉,〈F〉, ts] to B. MAC is a message au-
thentication code (e.g. an HMAC), ts is a timestamp and
〈A〉 is a client in 〈A〉list. The tickets TSA are only valid for a
certain amount of time T (considering clock skew between
A,S) and allow B to request chunks of file F from client’s A.
When TSA expires and B still wishes to download from A it
requests a new TSA from S. As commonly done to maintain
file integrity, S also sends the SHA-1 hash h〈ch〉 = H(ch) for
all chunks ch of the file F S may charge B for the issuance
of tickets TSA to prevent misbehaving clients from wasting
server resources.

2) S −→ B: [server file response] TSA list,〈A〉list,h〈ch〉list,

〈F〉, ts,〈i〉S

The client B forwards this request to each A ∈ 〈A〉list

3) B −→ A: [client file request] TSA,〈F〉, ts,〈i〉S

If current − time ≤ ts+T and TSA is not in A’s cache, A
verifies if TSA = MACKSA [〈A〉,〈B〉,〈F〉, ts].1 As long as B re-
mains connected to A, it periodically renews its TSA tickets.

1The purpose of this check is to provide a simple mechanism for pro-
tecting A from DoS attacks from unauthorized clients and to allow clients
to filter request for unauthorized file uploading.

If the verification fails, A drops this request. Also, if 〈i〉S is
greater than A’s current epoch 〈i〉A, A learns that it should
renew its key with S soon. Otherwise, A caches TSA and it
starts running a protocol with B for file chunk selection. A
reports periodically to B what chunks it has for as long as
the timestamp is fresh. Also, B reports its available chunks
to A and A can request them from B, after he retrieves TSB

from S. B determines which chunks it wishes to download
and from which clients according to a chunk selection al-
gorithm. For presentation purposes, each of the following
messages involves one chunk, whereas in practice informa-
tion for multiple chunks may be bundled in a message.

4) B −→ A: [client chunk request] TSA,〈F〉,〈ch〉, ts,
〈i〉S

B’s requests are served as long as the timestamp is fresh
and TSA is cached or verifies. For each requested chunk, A
retrieves and encrypts it using a symmetric-key encryption

Enc, as C = Enc
iv〈ch〉
k〈ch〉

(ch), where k〈ch〉 is a randomly cho-

sen key distinct for each chunk, and iv〈ch〉 is the encryption
Initial Vector (IV). A encrypts the random key with the one
it shares with the server, as e = EncivSA

KSA
(k〈ch〉, iv〈ch〉). Fi-

nally, A hashes the ciphertext C as hc = H(C) and computes
a MAC value TAS = MACKSA [〈A〉,〈B〉,〈F〉,〈ch〉,e,hc, ts].
Note that A can pre-compute several values (k〈ch〉,e,C,hc),
so the on-line cost of A can be reduced to one MAC com-
putation.

5) A −→ B: [client chunk response]TAS,〈F〉,〈ch〉,e,C, ts,
〈i〉A

B retrieves C, computes its own hash hc′ = H(C) and
forwards the following to S.

6) B −→ S: [decryption key request]〈A〉,〈F〉,〈ch〉,e,hc′,
ts,TAS,〈i〉A

If timestamp ts is fresh enough, ticket TAS is not in
S’s cache, and 〈i〉A is not too much off, S checks if
TAS = MACKSA [〈A〉,〈B〉,〈F〉,〈ch〉,e,hc′, ts], where key KSA

is computed using KS, 〈A〉, and 〈i〉A. The verification may
fail either because hc′ is invalid due to transmission error in
step (5) or because either A or B are misbehaving. Since
S is unable to determine which one is the case, it does not
punish either clients. Yet it notifies B, which is expected to
remove A from its client list in case A repeatedly sents in-
valid messages. If B keeps sending invalid decryption key
requests, S penalizes him. If the verification succeeds, S
caches TAS, and checks whether B has sufficient credit. It
also checks again whether B has access to the file F. If
B is approved, it charges B and reward A. S also decrypts
(k′〈ch〉, iv

′
〈ch〉) = DecKSA(e), and sends them to B.

7) S −→ B: [decryption key response]〈A〉,〈F〉,〈ch〉,
(k′〈ch〉, iv

′
〈ch〉

7
Page 43 of 82

B uses (k′〈ch〉, iv
′
〈ch〉) to decrypt the chunk as ch′ =

Dec
iv′〈ch〉

k′
〈ch〉

(C). If decryption fails or if H(ch′) 6= h〈ch〉 (see

item (2)), then B complains to S by sending the following
message.

8) B −→ S: [complaint],〈A〉,〈F〉,〈ch〉,TAS,e,hc′, ts,〈i〉A

S ignores this message if timestamp ts is not fresh
enough (using much more liberal time interval then
before) or if this complaint is already cached. If
TAS 6=MACKSA [〈A〉,〈B〉,〈F〉,〈ch〉,e,hc′, ts] S punishes B,
since B had already been notified in step (6) that TAS is in-
valid. If TAS verifies, S caches this complaint, recomputes
KSA as before, decrypts (k′〈ch〉, iv

′
〈ch〉) = DecKSA(e) once

again, retrieves ch from its storage, and encrypts ch him-

self using the above key and IV vector, C′ = Enc
iv′〈ch〉

k′
〈ch〉

(ch).

If the hash of the ciphertext H(C′) is equal to the value hc′

that B sent to S, then S decides that A has acted correctly,
B’s complaint is unjustified, S drops this complaint request
and blacklists B or charges B a large amount. Otherwise, S
decides that B was cheated by A, removes A from its pool of
active clients, blacklists or charges it, and issues an update
that cancels the corresponding update on A’s and B’s credit.
Finally, S serves B itself or it repeats the protocol from step
(2).

A.2 Security Analysis
We claim the following security properties of our protocol:

1. If an honest client B gets charged (his credit de-
creases) by S, then B must have received correct chunk
ch, even if the transaction involved a malicious client A.
This is because B gets charged only if the data S gets in
steps (6) and (8) verifies and if hc′ = H(C ′). Since hc′

is a hash that B computes itself on C received from A,
C = C ′. Furthermore, since the same k, iv pair is used by S
to encrypt ch into C ′ and by B to decrypt C into ch ′, then
C = C ′ implies that ch ′ = ch.

2. If an honest client A always encrypts chunk ch anew
when servicing a request, then even if client B is malicious,
if B gets ch in this protocol instance then A also gets credit
from S. This is because if A encrypts ch using one-time key
k〈ch〉, iv〈ch〉, then B sees k〈ch〉, iv〈ch〉 only in the encrypted
form e. The only way for B to get it (short of stealing
key KSA from A or S) is to get it decrypted by S, in which
case S will log a charge against B. The only way B can
possibly avoid this charge is by sending (8) which includes
TAS and hc′ s.t. TAS = MACKSA [〈A〉,〈B〉,〈ch〉,e,h′, ts], but
such that hc′ 6= H(C ′) where C ′ is computed by S in that
step. However, since we consider this attack only against
an honest A, the TAS MAC value will verify only if all the
values it includes are the ones that A sent to B, and if hash
hc ′ is correctly computed on ciphertext C included in that

transfer. But if that’s the case then S will decrypt e to the
same k〈ch〉, iv〈ch〉 pair that A used, hence S’s encryption C ′

will be the same as the C that A computed. Consequently,
hc′ will be equal to H(C ′), hence B is not able to reverse its
charge.

3. If A pre-computes only one encryption of some chunk
ch and services requests for that file always using the same
ciphertext (C,e), then A runs some risk that colluding B’s
can attempt to use A to download ch with only one of the
B’s charged for it. Namely, the colluding clients B’s have
some chance of getting tickets to the same client A from S,
so each of them would receive the same encryption C of ch
from A. Then one B can incur a charge to retrieve key k〈ch〉,
but it can share this key with the remaining colluders. The
chance of success in such attack decreases if the list of the
clients returned by S is short and if A pre-computes many
ciphertext tuples (k〈ch〉,e,C,h) for the same ch, and services
a request by choosing one of them at random. Note that A
can individually adjust how much to pre-compute, or even
to always encrypt ch on-line.

4. A malicious client B can always abandon any instance
of the protocol or intentionally send invalid messages to
S (e.g hc′ 6= H(C)). In such case, A does not receive any
credit even though B consumed A’s resources (but also
B does not receive the file in that instance, as we argue
above). This is a denial of service attack against A, and we
mitigate it by having S issue a short-lived MAC’ed ticket
TSA only to authorized clients. Therefore B can stage this
attack against A only for as long as the ticket is valid. If
B is identified as misbehaver client, he will not be issued
new tickets. In addition, S may charge B for the issuance
of tickets TSA effectively preventing B from maliciously
expending both A’s and S’s resources.

5. Two clients B and A could agree to share a file that
B is not entitled to receive based on a file access policy and
pretend that A is uploading a file to which B has access. In
that way, A would get paid, therefore it has incentives to
provide the whole file and violate the policy. However, this
is problematic because the complaint mechanism can only
rule in favor of B, therefore A cannot trust that B will allow
A to be rewarded for his service.

8
Page 44 of 82

Rational Secret Sharing, Revisited

[Extended Abstract]

S. Dov Gordon
gordon@cs.umd.edu

Jonathan Katz
∗

jkatz@cs.umd.edu
Dept. of Computer Science

University of Maryland
College Park, MD 20742

ABSTRACT
We consider the problem of secret sharing among n ratio-

nal players. This problem was introduced by Halpern and

Teague (STOC 2004), who claim that a solution is impossible

for n = 2 but show a solution for the case n ≥ 3. Counter to

their claim, we show a simple protocol for the case of n = 2

players. Our protocol extends to the case n ≥ 3, where it

is both simpler than the Halpern-Teague solution and also

offers a number of other advantages. We also show how to

avoid the continual involvement of the dealer, in either our

own protocol or that of Halpern-Teague.

Our techniques extend to the case of rational players try-

ing to securely compute an arbitrary function, under certain

assumptions on the utilities of the players.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Systems]: General—

security and protection; E.3 [Data]: Data Encryption

General Terms
Security

Keywords
Game theory, secret sharing, secure computation

1. INTRODUCTION
The classical problem of t-out-of-n secret sharing [10, 1]

involves a “dealer” D who wishes to entrust a secret s to

a group of n players P1, . . . , Pn so that (1) any group of t

or more players can reconstruct the secret without further

∗
Research supported by NSF Trusted Computing

grants #0310499 and #0310751; NSF CAREER

award #0447075; and US-Israel Binational Science

Foundation grant #2004240.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05, June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

intervention of the dealer, yet (2) any group of fewer than

t players has no information about the secret. As an exam-

ple, consider the scheme due to Shamir [10]: say the secret

s lies in a field
�
, with |

�
| > n. The dealer chooses a ran-

dom polynomial f(x) of degree at most t− 1 subject to the

constraint f(0) = s, and gives the “share” f(i) to player Pi

(for i = 1, . . . , n). Any set of t players can recover f(x) (and

hence s) by interpolation; furthermore, no set of fewer than

t players has any information about s.

The implicit assumption above is that at least t players are

willing to cooperate and pool their shares
1

when it is time

to recover the secret; equivalently, at least t players are hon-

est and hence at most n − t players are malicious. Halpern

and Teague [4] consider a scenario in which no one is (com-

pletely) honest, but instead all that is guaranteed is that at

least t players are rational (as before, up to n − t players

may refuse to cooperate altogether). Shamir’s protocol may

no longer succeed in this scenario [4]. Specifically, if all play-

ers prefer to learn the secret above all else, and otherwise

prefer that fewer parties learn the secret, then no player has

any incentive to reveal their share. Consider P1: if strictly

fewer or greater than t− 1 other players reveal their shares,

nothing changes whether P1 reveals his share or not. On the

other hand, if exactly t− 1 other players reveal their shares

then P1 learns the secret regardless (using his share), while

P1 can prevent other players from learning the secret by not

publicly revealing his share. Thus, although for t < n hav-

ing all players reveal their shares is a Nash equilibrium, it is

a weakly dominating strategy for each player not to reveal

its share (and this is the equilibrium likely to be reached).

Note that for t = n, having all players reveal their shares is

not even a Nash equilibrium.

Does there exist any protocol for reconstructing the secret

in which it is in players’ best interests to follow the proto-

col? Generalizing the above, Halpern and Teague rule out

any protocol terminating in a fixed number of rounds. This

leaves open the possibility of probabilistic protocols without

a fixed upper bound on their round complexity, and indeed

Halpern and Teague show such a protocol for n ≥ 3 par-

ties. In contrast, they claim that a solution is impossible for

n = 2 even if probabilistic protocols are allowed.

Our results: We revisit the question of rational secret shar-

ing, in the model of [4]. As perhaps our most surprising

1
We assume adversarial behavior is limited to refusal to co-

operate. Reporting an incorrect share is easily prevented by

having the dealer sign the shares.

Page 45 of 82

result, we show a simple, probabilistic protocol for n = 2

parties to reconstruct a shared secret, thus disproving the

claim of Halpern and Teague. Interestingly, their proof ap-

pears to be correct; the problem is that their assumptions

about the types of protocols that might be used are too re-

strictive. By relaxing their assumptions in a reasonable way,

we are able to circumvent their impossibility result.

Our protocol generalizes in a straightforward way to the

case of n ≥ 3 and arbitrary t. Although Halpern and Teague

also claim a general solution of this sort, our solution is much

simpler and has a number of other advantages.

In the Halpern-Teague solution, the dealer is involved pe-

riodically throughout the entire lifetime of the protocol. We

also show how to remove this involvement of the dealer, in

either our own protocol or that of Halpern and Teague.

Our results extend to the case of rational players comput-

ing an arbitrary function, under certain assumptions regard-

ing their utilities. See the full version [3] for more details.

Related work: There has been much recent interest in

bridging cryptography and game theory [6, 5, 7]. While prior

work [6, 5] offers solutions to the problem considered here,

we focus on simplicity and efficiency rather than general-

ity. Our work also makes weaker physical assumptions than

that of [6, 5]: specifically, we assume simultaneous broadcast

(equivalently, we do not allow rushing) rather than “secure

envelopes.” See [3] for further discussion.

Recent and independent work [8] shows how to use essen-

tially the same ideas shown here to obtain a stronger and

more general result.

2. MODEL
We review the model of Halpern and Teague, filling in

some details they omit. We have a dealer D holding a se-

cret s, and n players. A protocol proceeds in a sequence of

iterations, where each iteration consists of multiple rounds.

At the beginning of each iteration, D distributes some in-

formation (privately) to the n players; at this point, any set

of fewer than t players should have no information about s.

The dealer is not involved during an iteration. Instead, some

set of at least t players run the protocol amongst them-

selves by simultaneously broadcasting messages in a series

of rounds. (Halpern-Teague additionally allow private com-

munication between the players but we do not need this.)

At the end of an iteration, the protocol either terminates or

proceeds to the next iteration. We assume the dealer follows

the protocol as specified. To rule out trivial protocols, we

require that if at least t players follow the protocol in each

iteration, the secret is eventually reconstructed.

Let ~σ = (σ1, . . . , σn) denote a vector of (possibly random-

ized) strategies used by the players. A protocol corresponds

to the above game along with a prescribed strategy vector ~σ.

As in [4], we are interested in strategy vectors correspond-

ing to a Nash equilibrium that survives iterated deletion of

weakly-dominated strategies. See [9, 4] for definitions.

Let µi(~σ) denote the utility of Pi for the strategy vector

~σ. For a particular outcome o of the protocol, we let δi(o)

be a bit denoting whether or not Pi learns the secret, and

let num(o) = �
i
δi(o). We assume that for all i:

• δi(o) > δi(o
′
) ⇒ µi(o) > µi(o

′
).

• If δi(o) = δi(o
′
),

num(o) < num(o
′
) ⇒ µi(o) > µi(o

′
).

That is, players first prefer outcomes in which they learn the

secret; if this is held fixed, players prefer outcomes in which

the fewest other players learn the secret. Let Ui(~σ) denote

the expected value of the utility of Pi under strategy vector

~σ. We assume rational players wish to maximize this value.

3. PROTOCOLS
We provide a high-level overview of the Halpern-Teague

solution for 3-out-of-3 secret sharing. (Details of their pro-

posed generalization for n > 3, t ≥ 3 are in [4, 3].) At the

beginning of each iteration, the dealer runs a fresh invoca-

tion of the Shamir scheme and sends the appropriate share

to each player. During an iteration, each Pi flips a biased

coin ci with Pr[ci = 1] = α. Players then securely com-

pute p = � ci such that it is impossible to cheat or to learn

information about the {ci} values of the other parties. If

p = ci = 1, player Pi broadcasts his share. If all shares are

revealed, the secret is reconstructed and the protocol ends.

If p = 1 and no shares are revealed, all players terminate the

protocol. In any other case, players proceed to the next iter-

ation. Assuming players act honestly, the expected number

of iterations until the protocol terminates is α
−3

.

For a quick sketch as to why this works, assume P1, P2

follow the protocol and consider whether P3 should deviate.

One can show that there is no incentive for P3 to change the

distribution of c3. If p = 0 or c3 = 0, there is clearly no in-

centive for P3 to deviate. When p = c3 = 1, player P3 does

not know whether c1 = c2 = 1 (which occurs with prob-

ability
α

2

α2+(1−α)2
) or c1 = c2 = 0 (which occurs with the

remaining probability). If P3 does not broadcast its share

it runs the risk of having the protocol terminate without

learning the secret. Setting α appropriately based on P3’s

utility function, it is not in P3’s best interest to deviate.

3.1 Our Solution
Halpern and Teague implicitly assume that the dealer is

restricted to sending valid Shamir shares to the players, and

their impossibility proof for n = 2 therefore focuses only on

what happens during an iteration. Removing this restric-

tion circumvents the impossibility result for n = 2 (and also

drastically simplifies things for the case of general n [3]).

The idea is as follows: with some probability the dealer

shares the actual secret, and with the remaining probability

the dealer shares a “bogus” secret. No player can tell which

is the case given the share he receives. Then, players simply

pool their shares and reconstruct the shared value. If this

is the “actual” secret, the protocol terminates; otherwise,

players continue to the next iteration. (We have to provide

the players with a way to detect whether a reconstructed

value is the actual secret or not; this is quite easy to do.)

We focus on the case n = 2 but it is easy to see that

our idea generalizes to arbitrary t, n. Say the dealer holds a

secret s that lies in a strict subset S of a field
�

(if s lies in a

field
�
′
, this is achieves by taking a larger field

�
containing�

′
as a subfield). At the beginning of each iteration, with

probability β the dealer generates a random sharing of s, and

with probability 1−β the dealer generates a random sharing

of an arbitrary element ŝ ∈
�
\ S. In a given iteration, the

players simply broadcast their shares. If in any iteration

some player does not broadcast their share, both players

immediately terminate the protocol. Otherwise, both shares

were broadcast and the players either reconstruct the secret

Page 46 of 82

s ∈ S and terminate the protocol successfully, or reconstruct

a value ŝ ∈
�
\ S and proceed to the next iteration.

To see why this works, note first that a player cannot

tell from its share whether the dealer has shared the “real”

secret s or the “bogus” secret ŝ. Assume P1 acts honestly

and consider whether P2 has any incentive to deviate. The

only possible deviation is for P2 to refuse to broadcast his

share. In this case, it learns the secret (while P1 does not)

with probability β, but with probability 1 − β it will never

learn the secret. Setting β appropriately depending on P2’s

utility, it is not in P2’s best interest to deviate.

The above shows that following the protocol is a Nash

equilibrium. It is possible to additionally prove that it sur-

vives iterated deletion of weakly dominated strategies [3].

4. DISCUSSION AND EXTENSIONS
We view the main import of our result as a demonstration

that rational secret sharing is, in fact, possible when n = 2;

this serves as an illustration of the sensitivity of an impossi-

bility result to the precise model under consideration. Our

approach also has various other advantages as compared to

the Halpern-Teague solution; chief among these may be its

simplicity. See [3] for additional points of comparison.

In the full version [3], we show how to remove the need

for the dealer to be involved at the beginning of each itera-

tion so that, as in standard secret sharing, the dealer need

only be involved once, at the beginning of the protocol. We

also show how our results may be extended to the case of

secure computation of arbitrary functions (à la [2]) by par-

ties assumed only to be rational (i.e., without making the

assumption that any parties are completely honest [2]).

5. REFERENCES
[1] G.R. Blakley. Safeguarding Cryptographic Keys.

National Computer Conference, AFIPS Press, 1979.

[2] O. Goldreich, S. Micali, and A. Wigderson. How to

Play any Mental Game or A Completeness Theorem

for Protocols with Honest Majority. STOC ’87.

[3] S.D. Gordon and J. Katz. Rational Secret Sharing,

Revisited. Available at

http://eprint.iacr.org/2006/142.

[4] J. Halpern and V. Teague. Rational Secret Sharing

and Multiparty Computation. STOC 2004.

[5] S. Izmalkov, S. Micali, and M. Lepinski. Rational

Secure Function Evaluation and Ideal Mechanism

Design. FOCS 2005.

[6] M. Lepinski, S. Micali, C, Peikert, and A. Shelat.

Completely Fair SFE and Coalition-Safe Cheap Talk.

PODC 2004.

[7] M. Lepinski, S. Micali, and A. Shelat. Collusion-Free

Protocols. STOC 2005.

[8] A. Lysyanskaya and N. Triandopoulos. Rationality

and Adversarial Behavior in Multi-Party

Computation. Crypto 2006, to appear.

[9] M.J. Osborne and A. Rubinstein. A Course in Game

Theory. MIT Press, 1994.

[10] A. Shamir. How to share a secret. Comm. ACM,

22(11): 612–613 (1979).

Page 47 of 82

Path Auction Games When an Agent Can Own

Multiple Edges ∗

Ye Du † Rahul Sami§

Yaoyun Shi †

† Department of Electrical Engineering and Computer Science, University of Michigan

2260 Hayward Ave, Ann Arbor, MI 48109-2121, USA

Email: duye|shiyy@umich.edu
§School of Information, University of Michigan, Ann Arbor, MI, 48109, USA

Email: rsami@umich.edu

Abstract

We study path auction games in which multiple
edges may be owned by the same agent in this pa-
per. The edge costs and the set of edges owned by
the same agent are privately known to the owner of
the edge. We show that in this setting, given the as-
sumption the losing agent always has 0 payoff, there
is no individual rational strategyproof mechanism
in which only edge costs are reported. If the agents
are asked to report costs as well as ownership, we
show that there is no efficient mechanism that is
false-name proof. We then study a first-price path
auction in this model. We show that, in the special
case of parallel-path graphs, there is always a pure-
strategy ε-Nash equilibrium in bids. We show that
this result does not extend to general graphs: we
construct a graph in which there is no such ε-Nash
equilibrium.

1 Introduction and Motiva-
tion

In the path auction game, there is a network G =
(V, E), in which each edge e ∈ E is owned by an
agent. The true cost of e is private information
and known only to the owner. Given two vertices,
source s and destination t, the customer’s task is
to buy a path from s to t. This path auction can
be used to model problems in supply chain man-
agement, transportation management, QoS routing
and other domains. Recently, path auctions have
been extensively studied [11, 9, 2, 8, 4]; much of

∗†Supported in part by NSF grant 0347078.

this literature has focused on the Vickrey-Clarke-
Groves (VCG) mechanism [12, 3, 6]. In the VCG
mechanism, the customer pays each agent on the
winning path an amount equal to the highest bid
with which the agent would still be on the winning
path.This mechanism is attractive because it is ef-
ficient andstrategyproof,i.e., the dominant strategy
for each agent is to report its true cost.

In the traditional path auction model, each agent
only owns one edge in the graph, and there is no co-
operation between agents. Here, we study a variant
of the path auction game in which each agent may
own multiple edges. In this extended model, if the
ownership information is publicly available (i.e. the
customer knows which agent owns which edge), the
VCG mechanism design approach yields a strate-
gyproof mechanism.

In practice, however, the ownership information
is more likely to be private – it could be costly for
the customer to find out the true ownership infor-
mation, or the agent may have an incentive to hide
its true ownership information in order to get bet-
ter payoff. For example, in Figure 1, there are two
agents: a and b. Agent a owns edges (s, i) and (i, t)
with true cost 1 each; agent b owns edges (s, j) and
(j, t) with true cost 2 each. If agents a and b reveal
the true ownership information to the customer,
the most natural VCG mechanism will choose path
(s, i), (i, t) as the winning path and pay agent a
an amount equal to 2. However, if agent a hides
its ownership information, the mechanism will treat
edges (s, i) and (i, t) as owned by different agents.
When the agents bid their true costs, the winning
path stays the same, but the payment to agent a
would be 2× 3 = 6. Moreover, when the ownership
information is not available to the customer, agent

1

Page 48 of 82

� ��

����

��	� ��	�

����

Figure 1: VCG mechanism is not strategyproof for
this game

a can increase its payoff by bidding lower than its
true cost. For example, it can bid 0.5 for both edges
(s, i) and (i, t). This does not change the winning
path, but the payoff to agent a would increase to
2×3.5 = 7. Hence, the straightforward VCG mech-
anism, which assumes that each edge is owned by
an individual agent, is not strategyproof. In this
paper, we model situations in which each agent can
own multiple edges at the same time, but the own-
ership information is private. Thus the traditional
path auction model is a special case of our extended
model. One real-life example of our model is an on-
line auction system in which each seller/buyer can
have multiple accounts in the system. Now, if a
buyer wants some combination of goods that can be
expressed in path auction form, it is hard for her to
find the true identity of each seller account, and so
she is faced with the unknown-ownership scenario.

In this paper, we analyze path auctions under
two solution concepts: dominant strategies and
Nash equilibrium in bids. We begin by studying
truthful dominant strategy mechanisms, i.e. strat-
egyproof mechanisms. We show that if the agents
only submit bid prices in the auction for each edge,
there is no strategyproof mechanism that satisfies
individual rationality under assumption that the
losing agent always has 0 payoff. The natural ex-
tension is to consider mechanisms in which agents
are invited to reveal their entire private informa-
tion, the ownership of edges as well as the costs.
An important strategic property in this setting is
that the mechanism is false-name proof [13], i.e.,
an agent cannot gain by dividing her owned edges
among two or more pseodonyms. We show that
earlier results on false-name proof mechanisms [13]
imply that there is no Pareto-efficient false-name
proof mechanism in the extended auction format.

We next turn to a first-price auction bidding
game, and study ε-Nash equilibria of this game. For
the class of parallel-path graphs, we constructively
prove that at least one ε-Nash equilibrium exists,
and we prove a lower bound on the total payments
in any such equilibrium. However, we find a non-
parallel-path graph which can be proven not to have

a pure strategy ε-Nash equilibrium.

Please note that all proofs have been deferred to
the appendix.

1.1 Related work

Path auction games have been extensively stud-
ied in recent years. Nisan and Ronen introduced
the shortest-path game in their paper on algorith-
mic mechanism design [11], and showed that the
VCG mechanism for this problem is computation-
ally tractable. Hershberger and Suri [7] described
an improved algorithm for this problem. However,
several authors have noted that the VCG mecha-
nism may pay much higher than the true cost of
the winning path. This has led to the study of the
frugality [2] of VCG mechanism. Archer and Tar-
dos [2], and Elkind et. al [4] studied the frugal path
auction mechanism, and showed that the payments
can be arbitrarily high. Karlin and Kempe [9] ex-
tended the path model to a more general set system
model and introduced a new frugality ratio defi-
nition; they designed a mechanism that performs
better than VCG in path auction. The problem
of agents owning multiple edges was mentioned as
future work in [9]. Immorlica et. al. [8] studied
first-price path auctions in the traditional single-
ownership setting. They showed the existence of a
strong ε-Nash equilibrium in bids, and bounded the
payments in equilibrium. Yokoo et. al. [13] intro-
duced the concept of false-name proof mechanisms,
and showed that in combinatorial auctions, there is
no false-name proof mechanism that satisfies Pareto
efficiency.

2 Definitions and Problem
Statement

First, we introduce the formal definition of path
auction based on the definition of set system in [9].

The simple model of path auction: Given a
graph G = (V, E), each edge e ∈ E is owned by an
agent and has a cost ce, the true cost it incurs if it
is selected. This value is private, i.e. known only to
the agent which owns e. We define the feasible set
F =

⋃
i P i(s, t), where P i(s, t) is the ith path from

s to t. Given two specific vertices s(the source) and
t(the destination), the task of the customer is to
buy a path from s to t by auction. It consists of the
following two steps:

2

Page 49 of 82

1. Each agent submits a sealed bid be to
the customer. The bidding vector b is
(be1 , be2 , ..., bem

), where bei
is the bidding price

for edge ei ∈ E. Moreover, let B denote the
bidding space that is the set of all possible bid-
ding vectors.

2. Given the bidding vector b, the customer se-
lects a path P i from the feasible set F as the
winning path, and computes a payment pe ≥ be

for each edge e ∈ P i. We say that if an agent
owns an edge e on the winning path P i, it wins,
and all other agents lose.

In order to implement the auction, we need to de-
sign a mechanism (f, p1, p2, ..., pm), where f : B →
F selects one element in the feasible set as the win-
ning path and pi : B → R computes the payment
to agent i. Moreover, we assume that:

• (G,F) is common knowledge to the customer
and all agents.

• the game is monopoly free, which means
no edge is in all feasible sets, i.e.⋂

P i(s,t)∈F P i(s, t) = ∅.

• the agent is rational and has quasilinear util-
ity, i.e., the agent want to maximize its utility:
ue = pe(b) − ce if e is on the winning path; or
else ue = 0.

Definition 1. A mechanism is strategyproof if, for
any agent i that owns edge e, any b−i ∈ B−i and b

′
i,

pi(ce, b−i) − ce ≥ pi(b
′
i, b−i) − ce, where b−i is the

bidding vector of all agents except i.

The VCG mechanism is strategyproof in the sim-
ple path auction game, i.e. the dominant strategy
of each agent is to bid its true cost in VCG mecha-
nism.

In the simple path auction model, each agent
only owns one edge in the graph. We extend the
model in the following way:

The extended model of path auction: Now
assume that each agent can own multiple edges. We
can partition the edge set E as: E =

⋃
i Ei, where

Ei is the set of edges owned by agent i. We also
assume that if agent i owns k edges, i.e. |Ei| =
k, it has k identities IDi = {IDi1, IDi2..., IDik},
one for each edge to use in the auction. In the
extended model, a game is monopoly free if for any
agent i, there is at least one path between s and t
in graph (V, E \Ei). A mechanism is strategyproof
if for any agent, the dominant strategy is to bid the

true cost for each edge it owns. Moreover let pi

denote the payment to agent i. Then pi is equal to∑
ej∈Ei

pej
. According to the type of bidding space,

we can define two types of auctions:

Path Auction of Type I: In this type of auc-
tion, the agent is only asked to submit the bidding
price for each edge it owns. The mechanism will
select the winning path and compute the payment
to each edge.

Path Auction of Type II: In this type of auc-
tion, the agent is asked to submit the ownership
information about which set of edges it owns and
the bidding price for each edge it claims to own.
Let o = (oe1 , oe2 , ..., oem

) be the claimed ownership
information vector, where if edge ej is owned by
agent i (i.e. ej ∈ Ei), oej

∈ IDi. We assume that
no more than one agent claims to own the same
edge and each edge is claimed to be owned by some
agent. Since the agent has one identity for each
edge it owns, it can choose arbitrary strategy to re-
port the ownership information for edges owned by
itself.

We will not only study the strategyproof mecha-
nism in the above two types of auctions, but also a
weaker solution concept: ε-Nash equilibrium.

Definition 2. An ε-Nash equilibrium for a game
is a set of strategies, one for each player, such that
no player can unilaterally deviate in a way that im-
proves its payoff by at least ε.

3 The Nonexistence of strate-
gyproof Mechanism

In the extended model of path auction, the question
to answer is: Is it possible to design a mechanism
such that it is in every agent’s best interest to bid
her true cost? We focus on the auction of type
I in subsection 3.1 and the auction of type II in
subsection 3.2.

3.1 No individual rational strate-
gyproof mechanism in auction of
type I

In auction of type I, we can construct a trivial strat-
egyproof mechanism, which always selects a fixed
path as the winning path and pays a fixed amount
of money to the edges on the path. We call such
a mechanism the dictator mechanism. It is not

3

Page 50 of 82

hard to verify that the dictator mechanism is strat-
egyproof, but it might not be individual rational.
The definition of individual rational is:

Definition 3. A mechanism is individual rational
if, for any agent i, the payment to itself is at least
the true incurred cost when it is selected by the
mechanism, i.e. pi ≥ ci.

Based on the definition of individual rationality,
we have the following theorem:

Theorem 1. Given the assumption that the losing
agent always has 0 payoff, there is no strategyproof
mechanism for auction of type I that satisfies indi-
vidual rationality.

We believe that if we remove the assumption that
the losing agent always has 0 payoff, the theorem
still holds. It would be interesting to find a simple
proof for such extension of theorem 1.

3.2 No false-name proof mechanism
in auction of type II that satisfies
Pareto efficiency

As shown in previous subsection, if the agent only
submits the bidding price information, it is almost
impossible to enforce the agent to bid its true cost.
In order to make the agent bid truthfully, the cus-
tomer may ask the agents to reveal more informa-
tion, such as the ownership information, besides the
bidding price information. Therefore we consider
auction of type II. First we give the definition of
false-name proof mechanism [13] in the context of
path auction game.

Definition 4. A mechanism is false-name proof if
for any fixed bidding vector b−i and the claimed
ownership vector o−i by all agents other than i, it
is agent i’s best interest to bid the true cost of each
edge it owns, i.e. bi = (cei1 , cei2 , ..., ceik

) where Ei =
{ei1, ei2, ..., eik}, and to claim the real ownership
information oi = (IDij , IDij , ..., IDij)︸ ︷︷ ︸

k

where 1 ≤

j ≤ k.

For situations in which the true ownership can-
not be determined, a false-name false-name proof
mechanism [13] is desirable. The next natural ques-
tion is: Is it possible to design a false-name proof
mechanism in the extended model of path auction
game? Yokoo et. al. [13] showed the following im-
possibility result for combinatorial auctions:

� ��

���

���

���

���

	��
���

	��
���

Figure 2: There is no false-name proof mechanism
which satisfies Pareto efficiency in this game.

Proposition 1. [13] In combinatorial auctions,
there is no false-name proof auction protocol that
satisfies Pareto efficiency. ¤

The definition of Pareto efficiency is:

Definition 5. A winning path selection mechanism
is Pareto efficient if given the winning path P i(s, t),
∀k,

∑
e∈P i(s,t)

ce ≤
∑

e∈P k(s,t)

ce, which means that the

mechanism always selects the path from s to t with
minimum cost.

The above proposition is proved by construct-
ing a generic counter example. Since path auction
is only an instance of more general class of combi-
natorial auctions, it might be possible to design a
false-name proof mechanism for path auction even
the impossibility result holds for combinatorial auc-
tions. However, the generic counter example con-
structed in [13] can be easily transformed to a path
auction game and show the impossibility result in
auction of type II.

Proposition 2. In the extended model of path auc-
tion game, there is no false-name proof mechanism
for auction of type II that satisfies Pareto efficiency.

4 Existence of ε-Nash Equilib-
rium

Since strategyproof mechanism is not widely achiev-
able in the extended model of path auction game,
we need to extend the solution concept from dom-
inant strategies to non dominant strategies. The
concept of ε-Nash equilibrium is an important can-
didate. In this section, we study the existence of
ε-Nash equilibrium under the VCG mechanism and
the first-price auction mechanism [8], which elicits
the bids from the agents, chooses the cheapest path
respect to the bidding vector as the winning path
and pays each winning agent exactly the bidding
price.

4

Page 51 of 82

Since VCG is not strategyproof in the extended
model, a natural question to ask is: If we apply
VCG mechanism, is there an equilibrium in the re-
sulting game? For the game in Figure 1, suppose b
is the bidding vector that reaches an ε-Nash equi-
librium. As the straightforward VCG mechanism
assumes each edge is owned by an individual agent,
whatever the winning path is in Figure 1, the win-
ning agent can increase its payoff by decreasing its
bidding vector until its bidding prices reach 0. This
implies that the winning agents have the incentive
to bid as low as they can if all other agents bid
truthfully. We will exclude such equilibrium from
discussion.

Now, we would like to study first price auction
mechanism in the extended model. In practice, a
rational agent is not willing to bid below the true
cost for each edge in first price auction because such
strategy may incur negative payoff to the agent.
Therefore, we assume that the bidding price of each
edge is at least its true cost, i.e. ∀e, be ≥ ce, when
we discuss ε-Nash equilibrium in the following. In
the next, we would like to show the existence of
ε-Nash equilibrium in the parallel-path graph [5],
which can be defined inductively as:

Definition 6. A parallel-path graph(PPG) is a net-
work (V, E, s, t), such that one of the following con-
ditions is satisfied:

Base Case: A path from s to t is a PPG;

Parallel: Suppose G1 = (V1, E1, s, t) and G2 =
(V2, E2, s, t) are PPG such that V1

⋂
V2 = ∅ and

E1

⋂
E2 = ∅. Set V = V1

⋃
V2 and E = E1

⋃
E2,

then (V, E, s, t) is a PPG.

Given the definition of parallel-path graph, we
can prove the following theorem:

Theorem 2. If the underlying network is a parallel-
path graph, the first-price path auction has an ε-
Nash equilibrium.

Since the underlying network (V, E, s, t) is
a parallel-path graph, we can represent it as⋃
k

P k(s, t), where P k(s, t) is the kth path from s

to t and ∀i 6= j, P j(s, t)
⋂

P j(s, t) = ∅. Moreover,
let C(P k(s, t)) =

∑
e∈P k(s,t)

ce denote the cost of path

P k(s, t) with respect to true cost vector c. We sort
the paths from low to high according to their costs,
i.e. the path with lower cost has smaller index. If
agent Ai owns at least one edge on the cheapest
path P 1(s, t), let LPI(Ai) be the smallest path in-
dex such that path PLPI(Ai)(s, t) does not have an

� �

�� �� ��

��

��

�	 �
 ��

��

��

��� ���

��� ��� ��� ���

���

���

���

���
���

���
���

������

���

���

���

Figure 3: There is no pure-strategy ε-Nash equilib-
rium in this first-price path auction game.

edge owned by agent Ai but for any path that has
smaller path index than LPI(Ai), it must have at
least one edge owned by agent Ai. We compute
LPI(Ai) for each agent Ai that owns at least one
edge on P 1(s, t). Suppose agent Ak has the high-
est value: LPI(Ak) (break ties arbitrarily), we can
bound the payment of any ε-Nash equilibrium in the
following corollary, which is derived directly from
the proof of theorem 2.

Corollary 1. The total payment in any ε-Nash
equilibrium is at least: C(PLPI(Ak)(s, t)).

The lower bound given in corollary 1 is tight. In
order to study the frugality of first price auction
mechanism in our model, an interesting question
is to find out the upper bound of the payment in
any ε-Nash equilibrium for parallel-path graph. A
small value upper bound will imply that first-price
auction mechanism is frugal in our model.

Although, there exists an ε-Nash equilibrium for
parallel-path graph, we can find a non-parallel-path
graph that does not have a pure-strategy ε-Nash
equilibrium. We show this counter example in Fig-
ure 3 and the following proposition proves this re-
sult. Please note that in Figure 3, the integer num-
ber in the bracket denotes the identity of the agent
who owns that edge.

Proposition 3. Given the assumption that each
edge’s bidding price is at least its true cost, i.e.
∀e ∈ E, be ≥ ce, the graph showed in Figure 3 can
not have a pure-strategy ε-Nash equilibrium in first-
price path auction.

5 Conclusion And Future
Work

In this paper, we studied the path auction games in
which an agent can own multiple edges. Our model
is more general than the simple path auction model.

5

Page 52 of 82

However, our results show that strategyproofness is
not widely achievable in the extended model; more-
over, general graphs may not have a pure-strategy ε-
Nash equilibrium in first-price path auction mecha-
nism. Therefore, our model leaves a few challenges.

In this paper, although we have found an ε-Nash
equilibrium for parallel-path graph, we do not have
a mechanism such that when the agents play the
game under the mechanism, they can reach the ε-
Nash equilibrium. So a natural open problem is to
design such a mechanism. Moreover, we believe that
there exists an ε-Nash equilibrium for series parallel-
graph [5]. It would be interesting to extend the
result of theorem 2 to more general class of graphs.

For the non-parallel-path graphs, we found a
counter example which does not have a pure-
strategy ε-Nash equilibrium in first price path auc-
tion mechanism. An interesting question is to ana-
lyze the mixed strategy Nash equilibrium or Bayes-
Nash equilibrium given some distribution on the
edge costs.

Acknowledgements

We would like to thank Tilman Börgers for
helpful discussions. We also thank Mike Wellman
for pointing out the previous work on false-name
proof bidding in combinatorial auctions.

References

[1] Aaron Archer and Eva Tardos. Truthful mech-
anisms for one-parameter agents. In Proceed-
ing of Symposium on Foundations of Computer
Science, pages 482–491, 2001.

[2] Aaron Archer and Eva Tardos. Frugal path
mechanism. In Proceedings of the 2002 An-
nual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 991–999, 2002.

[3] E. Clarke. Multipart pricing of public goods.
Public Choice, 11:17–33, 1971.

[4] E. Elkind, A. Sahai, and K. Steiglitz. Frugality
in path auctions. In Proceeding of 15th ACM
Symposium on Discrete Algorithm, 2004.

[5] Edith Elkind. True costs of cheap labor are
hard to measure: Edge deletion and vcg pay-
ments in graphs. In Proceeding of 7th ACM
conference on Electronic Commerce, 2005.

[6] Theodore Groves. Incentives in teams. Econo-
metrica, 41:617–663, 1973.

[7] John Hershberger and Subhash Suri. Vickrey
pricing in network routing: Fast payment com-
putation. In Proc. of the 42nd IEEE Sym-
posium on Foundations of Computer Science,
2001.

[8] Nicole Immorlica, David Karger, Evdokia
Nikolova, and Rahul Sami. First-price path
auctions. In Proceeding of 7th ACM conference
on Electronic Commerce, 2005.

[9] Anna R. Karlin and David Kempe. Beyond
vcg: Frugality of truthful mechanisms. In Pro-
ceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science, 2005.

[10] V. Krishna. Auction theory. Academic Press,
2002.

[11] N. Nisan and A. Ronen. Algorithmic mech-
anism design. In Proceeding of 31st Annual
ACM Symposium on Theory of Computation,
pages 129–140, 1999.

[12] W. Vickrey. Counterspeculation, auctions, and
competitive sealed tenders. Journal of Fi-
nance, 16:8–37, 1961.

[13] M. Yokoo, Y. Sakuri, and S. Matsubara. The
effect of false-name bids in combinatorial auc-
tions: New fraud in internet auctions. Games
and Economics Behavior, 46:174–188, 2004.

APPENDIX

Theorem 3. [9, 1, 10] A strategyproof mechanism
has the following two properties.

1. A mechanism is strategyproof only if the selec-
tion rule is monotone: No losing agent can be-
come a winner by rasing his bid, given fixed
bids by all other agents.

2. Given a monotone selection rule, there is a
unique strategyproof mechanism with this se-
lection rule. This mechanism pays each agent
his threshold bid, i.e. the highest value he could
have bid and won.

Lemma 1. In the extended path auction model,
given the assumption that the losing agent always
has 0 payoff, for any individual rational strat-
egyproof mechanism (f, pe1 , ..., pem

) and a given

6

Page 53 of 82

strictly positive bidding vector b1 = (b1
e1

, ..., b1
em

),
we can construct another bidding vector b

′
=

(b
′
e1

, ..., b
′
em

) such that when the agents bid accord-
ing to b

′
, all the edges on the winning path have

positive payoffs. Moreover, ∀j, |b1
ej
− b

′
ej
| ≤ ε, where

ε is a small positive number.

Proof: Suppose initially when the agents bid
according to b1, the winning path is P 1, i.e. f(b1) =
P 1. Moreover, we assume that all the losing agents
have payoff zero.

In the first round, for an edge e1 ∈ P 1, we de-
crease the bidding price of it from b1

e1
to b1

e1
− ε and

keep the biding prices of all other edges unchanged.
Let T WP = {e1}. Thus we get a new bidding vec-
tor b2 and f(b2) = P 2. According to theorem 3,
e1 must be on the new winning path P 2. More-
over, the payment to edge e1 should not change,
i.e. pe1(b

1) = pe1(b
2). Or else, if pe1(b

1) > pe1(b
2),

when the true cost of edge e1 is b1
e1
− ε, edge e1 can

improve its payoff by increasing its bidding price to
b1
e1

. If pe1(b
1) < pe1(b

2), when the true cost of edge
e1 is b1

e1
, edge e1 can improve its payoff by decreas-

ing its bidding price to b1
e1
−ε. Both cases contradict

to the strategyproofness. Since pe1(b
1) = pe1(b

2),
when edge e1 decreases its bidding price from b1

e1
to

b1
e1
− ε, its payoff will increase by ε.

In the kth round where k ≥ 2, for an edge
ek ∈ P k but ek /∈ T WP, we decrease the bidding
price of it from bk

ek
to bk

ek
− ε

2k−1 and keep the bid-
ing prices of all other edges unchanged. Thus we
get a new bidding vector bk+1 and f(bk+1) = P k+1.
Let T WP = T WP⋃{ek}. Similar to the above
arguments, edge ek must be on the new winning
path P k+1 and its payoff is increased by ε

2k−1 be-
cause the payment to it does not change. Moreover,
any edge ej ∈ T WP is still on the new winning
path P k+1 and its payoff cannot decrease by more
than ε

2k−1 , i.e. pej
(bk+1) − pej

(bk) ≥ − ε
2k−1 . If

pej
(bk+1)− pej

(bk) < − ε
2k−1 , when an agent i owns

both edges ej and ek, and the true cost of edge ek is
bk
ek
− ε

2k−1 , agent i can increase its payoff by increas-
ing the bidding price of edge ek to bk

ek
. This contra-

dicts to the strategyproofness. Since the payoff of
edge ej cannot decrease by more than ε

2k−1 and for

any k and a finite number N > k, ε
2k >

N∑
i=k+1

ε
2i ,

it implies that edge ej is still on the new winning
path P k+1 and it has positive payoff.

Finally, when the process is terminated, the win-
ning path P = T WP and the final bidding vec-
tor is b

′
. According to the argument above, all the

edges on the winning path must have positive pay-
offs when the agents bid according to b

′
. ¤

Theorem 1. Given the assumption that the los-
ing agent always has 0 payoff, there is no strate-
gyproof mechanism for auction of type I that satis-
fies individual rationality.

Proof: According to lemma 1, for any individual
rational strategyproof mechanism (f, pe1 , ..., pem

),
we can construct a sequence of bidding vectors
b(r) = (r× be1 − ε(e1, r), ..., r× bem

− ε(em, r)) such
that the winning agents always have positive pay-
offs, where r ∈ N and ∀j, ε(ej , r) is a small positive
number. Let PB = {b(r)|r ∈ N} denote the set
of all such bidding vectors. For each b(r) ∈ PB,
f(b(r)) will select a winning path. Since there are
infinite number of b(r)s, but only finite number of
possible winning paths, there must be an infinite
subsequence SPB = {b(r1), b(r2)......} such that
∀b(ri) ∈ SPB, f(b(ri)) = P always selects P as the
winning path. According to the assumption of in-
dividual rationality, and given that the payment to
each edge is finite, we can find two bidding vectors
b(rp), b(rq) ∈ SPB such that for any edge ej on the
winning path P , b(rp)ej ≤ pej (b(rp)) < b(rq)ej ≤
pej

(b(rq)).

Given a bidding vector b such that the losing
agent has payoff 0 while the winning agent has pos-
itive payoff. If for an edge ej not on P , increasing
bej to b

′
ej

can change the winning path from P to
P
′
i.e. there exists an edge e ∈ P but e /∈ P

′
, we

can get some contradiction. According to theorem
3, ej cannot be on P

′
. Thus its payoff is still 0.

Assume an agent i owns both ej and e. Since e
has positive payoff when it is on winning path P ,
if the true cost of ej is b

′
ej

, agent i can increase its
payoff by understating ej ’s true cost as bej

. This
contradicts to the strategyproofness. W.O.L.G. we
assume that the winning path is a simple path, thus
P = P

′
. Moreover, increasing bej does not change

the payment to any edge. For any edge e /∈ P , the
payment to it is always 0. Suppose increasing bej

to b
′
ej

can increase the payment to edge e ∈ P from
pe to p

′
e, i.e. pe < p

′
e. When an agent i owns both

ej and e, and the true cost of edge ej is bej
, agent

i can increase its payoff by overstating ej ’s cost as
b
′
ej

. This contradicts to the strategyproofness. Sim-
ilarly, we can get the contradiction when increasing
bej to b

′
ej

can decrease the payment to edge e ∈ P .

Similarly, we can prove that for an edge ej on
the winning path P , decreasing bej

cannot change
either the winning path or the payment to any edge
in the graph.

7

Page 54 of 82

When we have bidding vectors b(rp) and b(rq),
we can construct a new bidding vector b∗ such that
b∗ej

= min{b(rp)ej
, b(rq)ej

} if ej is on the wining
path P while b∗ej

= max{b(rp)ej
, b(rq)ej

} if ej is
not on the wining path. According to the con-
struction and the above arguments, we can get ∀ej ,
pej (b(rp)) = pej (b

∗) = pej (b(rq)). This contradicts
to the fact that any edge ej on the winning path P ,
pej

(b(rp)) < b(rq)ej
≤ pej

(b(rq)).

Therefore, given the assumption that the losing
agent always has 0 payoff, there is no strategyproof
mechanism for auction of type I that satisfies indi-
vidual rationality. ¤

Proposition 2. In the extended model of path
auction game, there is no false-name proof mech-
anism for auction of type II that satisfies Pareto
efficiency.

Proof Sketch: We are going to prove this
proposition by presenting a generic counter ex-
ample as [13] assuming there is an efficient false-
name-proof mechanism. The generic counter exam-
ple is given in Figure 2. In this example, edges
e(s, r), e(r, t)1 are owned by agent 1, edge e(s, t) is
owned by agent 2 while edge e(r, t)3 is owned by
agent 3. Since agent 1 owns two edges, when bid-
ding in auction of type II, the ownership of edge
e(r, t)1 can be claimed as agent 1 or some artificial
non existent agent 4. Given this example, the proof
of this proposition is almost the same as the proof
of Proposition 1 in [13]. ¤

Theorem 2. If the underlying network is a
parallel-path graph, the first-price path auction has
an ε-Nash equilibrium.

Proof Sketch: The ε-Nash equilibrium bid-
ding vector is constructed as follows. Suppose
the parallel-path graph is (V, E, s, t) =

⋃
k

P k(s, t),

where P k(s, t) is the kth path from s to t and ∀i 6= j,
P j(s, t)

⋂
P j(s, t) = ∅. Initially, each agent bids its

true cost i.e. b = c. Let Wb(P k(s, t)) =
∑

e∈P k(s,t)

be

denote the cost of path P k(s, t) with respect to the
bidding vector b. Moreover, we assume that agent
Ak has the highest value of LPI(Ak) which is de-
fined before. In order to find the ε-Nash equilib-
rium bidding vector, first we would pick one edge
in EAk

⋂
P 1(s, t) and increase its bidding price un-

til Wb′ (P
1(s, t)) = Wb(PLPI(Ak)(s, t)) − ε, where

b
′

is the new bidding vector. For any path j ∈
[2...LPI(Ak)−1], we pick one edge in EAk

⋂
P j(s, t)

and increase its bidding price until Wb′ (P
j(s, t)) =

Wb(PLPI(Ak)(s, t)). We call the final bidding vector
bf .

It is not hard to verify that bf is an ε-Nash equi-
librium bidding vector. ¤

Proposition 3. Given the assumption that each
edge’s bidding price is at least its true cost, i.e.
∀e ∈ E, be ≥ ce, the graph showed in Figure 3 can
not have a pure-strategy ε-Nash equilibrium in first-
price auction.

Proof: In Figure 3, the numbers in the brack-
ets represent the identities of agents that owns the
edges. There are 5 agents in this game and 5 paths
from s to t:

Path 1: (s, p1, p2, p3, t)
Path 2: (s, p4, p5, p6, p7, p8, p9, p10, t)
Path 3: (s, p4, p5, p6, p12, t)
Path 4: (s, p11, p8, p9, p10, t)
Path 5: (s, p11, p8, p6, p7, p6, p12, t)
Let b be the ε-Nash equilibrium bidding vector.

We claim that the cost of each path respect to b can
differ at most by ε. We prove this by contradiction.
Suppose P k is the winning path and ∃j, Wb(P j) >
Wb(P k) + ε. For any agent i ∈ [1...5] in Figure
3, there is only one path that does not have edges
owned by i. We can assume that path P j does
not have edges owned by the agent i, but for all
other 4 paths, agent i owns edges on all of them.
Thus agent i can increase the bidding prices of its
edges(but still keep P k as the winning path) such
that its payoff can increase by at least ε. Then
contradiction occurs. Therefore, if b is an ε-Nash
equilibrium bidding vector, the cost of each path
respect to b can differ at most by ε. Based on this
fact, we can get the following two equations:
|(bp8,p7 + bp7,p6 + bp6,p12 + bp12,t) − (bp8,p9 +

bp9,p10 + bp10,t)| ≤ ε...(1)

|(bp6,p7 + bp7,p8 + bp8,p9 + bp9,p10 + bp10,t) −
(bp6,p12 + bp12,t)| ≤ ε...(2)

According to equations (1) and (2), we can get:
(bp7,p8 + bp6,p7) + bp8,p9 + bp9,p10 + bp10,t − ε

≤ −(bp7,p6 + bp8,p7) + bp8,p9 + bp9,p10 + bp10,t + ε

Therefore, the following inequality holds:
bp7,p6 + bp8,p7 + bp6,p7 + bp7,p8 ≤ 2ε

Moreover, according to our assumption ∀e, ce ≤
be, the following inequality holds

cp7,p6 + cp8,p7 + cp6,p7 + cp7,p8 ≤ 2ε

When ε is small enough, but the true cost of each
edge is large enough, contradiction occurs. There-
fore, there is no ε-Nash equilibrium of first-price
auction in Figure 3. ¤

8

Page 55 of 82

Bootstrapping the Long Tail in Peer to Peer Systems

Bernardo A. Huberman and Fang Wu
HP Labs, Palo Alto, CA 94304

May 4, 2006

Abstract

We describe an efficient incentive mechanism for P2P
systems that generates a wide diversity of content
offerings while responding adaptively to customer
demand. Files are served and paid for through a
parimutuel market similar to that used for betting
in horse races and in lotteries. An analysis of the
performance of such a system shows that there exists
an equilibrium with a long tail in the distribution
of content offerings, which guarantees the real time
provision of any content regardless of its popularity.

1 Introduction

The provision of digitized content on-demand to mil-
lions of users presents a formidable challenge. With
an ever increasing number of fixed and mobile devices
with video capabilities, and a growing consumer base
with different preferences, there is a need for a scal-
able and adaptive way of delivering a diverse set of
files in real time to a worldwide consumer base.

Providing such varied content presents two prob-
lems. First, files should be accessible in such a way
that the constraints posed by bandwidth and the di-
versity of demand is met without having to resort
to client server architectures and specialized network
protocols. Second, as new content is created, the
system ought to be able to swiftly respond to new
demand on specific content, regardless of its popu-
larity. This is a hard constraint on any distributed
system, since providers with a finite amount of mem-
ory and bandwidth will tend to offer the most popular
content, as is the case today with many peer-to-peer

systems.
The first problem is naturally solved by peer to

peer networks, where each peer can be both a con-
sumer and provider of the service. Peer to peer net-
works, unlike client server architectures, automati-
cally scale in size as demand fluctuates, as well as
being able to adapt to system failures. Examples of
such systems are Bittorrent [4] and Kazaa, who ac-
count for a sizable percentage of all the use of the
Internet. Furthermore, new services like the BBC
IMP, (http://www.bbc.co.uk/imp/) show that it is
possible to make media content available through a
peer-to-peer system while respecting digital rights.

It is the second problem, that of an adaptable and
efficient system capable of delivering any file, regard-
less of its popularity, that we now solve. We do so
by creating an implementable incentive mechanism
that ensures the existence of a diverse set of offerings
which is in equilibrium with the available supply and
demand, regardless of content and size. Moreover,
the mechanism is such that it automatically gener-
ates the long tail of offerings which has been shown
to be responsible for the success of a number of on-
line businesses such as Amazon or eBay [2]. In other
words, while the system delivers favorite mainstream
content, it can also provide files that constitute small
niche markets which only in the aggregate can gen-
erate large revenues.

In what follows we describe an efficient incentive
mechanism for P2P systems that generates a wide
diversity of content offerings while responding adap-
tively to customer demand. Files are served and paid
for through a parimutuel market similar to that com-
monly used for betting in horse races. An analysis of

1

Page 56 of 82

the performance of such a system shows that there
exists an equilibrium with a long tail in the distribu-
tion of content offerings, which guarantees the real
time provision of any content regardless of its popu-
larity. In our case, the bandwidth fraction of a given
file offered by a server plays the role of the odds, the
bandwidth consumed corresponds to bettors, the files
to horses, and the requests are analogous to races.

An interesting consequence of this mechanism is
that it solves in complete fashion the free riding prob-
lem that originally plagued P2P systems like Gnutella
[1] and that in milder forms still appears in other
such systems. The reason being that it transforms
the provision of content from a public good into a
private one.

We then analyze the performance of such a sys-
tem by making a set of assumptions that are first
restrictive and are then relaxed so as to make them
correspond to a realistic crowd of users. We show
that in all these cases there exists an equilibrium in
which the demand for any file can be fulfilled by the
system. Moreover this equilibrium exhibits a robust
empirical anomaly which is responsible for generating
a very long tail in the distribution of content offer-
ings. We finally discuss the scenario where most of
the servers are bounded rational and show that it is
still possible to achieve an optimum equilibrium. We
conclude by summarizing our results and discussing
the feasibility of its implementation.

2 The system and its incentive
mechanism

Consider a network-based file exchange system con-
sisting of three types of traders: content provider,
server, and downloader or user. A content provider
supplies—at a fixed price per file—a repertoire of
files to a number of people acting as peers or servers.
Servers then selectively serve a subset of those files
to downloaders for a given price. In a peer-to-peer
system a downloader can also, and often does, act as
a server.

If the files are typically large in size, a server can
only afford to store and serve a relatively small subset

of files. It then faces the natural problem of choosing
an optimal (from the point of view of maximizing his
utility) subset of files to store so as to sell them to
downloaders.

Suppose that the system charges each downloader
a flat fee for downloading any one file (as in Ap-
ple’s iTunes music store), which we normalize to one.
Since many servers can help distribute a single file,
this unit of income has to be allocated to the servers
in ways that will incentivize them to always respond
to a changing demand.

In order to do so, consider the case where there
are m servers and n files. Let bij be the effective
bandwidth of server i serving file j, normalized to∑

i,j bij = 1. Also, denote the bandwidth fraction of
file j by πj =

∑
k bkj .

Suppose that when a downloader connects to the
system, it starts downloading different parts of the
file simultaneously from all available servers that have
it. When it finishes downloading, it will have received
a fraction of the file j

qij =
bij∑
k bkj

=
bij

πj
(1)

from server i. Our mechanism prescribes that the
system should should pay an amount qij to server i
as its reward for serving file j.

Now consider the case when server i’s reserves an
amount of bandwidth bij as his “bid” on file j. Be-
cause we have normalized the total bandwidth and
the total reward for serving one request both to one,
the proportional share allocation scheme described
by Eq. (1) can be interpreted as redistributing the to-
tal bid to the “winners”, in proportion to their bids.
Thus our payoff structure is similar to that of a pari-
mutuel horse race betting market, where the πj can
be regarded as the odds, the bandwidth corresponds
to bettors, the files to horses, and the requests are
analogous to races. It is worth pointing out however,
that in a real horse race all players who have placed a
bet on the winning horse receive a share of the total
prize, whereas in our system only those players that
kept the ”winning” file and also had a chance to serve
it get paid. In spite of this difference it is easy to show
that when rewritten in terms of expected payoffs, the
two mechanisms behave in similar fashion.

2

Page 57 of 82

3 The solution

3.1 Rational servers with static
strategies and known download
rates

In this section we make three simplifying assump-
tions. While not realistic they serve to set the frame-
work that we will utilize later on to deal with more
realistic scenarios. First, every server is rational in
the sense that he chooses the optimal bandwidth allo-
cation that maximizes his utility, whose explicit form
will be given below. Second, every server’s alloca-
tion strategy is static, i.e. the bij ’s are independent
of time. Third, we assume that each file j is requested
randomly at a rate λj > 0 that does not change with
time, and these rates are known to every server.

Consider a server i with the following standard ad-
ditive form of utility:

U = E
[∫ ∞

0

e−δtu(t)dt

]
, (2)

where u(t) is his income density at time t, and δ > 0 is
his future discount factor. Let Xj1 be the (random)
time that file j is requested for the first time, let
Xj2 be the time elapsed between the first request
and the second request, and so on. According to our
parimutuel reward scheme, server i receives a lump-
sum reward bij/πj from every such request, at times
Xj1, Xj1 + Xj2, etc. Thus, the server i’s total utility
is given by

U =
∑

j

bij

πj

∞∑

l=1

E[e−δ
∑l

k=1 Xjk] ≡
∑

j

bij

πj
uj . (3)

which amounts to each server receiving a utility pro-
portional to the fraction of the file that he serves.
Notice that the sum of expectations in Eq. (3) (de-
noted by uj) can be calculated explicitly. Because
the Xjk’s are i.i.d. random variables with density
λ−1

j exp(λjx), it can be calculated that uj = λj/δ.
If we let λ =

∑
j λj be the total request rate and

pj = λj/λ be the probability that the next request
asks for file j, then we can also write uj = λpj/δ.

Plugging this back into Eq. (3), we obtain

U =
λ

δ

∑

j

pjbij

πj
. (4)

Since we assume that server i is rational, he will
allocate bij in a way that it solves the following opti-
mization problem:

max
(bij)n

j=1∈Rn
+

∑

j

pjbij∑
k bkj

subject to
∑

j

bij ≤ bi. (5)

where bi is the total upload bandwidth of user i. Thus
we see that the servers are playing a finite budget re-
source allocation game. This type of game has been
studied intensively, and a Nash equilibrium has been
shown to exist under mild assumptions [6, 9]. In
such an equilibrium, the players’ utility functions are
strongly competitive and in spite of a possibly large
utility gap, the players behave in almost envy-free
fashion, i.e. each player believes that no other player
has received more than they have.

3.2 Rational servers with static
strategies and unknown request
rates

We now relax some of the assumptions made above
so as to deal with a more realistic case.

It is usually hard to find out the accurate request
rate for a given file, especially at the early stages
when there is no historical data available. Thus it
makes more sense to assume that every server i holds
a subjective belief about those request rates. Let pij

be server i’s subjective probability that the next re-
quest is for file j. Then server i believes that file j
will be requested at a rate λij = λpij . Eq. (5) then
becomes

max
(bij)n

j=1∈Rn
+

∑

j

pijbij∑
k bkj

subject to
∑

j

bij ≤ bi. (6)

which is still a finite budget resource allocation game
as considered in the previous section.

It is interesting to note that when m is large, bij

is small compared to πj =
∑

k bkj , so that πj can be

3

Page 58 of 82

treated as a constant. In this case, the optimization
problem can be well approximated by

max
(bij)n

j=1∈Rn
+

∑

j

pijbij

πj
subject to

∑

j

bij ≤ bi. (7)

Thus, user i should use all his bandwidth to serve
those files j with the largest ratio pij/πj .

This scenario (7) corresponds to the so-called
parimutuel consensus problem, which has been stud-
ied in detail. In this problem a certain probability
space is observed by a number of individuals, each
of which endows it with their own subjective prob-
ability distributions. The issue then is how to ag-
gregate those subjective probabilities in such a way
that they represent a good consensus of the individ-
ual ones. The parimutuel consensus scheme is similar
to that of betting on horses at a race, the final odds
on a given horse being proportional to the amount
bet on the horse. As shown by Eisenberg and Gale
[5], an equilibrium then exists such that the bettors
as a group maximize the weighted sum of logarithms
of subjective expectations, with the weights being the
total bet on each horse.

Moreover a number of empirical studies of
parimutuel markets [7] have shown that they do in-
deed exhibit a high correlation between the subjective
probabilities of the bettors and the objective proba-
bilities generated by the racetracks. Equally interest-
ing for our purposes is the existence of a robust em-
pirical anomaly called the favorite-longshot bias [7].
The anomaly shows that favorites win less frequently
than the subjectives probabilities imply, and long-
shots more often. This anomaly enhances the long
tail, which is populated by those files which while
not singly popular, in aggregate are responsible for a
large amount of the traffic in the system.

3.3 Rational servers with a dynamic
strategy

We now consider the case where the rate at which
files are requested can change with time. Because of
this, each server has to actively adjust its bandwidth
allocation to adapt to such changes. As we have seen
in the last section, user i has an incentive to serve

those files with large values of pij/πj . Recall that
πj(t) is just the fraction of total bandwidth spent
to serve file j at time t, which in principle can be
estimated from the system’s statistics. Thus it would
be useful to have the system frequently broadcast the
real-time πj to all servers so as to help them decide
on how to adjust their own allocations of bandwidth.

From Eq. (1) we see that, by serving file j, user
i’s expected per bandwidth earning from the next re-
quest is pjqij/bij = pj/πj . Hence a user will benefit
most by serving those files with the largest “p/π ra-
tio”. However, as soon as a given user starts serving
file j, the corresponding p/π ratio decreases. As a
consequence, the system self-adapts to the limit of
uniform p/π ratios. If the system is perfectly effi-
cient, we would expect that pj/πj = constant. Be-
cause pj and πj both sum up to one, this implies that
πj = pj , or

∑
k bkj = λj/λ ∝ λj . In other words, the

total bandwidth used to serve a file is proportional
to the file’s request rate.

This result has interesting implications when con-
sidering the social utility of the downloaders. Re-
cently, Tewari and Kleinrock [8] have shown that in
a homogeneous network the average download time
is minimized when

∑
k bkj ∝ λj . This implies that

in the perfectly efficient limit, our mechanism max-
imizes the downloaders’ social utility, which is mea-
sured by their average download times.

Since in reality a market is never perfectly efficient,
the above analysis only makes sense if the character-
istic time it takes for the system to relax back to
uniformity from any disturbance is short. As a con-
crete example, consider a new file j released at time
0, being shared by only one server. Suppose that
every downloader starts sharing her piece of the file
immediately after downloading it. Because there are
few servers serving the file but many downloaders re-
questing the file, for very short times afterwards the
upload bandwidth will be fully utilized. That is, dur-
ing time dt, an amount πj(t)dt of data is downloaded
and added to the total upload bandwidth immedi-
ately. Hence we have

dπj(t) = πj(t)dt. (8)

which implies that πj(t) grows exponentially until

4

Page 59 of 82

πj(T) ∼ pj . Solving for T , we find

T ∼ log
(

pj

πj(0)

)
. (9)

Thus the system reaches uniformity in logarithmic
time, a signature of its high efficiency.

3.4 Servers with bounded rationality

So far we have assumed that all servers are rational,
so that they will actively seek those files that are most
under-supplied so as to serve them to downloaders.
In reality however, while some servers do behave ra-
tionally, a lot of others do not. This is because even a
perfectly rational server sometimes can make wrong
decisions as to which files to store because his subjec-
tive probability estimate of what is in demand can be
inaccurate. Also, such a bounded-rational server can
at times be too lazy to adjust his bandwidth alloca-
tion, so that he will keep serving whatever he has, and
at other times he might simply imitate other servers’
behavior by choosing to serve the popular files. In all
these cases we need to consider whether or not the
lack of full rationality will lead to equilibrium on the
part of the system.

As a simple example, assume there are only two
files, A and B. Let p = λA/λ be file A’s real re-
quest probability, and let 1 − p be file B’s real re-
quest probability. Suppose the servers are divided
into two classes, with α fraction rational and 1 − α
fraction irrational, arriving one by one in a random
order. Each rational server’s subjective probability in
general can be described by an identically distributed
random variable Pt ∈ [0, 1] with mean p. Then with
probability P[Pt > π(t)] he will serve file A, and with
probability P[Pt < π(t)] he will serve file B. In order
to carry out some explicit calculation below, we con-
sider the simplest choice of Pt, namely a Bernoulli
variable

P[Pt = 1] = p, P[Pt = 0] = 1− p. (10)

(Clearly E[Pt] = p, so the subjective probabilities
are accurate on average.) It is easy to check that
under this choice a rational server chooses A with
probability p and B with probability 1− p.

On the other hand, consider the situation where
an irrational server chooses an existing server at ran-
dom and copies that server’s bandwidth allocation.
That is, with probability π(t) an irrational server will
choose file A.1

From these two assumptions we see that

P[server t serves A] = αp + (1− α)π(t), (11)

and

P[server t serves B] = α(1− p) + (1− α)(1− π(t)).
(12)

The stochastic process described by the above two
equations has been recently studied in the context
of choices among technologies for which evidence of
their value is equivocal, inconclusive, or even nonex-
istent [3]. As was shown there, the dynamics gen-
erated by such equations leads to outcomes that ap-
pear to be deterministic in spite of being governed by
a stochastic process. In the context of our problem
this means that when the objective evidence for the
choice of a particular file is very weak, any sample
path of this process quickly settles down to a frac-
tion of files downloaded that is not predetermined by
the initial conditions: ex ante, every outcome is just
as (un)likely as every other. Thus one cannot ensure
an equilibrium that is both optimum and repeatable.

In the opposite case, when the objective evidence
is strong, the process settles down to a value that is
determined by the quality of the evidence. In both
cases the proportion of files downloaded never settles
into either zero or one.

In the general case that we have been considering,
there are always a number of servers that will behave
in bounded rational fashion and a few that are per-
fectly rational. Specifically, when α > 0, which cor-
responds to the case where a small number of servers
are rational, the π(t) will converge to p in the long
time limit. That is, a small fraction of rational servers
is enough for the system to reach an optimum equi-
librium. However, it is worth pointing out that since

1This assumption can also be interpreted as follows. Sup-
pose a downloader starts serving his files immediately after
downloading, but never initiates to serve a file. (This is the
way a non-seed peer behaves within Bittorrent.) Then the
probability that he will serve file j is exactly the probability
that he just downloaded file j, which is πj(t).

5

Page 60 of 82

the characteristic convergence time diverges exponen-
tially in 1/α, the smaller the value of alpha α, the
longer it will take for the system to reach such an
optimum state.

4 Conclusion

In this paper we described a peer-to-peer system with
an incentive mechanism that generates diversity of
offerings, efficiency and adaptability to customer de-
mand. This was accomplished by having a pricing
structure for serving files that has the structure of a
parimutuel market, similar to those commonly used
in horse races, where the the bandwidth fraction of
a given file offered by a server plays the role of the
odds, the bandwidth corresponds to bettors, the files
to horses, and the requests are analogous to races.
Notice that this mechanism completely solves the free
riding problem that originally plagued P2P systems
like Gnutella and that in milder forms still appears
in other such systems.

We then analyzed the performance of such a system
by making a set of assumptions that are first restric-
tive but are then relaxed so as to make the system
respond to a realistic crowd. We showed that in all
these cases there exists an equilibrium in which the
demand for any file can be fulfilled by the system.
Moreover this equilibrium is known to exhibit a ro-
bust empirical anomaly, that of the favorite-longshot
bias, which in our case generates a very long tail in
the distribution of offerings. We finally discussed the
scenario where most of the servers are bounded ra-
tional and showed that it is still possible to achieve
an optimum equilibrium if a few servers can act ra-
tionally.

The implementation of mechanism is feasible with
present technologies. The implementation of a pro-
totype will also help study the behavior of both
providers and users within the context of this
parimutuel market. Given its feasibility, and with
the addition of DRM and a payment system, it offers
an interesting opportunity for the provision of legal
content with a simple pricing structure that ensures
that unusual content will always be available along
with the more traditional fare.

Acknowledgements. We benefited from discus-
sions with Eytan Adar, Tad Hogg and Li Zhang.

References

[1] Eytan Adar and Bernardo A. Huberman. Free
Riding on Gnutella. First Monday October
(2000).

[2] Chris Anderson. The long tail.
http://longtail.typepad.com/the_long_
tail/ (2005).

[3] Jonathon Bendor, Bernardo A. Huberman
and Fang Wu. Management fads, pedagogies
and soft technologies. http://www.hpl.hp.com/
research/idl/papers/fads/fads.pdf (2005).

[4] Bram Cohen. Incentives build robustness in Bit-
torrent. Working Paper, Workshop on the Eco-
nomics of P2P Systems (2003).

[5] Edmund Eisenberg and David Gale. Consensus of
subjective probabilities: The parimutuel method.
Annals of mathematics statistics (1958).

[6] L. Shapley and M. Shubik. Trade using one com-
modity as a means of payment. Journal of Politi-
cal Economy, Vol. 85:5, 937–968 (1977).

[7] Richard H. Thaler and William T. Ziemba,
Parimutuel betting markets: racetracks and lot-
teries, Journal of Economic Perspectives, Vol. 2,
No. 2, pp. 161–174 (1988).

[8] Saurabh Tewari and Leonard Kleinrock. On fair-
ness, optimal download performance and pro-
portional replication in peer-to-peer networks.
Proceedings of IFIP Networking 2005, Waterloo,
Canada (2005).

[9] Li Zhang. The efficiency and fairness of a fixed
budget resource allocation game. ICALP (2005).

6

Page 61 of 82

Incentive Based Ranking Mechanisms

Rajat Bhattacharjee ∗

Stanford University
Ashish Goel †

Stanford University

Position Paper

Abstract

We consider ranking and recommendation systems
based on user feedback. We make a case for
sharing the revenue generated by such systems
with users as incentive to provide useful feedback.
Our main contribution are mechanisms for rank-
ing/recommendation which gives incentive for the
users to provide useful feedback and is resistant to
selfish/malicious behavior (click spam). The mecha-
nisms are designed to give higher incentives for dis-
covering high quality entities rather than for merely
providing additional positive feedback for already es-
tablished entities. A page whose rating/ranking is at
variance with its real quality represents an arbitrage
opportunity. The mechanisms are simple enough to
be used with existing technology in ranking and rec-
ommendation systems, requiring little or no extra ef-
fort by the users.

1 Introduction

Before the advent of the Internet, content generation
was channeled through a limited number of pub-
lishers, such as book publishers, movie production
companies, music companies, newspapers, and
magazines. In order to regulate and also advertise
the quality of content, a system of content evaluation
had evolved. Evaluation in traditional publishing
is done primarily by professional reviewers and
editors who are paid for their opinions. In contrast
to self-publishing, the editors decide which content
gets published in accordance with the quality of the
content.

∗Department of Computer Science. Email: ra-
jatb@stanford.edu.

†Department of Management Science and Engi-
neering and (by courtesy) Computer Science. Email:
ashishg@stanford.edu.

Content generation is no longer channeled through
a limited number of publishers. Individuals self-
publish their views, or articles, or creative pieces
using websites, blogs, photograph hosting services,
podcasts, etc. The scale and decentralization of the
content in the Internet makes the old centralized
mode of content evaluation impractical. At the same
time this decentralization and the corresponding
lack of editorial control at the source makes content
evaluation all the more important. This need has
played a strong role in the success of search engines
like Google [14], Yahoo [16] and many others, which
not only search but also rank content, thus playing
the role of reviewers. In addition, recommendation
systems use similarities in the feedback profiles of
users and entities to recommend new items [1].

PageRank [22] uses the link structure of the
Internet to rank webpages. The philosophy of
this approach is that the quality of a webpage is
indicated by the quality of the webpages pointing
to it. However, interested parties have used it to
promote the ranking of their own webpages, for
example, by creating dummy webpages pointing to
their own. As heuristics have been proposed and
implemented to detect these malicious webpages,
the techniques used by the search engine optimizers
have also gotten better [10] [11]. Detecting these
PageRank amplifying structures is equivalent to the
sparsest cut problem [25], which is NP-hard [18].

An alternative to link-based methods such as
PageRank [22] and Hits [17] is to use the feed-
back from users (e.g. clicks). This approach is
already used in many recommendation systems [1].
The difficulty of using feedback/clicks stems from
detecting whether the feedback/clicks are coming
from genuine users who found the webpage useful
or are coming from a single source, a phenomenon
known as click spam. Various solutions have been

1

Page 62 of 82

proposed for this problem. However, these in turn
have resulted in smarter techniques being used by
the spammers [2][19][24].

The main contribution of this paper is two fold: (1)
we make a case for sharing with users the revenue
generated by such systems as incentive to provide
useful feedback. (2) we present a preliminary design
of mechanisms for ranking/recommendation systems
which give incentive to the users to provide useful
feedback. The mechanisms are designed to provide
a higher incentive for discovering high quality
entities rather than for providing more positive
feedback for already established entities. In section
3, we motivate and list desirable properties of a
ranking system. The proposed ranking mechanisms
(section 4) are shown to possess these properties,
in particular they are resistant to click spam. The
mechanisms are simple enough to be used with
existing technology in ranking and recommendation
systems. We begin by giving a generic model for
ranking and recommendation systems.

2 A Generic Model for Ranking
Systems

In the introduction, we mention the problems of us-
ing PageRank for ranking. Here we consider ranking
systems which are based on user feedback. A typi-
cal ranking system has the following features (similar
ideas apply to recommendation systems based on user
feedback as well):

1. Entities. The set of entities which we wish to
rank is denoted by E . We denote the ith entity
by ei. Each entity has an inherent quality de-
noted by qi which is not known. However, if two
entities with qualities qi and qj are presented to
users with qi > qj , then more users would find
entity i better than entity j.

2. Users. The set of users in the system is denoted
by U . These users provide feedback on the en-
tities. We denote the ith user in the system by
ui. Note that we implicitly assume that these
users are registered with the system. The users
are further classified as (this classification is in-
spired by the well known difficulty of eliciting
useful feedback from users [8][23]):

(a) Sheep. The label sheep corresponds to
the user who leaves feedback for an entity

when the entity is shown to him/her (rec-
ommended or ranked highly). A high qual-
ity entity which is not shown to a sheep
would not get any feedback from that sheep.

(b) Connoisseur. A connoisseur is a user who
would find a good quality entity even when
it is not shown to him/her. We assume that
the ratio of connoisseurs to sheep in the sys-
tem is ε. Typically, we expect ε to be small.
In the context of web search, a connoisseur
would be a user who wouldn’t merely de-
pend upon search engine ranking and would
use more specific keywords or otherwise tar-
geted searches to find the information he is
looking for. In the context of news articles,
a connoisseur would be a user who is really
interested in a particular topic and would
look out for any interesting news article on
this topic. Note that the same user can be a
connoisseur for a certain topic and a sheep
for another.

3. Feedback. The notion of feedback is captured
by tokens. When a user gives positive feedback
for an entity i, the number of tokens placed on
the entity, denoted by τi, is incremented by 1.
We represent the relative number of tokens an
entity attracts, τiP

j τj
, by ri.

4. Revenue/Utility. We identify the rev-
enue/utility generated by an entity i with the
rate at which the sheep leave positive feedback
for that entity. The rate at which revenue is
generated by entity i is given by the revenue
function, f(ri, qi). In general, the revenue func-
tion is not known but we do know the revenue
generation event for each entity. The function
is assumed to be non-decreasing in ri and
increasing in qi. In other words, if two entities
have the same share of tokens but the quality
of first entity is better than the second, then
the first entity generates more revenue than the
second. Similarly, if two entities have the same
quality but one has greater share of tokens,
then the revenue generated by the first is more
than the second. Implicit in these assumptions
is the fact that the revenue function is a good
indicator of the utility that an entity generates
for the system. For example, this might not
be the case in the pay-per-click model for
ad-funded ranking systems, however, it would
be a good indicator in the pay-per-acquisition

2

Page 63 of 82

model. The revenue/utility can be of three
kinds: (1) recommendations can be directly
related to the purchase of goods, e.g. in the
case of e-merchants like Amazon.com [13], thus
better recommendations would lead to better
revenues, (2) rankings and recommendations
would lead to increased consumer satisfaction,
thus attracting more users and the number of
users in the system is directly related to the
revenue generates, e.g. in the case of service
providers who charge users for membership such
as Netflix [15], and (3) the relationship with
actual revenue generation can be more abstract
like in the case of ad-funded search engines such
as Google [14], where consumer satisfaction
increases the number of users, which is then
translated into revenue through ads.

In most cases we have some knowledge of
function f . For example, an interesting case
is when f(r, q) = rq, which arises when the
probability that a webpage gets viewed is given
by r and the conditional probability that the
page gets clicked is given by q (this function
also arises in related settings [21][4]). We define
a general class of functions which includes the
above function. A function f is said to be a
separable function if f(r, q) = qrα, for some
α > 0.

3 Desiderata

In this section, we motivate and list properties that
a ranking system should have. In section 4.1.3, we
formalize these properties.

1. A ranking system should result in a ranking
which is in accordance with the quality of the
entities. More precisely, if for two entities i and
j, qi > qj , then the ranking of the entities should
be such that entity i is positioned before entity
j. We call this property ranking by quality.

2. Groups associated with a particular entity might
have interest in promoting its rank irrespective of
its quality. For example, the owner of a hotel in
Bali would like the webpage of his hotel to be one
of the first few webpages which show up when a
user searches for Bali. Also some groups might
be interested in demoting the rank of a certain

entity. For example, the owner of a rival hotel
might try to lower the ranking of the webpage of
the other hotel. Thus, a ranking system should
be resistant to such selfish/malicious behavior.
We call this property resistance to gaming.

3. Imagine two entities of similar quality (one can
think of two news providing webpages) with huge
resources. The number of users these two enti-
ties attract would then depend upon their rel-
ative ranking. An item which is slightly lower
in ranking might succeed in improving its rank-
ing by using the knowledge of how the ranking
system works. For example, in case of PageR-
ank, the entity would try to make sure that more
webpages point to it. In case the ranking system
uses click through analysis, the entity might try
to fraudulently generate more clicks. In response
the rival entity might indulge in similar practices
to restore the relative ranking. This cycle can
repeat endlessly making the ranking system un-
stable. A good ranking system should not foster
such behavior. We call this property resistance
to racing.

3.1 Case for Incentives

We believe that incentives are necessary for the
proper functioning of a ranking system based on user
feedback. There are three main reasons for our po-
sition. (1) The difficulty of eliciting useful feedback
from users is well known [8][23]. In a similar vein, it
has been shown that search engine results influence
the popularity of webpages [5][6]. (2) The feedback
profile of an entity plays an important role in attract-
ing future users. This gives a strong incentive for
groups associated with the entity to leave fraudulent
positive feedback for it. In the context of reputation
systems, this phenomenon is known as ballot stuffing
and bad mouthing [3] [7]. In the context of webpage
ranking, this phenomenon has been studied in the
literature under the name of click spam [2][24]. We
believe that solutions proposed to solve this problem
would lead to a heuristic race in the lines of PageR-
ank. (3) The problem of new users in a system has
been studied in the reputation systems [9]. Similar
phenomenon may occur in ranking systems as well.
New entities can be added (new webpages are created
all the time). Or, there might be a sudden change in
the relevance of an entity. For example, articles on
a certain individual might suddenly become very rel-
evant when he/she is nominated for some important

3

Page 64 of 82

post, or articles on a certain stock might suddenly be
sought after a surprise declaration of strong earnings.
Even if technology could be developed for combating
click spam, it can be shown that for small values of
ε (the fraction of connoisseurs in the system), an en-
tity would take an impractically large amount of time
to attain a position in the ranking which is in accor-
dance with its quality. Please see Appendix for a
more detailed analysis.

4 Incentive Based Mechanisms
for Ranking

We first present the mechanisms for ranking systems
based on incentives. We then show that the ranking
system has the properties we listed in section 3 (and
which we also formalize in section 4.1.3), in particu-
lar, it is resistant to click spam.

4.1 Ranking Mechanisms

Users are allowed to place positive and negative to-
kens on various entities subject to some constraints.
The ranking of entities is updated based on the
knowledge of the number of tokens placed on the
entities. The ranking results in revenue generation
events. At each such event, a part of the revenue is
shared with the users. Central to the ranking mech-
anism are the notions of tokens and incentives. We
first formalize the notion of tokens and then describe
the incentives. Finally, we describe the mechanisms
for placing tokens.

4.1.1 Tokens

A token Ti is a five tuple

{pi, ui, ei, wi, ti}.

The value pi ∈ {+1,−1} specifies whether the token
is a positive/negative token. A value of +1 indicates
that Ti is a positive token and a value of −1 indicates
that the token is a negative one. The user who placed
the token is determined by ui ∈ U and ei ∈ E deter-
mines the entity on which the token is placed. The
weight of a token (chosen by the user while placing
the token) is given by wi ∈ R+ and the time at which
the token is placed is given by ti ∈ R+. The order
of arrival of tokens is given by the subscript i. We
assume that no two tokens arrive at the same time.
The only constraint is that at any given time the net

positive tokens of a user is bounded by γ which is
a system parameter. Note that a user can obtain
more positive tokens (for potental future placement)
by placing negative tokens.

4.1.2 Incentives

In this section, we describe how revenue is shared
among the users. Suppose a revenue generation
event occurs for an entity e at time t, and results in
R amount of revenue being generated for the system.
The mechanism has two parameters pertaining
to incentives, β and s. The fraction of revenue
to be distributed as incentive among the users is
determined by β ≤ 1. The parameter s > 1 controls
the relative importance of tokens placed on an item
depending on the order in which they were placed.

Let T be the set of all the tokens in the sys-
tem. For a given token Ti, such that ei = e, and
a time period t we define ai(t) and bi(t) as follows
(informally ai(t) is the weight of tokens on entity ei

which were placed before Ti and bi(t) − ai(t) is the
weight of token Ti at time t, note that a0(t) = 1):

ai(t) =
∑

Tj∈T :j<i,ej=e

pjwj + 1,

bi(t) = piwi + ai(t). (1)

In case the above values fall below 1 for an entity, it is
removed from the system for some pre-defined time.
The revenue share of user ui during time period t due
to token Ti is given by

sβR

∫ bi(t)

ai(t)

1
τ s

dτ. (2)

Note that the above quantity is positive or negative
depending on pi. We emphasize the following two
properties: (1) the relative importance of the tokens
placed earlier (discoveries of high quality entities) can
be controlled by s, (2) the tokens placed after token
Ti have no bearing on the incentives generated by Ti

(contrast it with the case where s is allowed to be
equal to 1). We note that the proposed mechanisms
can be implemented in the existing systems where
there are ways of giving explicit or implicit positive
and negative feedback.

4.1.3 Properties of the System

In the following, we assume users behave rationally.
In particular, we assume that if users see an arbitrage

4

Page 65 of 82

opportunity then the opportunity will be availed. Un-
der this assumption, in our setting the desired prop-
erties listed in section 3 can be formalized as follows.

1. Ranking by quality. For every pair of entities
(i, j) such that qi < qj and τi > τj , there should
exist a profitable arbitrage opportunity in the
form of removing a token from entity i and
placing it on entity j. We will now demonstrate
that our mechanism satisfies the properties
listed in the deseridata, when the revenue
function f(r, q) is a separable function (see
section 2 for definition). Recall that this class
contains the important function, f(r, q) = rq.

Suppose there exists a pair of entities (i, j)
such that qi < qj and τi > τj , where τi and
τj are the respective number of tokens taking
into account the weights in equation 1. Let
f(r, q) = qrα. Since f(r, q) is an increasing
function of q, f(ri, qi)/τ s

i < f(ri, qj)/τ s
i . We

set the parameter s to an arbitrary value
greater than α. Now f(ri, qj)/τ s

i = qjr
α
i /τ s

i =
qjτα

i

τs
i (

P
k τk)α <

qjτα
j

τs
j (

P
k τk)α = f(rj , qj)/τ s

j . The last
inequality follows from the fact that τi > τj and
s > α. Note that if f(ri, qi)/τ s

i < f(rj , qj)/τ s
j ,

then users can perform arbitrage by placing a
negative token on entity i and a positive token
on entity j. Hence the system ranks entities
according to quality.

2. Resistance to gaming. In the setting of our
mechanisms, the definition of resistance to gam-
ing is identical to the definition of ranking by
quality (the above mentioned inconsistency in
the ranking can be a result of malicious behav-
ior).

3. Resistance to racing. The system is said to be
resistant to racing if two users A and B cannot
indefinitely repeat actions aA and aB , respec-
tively, where aB undoes the effects of aA and
vice versa. Let acci be the current account of
user i. This value acci is the amount that the
user i has generated as incentives from the past.
The user can cash all or part of this amount
at any point (acci gets reduced by the amount
cashed). However, the user cannot pay the sys-
tem to get a larger acci. In case the value of the
account of a user goes negative, the feedback of
the user is not taken into consideration for a pre-
defined time (the older tokens placed by the user

are removed by setting the wi’s of correspond-
ing tokens to 0). Note because of the bound on
the number of positive tokens, two users cannot
keep adding positive tokens to their chosen enti-
ties ad infinitum. Also they cannot continuously
keep placing positive token on their chosen en-
tity and negative token on their rival’s entity, as
one of these actions would have a net negative
value and theireventually one of them would get
bankrupt1.

The system allows for addition of other features, for
example, the tokens can be made to decay at a rate
d(t). The decay function ensures that a misstep of a
user (that is, placing an erroneous negative token) is
not recurrently penalized. Also, in many ranking and
recommendation systems, we have greater leverage in
controlling f . Suppose there are n entities that need
to be recommended and we knew the number of eye-
balls that an entity in the ith position would attract.
Then the scheme we use to convert the ri’s to a (pos-
sibly probabilistic) ranking would decide the revenue
function f . Since the choice of the scheme is in the
hands of the designer, so is the revenue function f .
In general, an appropriate model for users’ response
to a ranking system would help one to design better
ranking schemes for that system.

4.2 Comparison to Information Mar-
kets

An alternative way of thinking about the problem is
to characterize it as an information aggregation prob-
lem. Information markets have been successfully used
for this purpose. So can we use information mar-
kets for webpage ranking? An information market
approach can be implemented by floating shares of
an entity and allowing users to trade them. (Note
that this would require a separate system for trading
and explicit participation of the users.) It is rea-
sonable to assume that the part of revenue that one
would share with the information market would only
be a fraction of the actual revenue generated by the
webpage. Hence, the owner of the webpage would

1A more explicit approach to avoid “racing” is to multiply
any negative revenue (i.e. when pi is negative in equation
1, resulting in a negative share from equation 2) by (1 + δ)
where δ is an arbitrarily small positive number. Now even if
two players are “racing” on pages which have the same quality
and the same number of tokens, one of them will go bankrupt
quite quickly. And the property of resistance to gaming will
be affected only marginally.

5

Page 66 of 82

have an incentive to buy all the shares, thus creat-
ing a thin market in which the owner by the act of
hoarding the shares succeeds in taking away the ar-
bitrage opportunities of other users, thus artificially
increasing the price of the webpage. Market scoring
rules [12] solve the thin market problem. Our scheme
might be seen as an adaptation of market scoring
rules. However, there are important features in our
setting which makes the direct use of market scoring
rules infeasible. Unlike other information aggregation
problems, the outcome of a ranking system is not di-
vorced from the machinations of the market. In fact
here the market is not merely a predictor of an event
but plays an indispensable role in content distribu-
tion. Miller et al. [20] counter the lack of objective
outcomes by comparing a user’s reviews to that of
its peers. Their scheme gives users an incentive to
provide honest feedback. However, their approach
doesn’t address malicious users and the discovery of
good entities which haven’t attracted much feedback
yet. Also, in their model, the impact of reviews on
the outcome (for example, on the revenue generated
by the system) is not explicit.

5 Future Directions

As pointed out in section 4.1.3, an appropriate model
for users’ response to a ranking system would help
in designing better systems. In our view, modeling
users’ response to ranking/recommendation systems
in specific domains is an important direction for fu-
ture work. Another direction is designing ranking
schemes with ri’s as input. While the appropriate-
ness of the models would have a strong bearing on
the design and success of these schemes, it is also pos-
sible that there are ranking algorithms and revenue
sharing schemes which can be shown to work for a
generic class of models of user behavior. One exam-
ple would be the class of models where the number of
eyeballs that a position attracts is fixed but unknown
and the probability that an eyeball is converted to a
useful event is a function of the quality of the en-
tity present there. The separable revenue functions
studied in this paper are a step in that direction.

References

[1] G. Adomavicius, A. Tuzhilin. Toward the next gener-
ation of recommender systems: a survey of the state-
of-the-art and possible extensions. IEEE Transac-

tions on Knowledge and Data Engineering, Vol. 17,
No. 6, June 2005.

[2] V. Anupam, A. Mayer, K. Nissin, B. Pinkas, M. Re-
iter. On the security of pay-per-click and other web
advertising schemes. In Proceedings of the 8th In-
ternational Conference on World Wide Web, 1091-
1100, 1999.

[3] R. Bhattacharjee, A. Goel. Avoiding ballot stuffing
in eBay-like reputation systems. Third workshop on
economics of peer-to-peer systems, 2005.

[4] G. Bianconi, A-L. Barbasi. Competition and mul-
tiscaling in evolving networks. Europhysics letters,
54(4), 436-442, 2001

[5] J. Cho, S. Roy. Impact of Web search engines on
page popularity. In Proceedings of the Thirteenth
International WWW Conference, 2004.

[6] J. Cho, S. Roy, R. E. Adams. Page quality: In search
of an unbiased web ranking. SIGMOD, 2005.

[7] C. Dellarocas. Immunizing online reputation report-
ing systems against unfair ratings and discriminatory
behavior. In Proceedings of the second ACM Confer-
ence on Electronic Commerce, October 2000.

[8] C. Dellarocas. The digitization of word-of-mouth:
promise and challenges of online reputation systems.
Management Science, Oct 2003.

[9] E. Friedman, P. Resnick. The social cost of cheap
pseudonyms. Journal of Economics and Manage-
ment Strategy, 10(2):173-199. 2001.

[10] Z. Gyongyi, H. Garcia-Molina. Link Spam Alliances.
31st International Conference on Very Large Data
Bases (VLDB).

[11] Z. Gyongyi, H. Garcia-Molina. Spam: It’s not just
for inboxes anymore. IEEE Computer Magazine,
38:10, 28-34.

[12] R. Hanson Combinatorial Information Market De-
sign. Information Systems Frontiers, 5:1, 107-119,
2003.

[13] http://www.amazon.com

[14] http://www.google.com

[15] http://www.netflix.com

[16] http://www.yahoo.com

[17] J. M. Kleinberg. Authoritative Sources in a Hyper-
linked Environment. Journal of the ACM, 46(5):604-
632, 1999.

[18] F. T. Leighton, S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing approx-
imation algorithms. Journal of the ACM, 46(6):787-
832, 1999.

[19] A. Metwally, D. Agrawal, A. El Abbadi. Duplicate
detection in click streams. In Proceeding of the 14th
International Conference on World Wide Web, 12-
21, 2005.

6

Page 67 of 82

[20] N. Miller, P. Resnick, R. Zeckhauser. Eliciting infor-
mative feedback: the peer-prediction method. Man-
agement Science 51(9), 2005.

[21] R. Motwani, Y. Xu. Evolution of page popular-
ity under random web graph models. Principles of
Databases Systems, 2006

[22] L. Page, S. Brin, R. Motwani, T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Stanford Digital Library Technologies Project,
1998.

[23] P. Resnick, R. Zeckhauser, E. Friedman,
K. Kuwabara. Reputation systems. Commu-
nications of the ACM, 43(12):45-48, December
2000.

[24] D. Vise. Clicking to steal. Washington Post Maga-
zine, F01, April 17 2005.

[25] H. Zhang, A. Goel, R. Govindan, K. Mason,
B. Van Roy. Making eigenvector-based reputation
systems robust to collusion. Workshop on Algorithms
and Models for the Web Graph (WAW) 2004.

Appendix A

In this appendix, we demonstrate in a simple setting,
the need of incentives for a ranking/recommendation
system to work properly. We emphasize that the
problems we point to are not due to fraudulent clicks
and hence cannot be fixed by better technology
for detecting click spam. We show that an initial
imbalance in the feedback would take exponential
time to be corrected. Suppose there are two entities,
e1 and e2, of the same quality q with e1 having 1
token and e2 having γ > 1 tokens. This difference
can be due to various reasons. It can be a result of
some targeted feedback by an interested party. Or,
there might be a sudden change in the relevance of an
entity. For example, articles on a certain individual
might suddenly become very relevant when he/she
is nominated for some important post, or articles
on a certain stock might suddenly be sought after
a surprise declaration of strong earnings. Also, the
difference may be a result of the fact that the first
entity is a new one in the system.

Since the quality of the two entities are the
same, we can ignore the dependence of f on qi. For
the purpose of exposition, we assume that f depends
linearly on ri, that is, f(ri) = ri = τiP

j τj
. Similar

results can be shown for other functions. Let the
number of users in the system be (1 + ε)n where
there are n sheep and εn connoisseurs. Let τ1 be

the number of tokens on e1 and τ2 be the number
of tokens on e2. We normalize the number of users
in the system and assume the ratio of sheep to
connoisseur is 1 : ε. Now the rate at which sheep
would put tokens on e1 is given by τ1

τ1+τ2
. Similarly

the rate at which tokens are put on e2 by sheep is
given by τ2

τ1+τ2
. Initially, τ1 = 1 and τ2 = γ. Since

we are interested in proving a negative result, it
doesn’t harm us to assume that all the connoisseur
weight ε is assigned to e1. Hence,

dτ1

dt
= ε +

τ1

τ1 + τ2
,
dτ2

dt
=

τ2

τ1 + τ2

dτ1

dt
+

dτ2

dt
= 1 + ε [summing]

τ1 + τ2 = 1 + γ + (1 + ε)t [integrating]
dτ2

dt
=

τ2

(1 + γ) + (1 + ε)t

log
τ2

γ
=

1
1 + ε

log
(1 + γ) + (1 + ε)t

1 + γ

τ2 = γ

(
1 +

1 + ε

1 + γ
t

) 1
1+ε

We are interested in the time when τ1 = τ2. Let the
time when this equality is reached be T .

2γ

(
1 +

1 + ε

1 + γ
T

) 1
1+ε

= 1 + γ + (1 + ε)T

T =

[(
2γ

1 + γ

)1+1/ε

− 1

] (
1 + γ

1 + ε

)
For a large value of γ and ε = .01, the time taken
would be of the order of 2100 which is impractical.
Note that even if we assume that we don’t normalize
and at every step the total change is of the order of n,
this number would still be large for appropriate values
of γ. It is easy to see that merely allowing negative
feedback would make no qualitative difference in the
above analysis.

7

Page 68 of 82

Havelaar: A Robust and Efficient Reputation System
for Active Peer-to-Peer Systems

Dominik Grolimund, Luzius Meisser, Stefan Schmid, Roger Wattenhofer
{grolimund@inf., meisserl@, schmiste@tik.ee., wattenhofer@tik.ee.}ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, CH-8092 Zurich

Abstract— Peer-to-peer (p2p) systems have the potential to har-
ness huge amounts of resources. Unfortunately, however, it has
been shown that most of today’s p2p networks suffer from a large
fraction of free-riders, who consume resources without contributing
much to the system themselves. This results in an overall perfor-
mance degradation, and hence proper incentives are needed to
encourage contributions. One interesting resource is bandwidth.
Thereby, a service differentiation approach seems appropriate,
where peers contributing higher upload bandwidths are rewarded
with higher download bandwidths in return. Keeping track of the
contribution of each peer in an open, decentralized environment,
however, is a difficult task; many proposed systems are susceptible
to false reports. Besides being prone to attacks, some solutions have
a large communication and computation overhead, which can even
be linear in the number of transactions—an unacceptable burden in
practical and active systems. In this paper, we propose a reputation
system which is robust to false reports and overcomes this scaling
problem. Our results are promising, indicating that the mechanism
is accurate and efficient especially when applied in systems where
there are lots of transactions.

I. INTRODUCTION

The power of peer-to-peer (p2p) computing is based on the
resource contribution of the network’s constituent parts, the
peers. Therefore, the success of a system in practice crucially
depends on its ability to cope with selfish peers which aim at
consuming more than they contribute.

When faced with the task of implementing a fairness scheme
for upload bandwidth for our distributed p2p storage system
Kangoo1, we could not find a solution which entirely fits our
needs. In Kangoo, erasure codes are employed to achieve high
data availability with moderate redundancy. Files are divided into
blocks, which are encoded into many small fragments. All these
fragments are then stored on a different peer. Consequently, in
Kangoo, there is a large number of transactions. Our goal was to
develop a scheme for this environment, where peers contributing
higher upload bandwidths for longer time periods are rewarded
with a higher download bandwidth in return.

This paper presents the reputation system Havelaar which we
have implemented for Kangoo. Unlike many existing solutions,
Havelaar does not rely on transitivity of trust, and achieves a
high robustness to attacks by design. This is accomplished by
a novel aggregation technique in which a peer u always reports
directly observed or aggregated contributions to the same set of
peers. These successor peers are determined by a hash function
h(u) on the identifier (e.g., the IP-address) of u. This scheme
allows a successor to detect and defend against egoistic cheating

1To be released (http://www.caleido.com/kangoo).

(e.g., reporting too large values, or reporting too often). Hence,
our solution is different from distributed hash table (DHT)-based
approaches where a peer u benefitting from a peer v reports v’s
contribution value to peers determined by a hash function h(v)
(i.e., depending on v rather than u).

Our results are promising: Havelaar is not only robust to
attacks, but also efficient and—unlike many other solutions—
scales well in the number of transactions. Therefore, we believe
that Havelaar is well-suited for other active p2p systems with
many transactions.

The rest of this paper is organized as follows. In Section II,
related work is reviewed. Section III gives background informa-
tion on Kangoo and on the intended environment for Havelaar.
Section IV quickly outlines how peers could be rewarded given
their contribution values. The Havelaar reputation system is then
presented in detail in Section V. In Section VI, the accuracy of
Havelaar’s approximation of the real contributions is analyzed.
We report on our results concerning communication costs in
Section VII. Section VIII shows how Havelaar copes with
various attacks. Finally, Section IX presents some simulation
results, before Section X concludes the paper.

II. RELATED WORK

It is not hard to find evidence of selfish behavior in existing
p2p systems [2], [14], and the field has already spurred a large
body of research [8], [12], [18], [20], [28].

Perhaps the simplest fairness mechanism is to directly in-
corporate contribution monitoring into the client software. For
instance, in the popular file-sharing system Kazaa, the client
records the contribution of its user. However, such a solution
can simply be bypassed by implementing a different client which
hard-wires the contribution level of the user to the maximum,
as it was the case with Kazaa Lite.

In systems such as BitTorrent [6], where peers upload to the
same set of peers from which they also download, a simple tit-
for-tat mechanism [3] may be fine. When interactions between
the same pairs of peers are less frequent, however, such barter
systems [32] fail.

Inspired by real economies, some researchers have also pro-
posed the introduction of some form of virtual money which is
used for the transactions. However, these monetary or credit
based approaches have a substantial overhead in terms of
communication costs and infrastructure, and are inefficient [11],
[33]. Often these systems also require market regulating mecha-
nisms [31] to cope with inflation or deflation—a complex issue.

Page 69 of 82

Additionally, monetary based systems may deter users from
participating [21].

If a peer makes too few direct observations to judge a peer’s
contribution, it has to take into account indirect observations
from other peers [17]. Such systems are generally called reputa-
tion (or reciprocity based) systems, and are well-known from
auctioning applications such as eBay. However, second-hand
observations introduce the problem of false reports [4], [17].
Many proposals seek to mitigate these effects [1], [5], [9], [15],
most of them relying on transitivity of trust, where observations
are weighted by the reputation of the reporter. Additionally to
the problem of false reports, an infrastructure to exchange the
second-hand observations is needed [17]. In most reputation-
based systems, second-hand observations are either requested
before a transaction from other peers [1], [4], or they are simply
flooded throughout the system. Alternatively, the contribution
values can be stored in a distributed hash table (DHT) [25],
[27], [30] (“DHT-based approach”). For systems with lots of
transactions where contribution values are updated constantly,
however, this results in an unacceptable communication over-
head: updating and checking a peer’s reputation entails costly
(wide-area) DHT lookups [22], [23].

In contrast, in the Havelaar reputation system, a peer is
able to compute the reputation of a requesting peer locally.
By aggregating the contribution values of a large number of
peers, our system tackles also the problem of transitivity of trust.
Finally, a peer is able to defend against cheating by checking the
credibility of reports, thus preventing many reputation attacks by
design.

III. SYSTEM MODEL

Havelaar was designed with a special application in mind:
Kangoo, a large-scale distributed storage system for the Internet.
Kangoo divides files into blocks, which are encrypted and then
encoded into redundant fragments using erasure codes. These
encrypted fragments are stored on different peers in a DHT.
However, in Kangoo, peers fall into different categories, and
fragments are only stored on so-called storage peers which fulfill
some minimal requirements such as having long uptimes (e.g.,
more than 6 hours a day). How storage peers are selected among
the set of all available peers, and why rational peers also have
incentives to become storage peers is beyond the scope of this
paper. However, in the following, we will assume that all peers
store data, and that these peers generally have long uptimes.

Because of the used encoding scheme, storing and retrieving
files in Kangoo results in lots of transactions with many different
peers in the system (e.g., 500 transactions with different peers
to store and retrieve one file). While this is necessary for high
availability and for fast parallel downloads, it is crucial that the
fairness mechanism scales well in the number of transactions—
an important objective of Havelaar.

There are a number of other properties of Kangoo which in-
fluence Havelaar. Since fragments are stored in the Kangoo DHT
depending on hash functions on the fragment itself, an attacker
cannot determine the destination of a transaction. Furthermore,
peer identifiers are securely assigned by Kangoo—i.e., externally
to Havelaar—, and therefore Havelaar can rely on randomly

assigned node identifiers and does not tackle Sybil attacks [7] or
white-washing [9], [10] itself. However, Havelaar also minimizes
incentives to create new identifiers by assigning new peers a low
initial reputation.

Finally, in Kangoo, churn [16] is not a major concern, as
(storage) peers are required to stay online on almost a daily
basis and for several hours, and are also expected to remain in
the system for longer time periods (months or years).2

IV. REWARDING MECHANISM

Havelaar is mainly a reputation system (cf Section V) and
therefore independent of a concrete rewarding mechanism; that
is, given the contribution values of Havelaar, many strategies can
be applied to allocate bandwidth to the peers.

However, to complete the picture, we briefly sketch the
approach we have chosen for our system. We make use of a
mechanism similar to the one described in [19]. But as perfor-
mance is crucial in Kangoo, we only apply fairness mechanisms
in situations of contention, i.e., when several peers want to
download from the same node concurrently. Assuming that
bandwidth is free—and lost when not used—, the maximum
possible bandwidth will always be allocated to a requesting peer;
no artificial limits are used. For our system, this is the desired
behavior because—unlike monetary-based systems—we do not
want to provide any disincentives to participate and download in
the network. We only limit the resource allocation for excessive
downloaders, as will be described in Section V.

V. REPUTATION SYSTEM

In this section, we describe the main ideas behind Havelaar.
The goal of Havelaar is to track the contribution of each peer
in the system. Since it would be very expensive to inform each
peer about all transactions happening in the system, we seek
to provide the peers with a good approximation of the real
contribution values. Thereby, our solution must be efficient and
also resilient to cheating. Basically, Havelaar has three goals:
(1) accurate estimation of the real (global) contribution values
of other peers, (2) robustness against selfish peers, and (3)
efficiency, i.e., scalability in the number of transactions.

In our system, the reputation of a peer u should be reflected
by the peer’s contribution value Cu, which in turn depends
on the bandwidth bu the peer provides, and the size s of the
corresponding fragments. Hence, the total contribution value of
peer u is given by Cu =

∑
transactions t (bu,t · su,t). Note that the

contribution value will only be increased after a complete upload
in order to reward proper transactions only.

So how does Havelaar track these contributions? Each peer u
maintains a vector ~o (observations) of size n (number of peers
in the network) to store the contributions of other peers which
u has directly experienced itself. That is, after each download,
u updates its vector ~o accordingly.

Even in active systems with lots of transactions, a peer only
gets in touch with a subset of all peers. Therefore, peers need to
share their private observations by sending them to other peers
once in a while. To achieve this, Havelaar employs a round-
based aggregation technique. Thereby, once in a round, each

2Note that in Kangoo, peers represent long-term customers.

Page 70 of 82

peer u sends its observation vector ~o to a small number k (e.g.,
7) of other peers in the system, called u’s successors (similarly,
we will refer to u as a predecessor of such a successor peer).
The successor peers are determined by a set of k hash functions
{h1(u), ..., hk(u)} on u’s identifier.3 Moreover, we will assume
that a round is roughly one week. Note that it does not matter
when exactly in this time interval a peer sends its report to the
successors, i.e., when a peer u cannot contact a peer v (e.g.,
because v is offline), it can try again later.

A peer u always informs the same set of peers, independently
of which peers contributed resources to u. Upon receiving a
vector, a peer can check whether it has been sent by a correct
predecessor by verifying the hash function4—otherwise, it can
simply drop the vector. The “observed” contribution value of the
predecessor itself is not taken into account, in order to render the
most attractive attack impossible by design. What is more, each
peer can also ignore the vector of a peer that sends too frequently
(more than once per round). Therefore, a peer can only attack
the system with a false praise or accusation of another node.
However, such an attack can either be detected or it will be
averaged out, as we will see in Section VIII.

Unfortunately, sending direct observations to the k successors
is still not sufficient in order to accurately estimate the contri-
butions of all peers in large networks. Therefore, we extend the
mechanism as follows: Upon receiving the observation vectors
from its k predecessors, each peer aggregates them with its
own observations, and sends the new vector to its k successors.
Thus, one vector can summarize a large number of observations.
However, we have to make sure that the values in the vectors
do not contain too many observations from the past which do
not reflect the current behavior of each peer. What is needed
is a scheme where old observations can be truncated in the
observation vector, but where there are still enough observations
to update the contribution vector after each round.

This is accomplished as follows. In every round, a peer
puts its own observations into a vector ~o0 (so far denoted by
~o). After each round, it sends a message to its k successors
containing its own (direct) observations from this round (~o0),
the aggregated observations of its k predecessors from the last
round (~o1), the aggregated observations of the k predecessors
of its own k predecessors from the round before the last round
(~o2), and so forth. The message thus contains a matrix O :=
[~o0, . . . , ~or−1]. Upon receiving the matrix Oi := [~o1, . . . , ~or]
from predecessor i ∈ [1, k] (note that when sending, the index
runs from 0 . . . r−1, and when receiving, it is renamed to 1 . . . r),
a peer aggregates all observations and updates its contribution
vector ~c accordingly. Thus, the vectors from previous rounds
aggregate an exponentially growing number of observations. The
oldest observations lie r rounds in the past.

A simplified description of the Havelaar reputation system
is given in Algorithm 1. Here, the algorithm is generalized by
an aging factor γ ≤ 1. However, since the aggregation vectors
already include many observations from the past, using γ = 0

3Due to the hash function, some peers will have slightly more, others slightly
less predecessors.

4To verify the predecessor identifier, public/private-key pairs among peers are
presumed.

is fine for our purpose, but can be increased in order to account
for longer absences from the system.

Algorithm 1 Simplified Havelaar Reputation System
1: observe ~o0;
2: receive O1 := [~o1, . . . , ~or] , . . . , Ok from predecessors;
3: for j ∈ [1, r]: ~oj =

∑k
i=1 Oij ;

4: ~c = γ~c + (1− γ)(
∑r

i=0 ~oi);
5: send O := [~o0, . . . , ~or−1] to k successors;

In Havelaar, a peer u increases the contribution values only
after downloading fragments from other peers, but it never
decreases any contribution values if it has to provide upload
bandwidth to some peer. This has the drawback that if two peers
have contributed to the system equally, they will be assigned
the same amount of download bandwidth, independently of
their downloading behavior—it is questionable whether this is
fair. However, as mentioned, we do not want to provide any
disincentives for downloading in our network.

But the behavior of excessive downloads should be discour-
aged. Such downloads could trigger a vicious circle: because of
excessive downloads, the network is congested, which in turn
encourages other users to download in advance, resulting in an
even more congested network. Therefore, in Havelaar, each peer
u additionally maintains a second vector ~d (downloads). After
another peer downloads from u, u will increase the download
value of that peer. As opposed to the observation vector, the
download vector will not be sent to other peers. Before allocating
resources among competing peers, the download values will be
subtracted from the respective contribution values of ~c, and only
then used to allocate the bandwidth. Since excessive download-
ers are more likely to be involved in repeated interactions, they
are eventually slowed down.

Finally, note that downloads could of course also be treated
differently. For instance, downloads could be punished with a
mechanism similar to the one used to reward uploads.

VI. ANALYSIS

A. Overview

Assume that two peers u and v compete for the same upload
bandwidth of a given peer w. In order to achieve the desired fair-
ness, peer w should allocate the bandwidth to u and v according
to their real, i.e., global, contribution values Cg

u and Cg
v , i.e.,

with respect to all transactions to which they have contributed.
However, in Havelaar, peer w does not have precise information
about Cg

u and Cg
v , but only knows the local approximations Cl

u

and Cl
v (values from its contribution vector ~c). Hence, we want

to achieve a good approximation Cg
u/Cg

v ≈ Cl
u/Cl

v such that the
peers indeed receive the corresponding share of the bandwidth.

In this section, we will analyze how many observations x are
needed such that the ratios of the values in the local vectors
~c are an acceptable approximation of the ratios of the real
contributions. Consequently, we can compute the number of
rounds r that are necessary in Havelaar to get the required
number of (aggregated) observations. Henceforth, let Cu and
Cv denote Cl

u and Cl
v , respectively.

Page 71 of 82

Our network consists of n peers, not all of which are always
online. We simplify the analysis by assuming that at any time
exactly m < n peers are online. Furthermore, we assume
that each peer downloads t fragments from other peers; the
transactions are assumed to be distributed uniformly at random
among the peers and over time. Hence, the probability of
downloading a fragment from a given peer is p = 1/m.

B. Analysis
Whenever a peer downloads from peer u, it increases the con-

tribution value Cu of peer u. Let us first assume that bandwidth
and fragment sizes are equal to 1, that is, Cu is increased by
1 after each download from u. As explained before, peer u is
chosen with probability p for every download. Therefore, Cu is
a random variable. What is the probability distribution of Cu

after x downloads?
This situation corresponds to a balls-into-bins problem [24],

where x balls are tossed into m bins, and where p = 1/m
is the probability that a tossed ball lands in any given bin.
For a given bin u, the ball tossing process is a sequence of x
random, independent Bernoulli trials, each with a probability p
of success. Therefore, the random variable Cu follows a binomial
distribution Cu ∼ Bin(x, p), where µCu

= E(Cu) = x · p and
σ2

Cu
= V ar(Cu) = x · p · (1− p).

This assumes that peers u and v are online all the time and
can thus be chosen for all x transactions. In reality, however,
some peer u might be online much longer than some other peer
v. Therefore, u is likely to be involved in more transactions and
will hence also contribute more to the network. This should be
reflected in the local approximations Cu and Cv .

Let us assume that peer u is online with a fixed probability
pu, and peer v with probability pv . Based on the assumption
that the transactions are distributed uniformly over time, peer u
can only be chosen for xu = pux transactions on average, and
peer v for xv = pvx transactions.

Furthermore, since the ultimate goal of Havelaar is to encour-
age high upload bandwidth, we need to include the provided
upload bandwidth into the model. Let us assume that peer u
uploads fragments at a fixed bandwidth of bu, and peer v at a
bandwidth of bv . Instead of adding 1 to the contribution value
of each peer, the corresponding bandwidth is added.

Putting everything together, the mean of Cu is given by µCu
=

E(Cu) = bu · pu · x · p, and the variance is σ2
Cu

= V ar(Cu) =
b2
u · pu · x · p · (1− p). Note that the bandwidth bu is multiplied

twice in the variance (b2
u): The variance in the contribution Cu

does not increase linearly in the bandwidth, but quadratically.
Of course, our model can be extended in several ways, for

example by incorporating variable fragment sizes or issues of
contention. However, this would be overly exact (cf technical
report [13]); in order to keep things simple, we restrict ourselves
to the main factors, omitting this generalization in our analysis.

For small x, the coefficient of variation σCu
/µCu

(or, simi-
larly, also the variance-to-mean ratio σ2

Cu
/µCu

) is large. How-
ever, for x → ∞, it converges to 0. This indicates that with
lots of observations, relative estimates become accurate enough.
We are interested in the ratio of the contribution values of two
peers competing for resources at the same time. Therefore, let us
introduce a random variable Z reflecting this ratio: Z := Cu/Cv .

What is the mean and the variance of Z? Since Cu and Cv are
independent, the following approximations are reasonable [26]:

µZ = E(Z) ≈ µCu

µCv

+ σ2
Cv

µCu

µ3
Cv

,

and

σ2
Z = V ar(Z) ≈ σ2

Cv

µ2
Cu

µ4
Cv

+
σ2

Cu

µ2
Cv

.

As can be seen from these formulas, for x → ∞, the variance
decreases quickly, and hence, for lots of observations x, Z is
a good approximation of the ratio of the real contributions of
peers u and v. In the following subsection, we will make use
of another helpful approximation of the coefficient of variation
[29]: (

σZ

µZ

)2

≈
(

σCu

µCu

)2

+
(

σCv

µCv

)2

(1).

C. Results

We can now estimate the number of observations necessary for
a good approximation, that is, for small coefficients of variation
of Z. Plugging µCu , σCu , µCv , and σCv into (1) yields(

σZ

µZ

)2

=

(√
b2
upux(p− p2)
bupuxp

)2

+

(√
b2
vpvx(p− p2)
bvpvxp

)2

=
1− p

puxp
+

1− p

pvxp
.

Solving this for x gives the following fact.
Fact 6.1: The number of observations needed in order to

achieve a desired approximation (as expressed by the coefficient
of variation) of the real contribution values is

x ≈ −pv(p− 1) + pu(p− 1)(
σZ

µZ

)2

pupvp
.

As an example, for a network with n = 100, 000 peers, where
at any time m = 1

4n = 25, 000 peers are online, and if we
assume that pu = pv = 1

4 (in Kangoo, storage peers are online
for more than six hours per day), x ≈ 107 observations are
required for an acceptable coefficient of variation of 0.15.

Having computed the number of observations x which are
approximately needed for an acceptable accuracy, we can now
determine the number of aggregation rounds. Assuming that
every peer makes t transactions (= observations), the number
of rounds r is r = dlogk

x
t e. For the above example of x =

107 observations, assuming that each peer makes t = 5, 000
transactions and sends its observations to k = 7 peers, r ≈ 4
rounds are already enough!

VII. COMMUNICATION COSTS

The Achilles’ heel of Havelaar are the communication costs:
Every peer has to send—for example, once a week—the aggre-
gated observations to its successors. However, we believe that
in many practical systems, the burden is tolerable. Moreover,
as described in the technical report [13], various compression
techniques—e.g., due to sparseness—can be employed to reduce
the size of the messages further.

Concretely, we have computed Havelaar’s estimated message
size [13] depending on the number of rounds r and the number of

Page 72 of 82

transactions t in the system, and assuming that the contribution
values can be encoded with 8 bits each (in a simulation, the
entropy was only ≈ 7 bits). We have then compared Havelaar
to solutions where the contribution value is recorded in a DHT.
In this approach, the contribution value of peer u is stored at
a peer which is chosen based on a hash function h(u). Since
the contribution values in Havelaar are only approximations and
since the local vector is only updated once per round, we have
compared the communication costs to a DHT-based approach
with the same level of approximation and the same amount of
updates. That is, instead of updating the contribution value after
each download and retrieving the contribution value before each
upload, peers only update the contribution value in the DHT
probabilistically (with a probability resulting in the same level
of approximation as Havelaar), and they only update their local
vector by a look-up operation once per round.

As an example, in a network with n = 100, 000, t = 5, 000,
k = 7, and r = 4, the communication costs are ≈ 2.2 MB
per peer and week. In comparison, an approximate DHT-based
approach would require ≈ 3.7 MB. Thereby, the costs for the
DHT-based approach are only a lower bound: More commu-
nication would be necessary in order to store the contribution
values persistently. Havelaar scales much better in the number
of transactions. For the same example, but with t = 20, 000
transactions, the communication costs of Havelaar are ≈ 2.5
MB, compared to ≈ 13.8 MB of the DHT-based approach.
Finally, for a network with n = 1, 000, 000 and t = 40, 000,
the communication costs in Havelaar are ≈ 23.3 MB and the
DHT-based approach ≈ 87.7 MB. We refer the reader to the
technical report [13] for a more detailed comparison.

In conclusion, although the costs of Havelaar can be relatively
high for a small number of transactions (e.g., up to ≈ 1.73 MB
for t < 2000 in a network of n = 100, 000, compared to ≈
1.51 MB for the DHT-based approach), our system scales much
better than various forms of DHT-based solutions. Moreover,
we believe that the communication costs are acceptable in many
practical environments.

VIII. ATTACKS

Havelaar is designed to cope with peers aiming at selfishly
consuming larger shares of resources than other peers. The fact
that every peer can send its observations only to its k successors
facilitates local defenses.

A peer uses several defense mechanisms. A receiver checks
whether a sender is one of its predecessors, and otherwise
ignores the report. Moreover, it can make sure that a peer does
not report contributions too often.

A peer does not take into account observations about the
reporting predecessor itself. Thus, the most attractive attack is
made hard by design: It is only possible to falsely “praise” or
“accuse” another peer.

In addition to limiting the range of possible values, other
measures are taken in our system to detect and ignore false
reports. Before updating the local contribution vector ~c on the
basis of the observation matrices, for each value the average
and variance is calculated. If one value is extremely large, it is
considered an outlier with respect to the other k− 1 values, and

is dropped. Then, the average of the other k− 1 values is taken
as the input to the update function.

Clearly, one can think of several further local defense mech-
anisms. For instance, statistical measures could be included
to detect a possible false report by studying the distribution
(histogram) of the observation vector, e.g., by checking whether
the histogram is spiked. In any of the above cases where the
successor is suspicious of an attack, it could reduce the trust
value associated with each predecessor. The trust value can be
used to either drop observations by misbehaving peers, or to
weigh their observation values accordingly. However, it has not
been necessary to make use of these techniques so far.

Besides the advantages of local defense, the robustness of
Havelaar comes from the extensive aggregation: A single wrong
value hardly influences the overall outcome. In this sense, also
the damage which can be done by a small fraction of colluding
peers is limited. In particular, collusion is also made difficult by
the fact that successor peers are determined by hash functions,
and hence becoming a predecessor of a specific peer is hard.

In summary, Havelaar’s design is based on local defense
and extensive accumulation, and unlike many other approaches
does not rely on transitivity of trust. This renders attacking the
system a difficult endeavour. Finally, recall that several other
attacks such as Sybil attacks and whitewashing are tackled by
mechanisms which are part of Kangoo and hence are external
to Havelaar.

IX. SIMULATION

We have performed several simulations of Havelaar which
fortify our results. In this section, we present the most interesting
findings.

In Figure 1, the real ratio of the contribution values of two
peers is compared to the ratio from the local approximation in a
network of size n = 100, 000, with k = 7 successors and r = 4
rounds. In each round, the peers change their upload bandwidth.
In the first round, for instance, peer u contributed exactly three
times more than peer v. Note that the approximation is shifted to
the right; this is due to the fact that contribution values are only
updated once a round, based on observations from the past. Note
also that the standard deviation of the approximation is generally
low—being higher when peers change their behavior abruptly.

5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

Rounds

R
at

io
 Z

 =
 C

u
 /

C
v

Global ratio
Local (approx.) ratio
Stddev of approx.

Fig. 1. Local approximation vs. global (real) contribution value of two peers
in several rounds. Note that after a short bootstrapping phase in the beginning,
the approximation becomes good quickly.

Page 73 of 82

0 1 2

x 10
−4

0

1

2

x 10
−4

Global normalized contribution

L
o

ca
l (

ap
p

ro
xi

m
at

ed
)

n
o

rm
al

iz
ed

 c
o

n
tr

ib
u

ti
o

n

Fig. 2. Global normalized contribution value plotted against the locally
approximated one.

The figure reveals that the bootstrapping process is quite fast,
which implies that newly joining peers—or peers which return
after a long period of absence—are up-to-date soon. Of course,
this delay may still be unacceptably large for many systems
where appropriate solutions which further speed up the process
would be needed. However, this is not the case in Kangoo, as
peers are expected to remain in the system for months or even
years.

Figure 2 plots the local contribution vector for the same
network against the global (real) contribution vector. Both
vectors are normalized by dividing each entry by the sum of
the whole vector. That is, each contribution value reflects the
proportional contribution of the entire network. Again, the local
approximation reflects the real contribution accurately (almost a
straight line). For peers with higher contribution, however, the
variance becomes larger. This is due to the fact that the variance
is multiplied by the square of the bandwidth, as described in
Section VI.5

X. CONCLUSIONS

The main goals of the Havelaar reputation system are (1)
accurate estimation of the real contribution values of other peers,
(2) robustness to selfish peers, and (3) efficiency, i.e., scalability
in the number of transactions. This is achieved by a novel
aggregation technique where peers always report the observed
contributions values to the same set of peers. This allows for
a local control of a peer’s behavior. Encouraged by our results,
we have integrated Havelaar in our distributed storage system
Kangoo. We believe that Havelaar is a good choice for many
active p2p systems requiring a fairness mechanism.

5Note, however, that the coefficient of variation is constant for every peer
since it does not depend on the bandwidth.

REFERENCES

[1] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information
System. In Proc. of the 10th Intl. Conf. on Information and Knowledge
Management (CIKM), pages 310–317, 2001.

[2] E. Adar and B. Huberman. Free Riding on Gnutella. First Monday, 5(10),
2000.

[3] R. Axelrod. The Evolution of Cooperation. Science, 211(4489):1390-6,
1981.

[4] D. Banerjee, S. Saha, S. Sen, and P. Dasgupta. Reciprocal Resource Sharing
in P2P Environments. In Proc. 4th AAMAS, 2005.

[5] S. Buchegger and J.-Y. L. Boudec. A Robust Reputation System for P2P
and Mobile Ad-hoc Networks. In Proc. 2nd Workshop on the Economics
of Peer-to-Peer Systems, 2004.

[6] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. Workshop
on Economics of Peer-to-Peer Systems, 2003.

[7] J. R. Douceur. The Sybil Attack. In Proc. 1st Int. Workshop on Peer-to-
Peer Systems (IPTPS), pages 251–260. Lecture Notes in Computer Science
(LNCS), Springer, 2002.

[8] M. Feldman and J. Chuang. Overcoming Free-Riding Behavior in Peer-
to-Peer Systems. ACM Sigecom Exchanges, 6, 2005.

[9] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust Incentive Techniques
for Peer-to-Peer Networks. In Proc. ACM Conf. on Electronic Commerce,
2004.

[10] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding
and Whitewashing in Peer-to-Peer Systems. In Proc. ACM SIGCOMM
Workshop PINS, 2004.

[11] F. D. Garcia and J.-H. Hoepman. Off-Line Karma: A Decentralized
Currency for Peer-to-Peer and Grid Applications. In Proc. 3rd Applied
Cryptography and Network Security (ACNS).

[12] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives in Peer-to-Peer File
Sharing. In Proc. 3rd ACM Conf. on Electronic Commerce (EC), 2001.

[13] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer. Havelaar: A
Robust and Efficient Reputation System for Active Peer-to-Peer Systems.
Technical report, TIK Report 246, available at http://www.tik.ee.ethz.ch/.
ETH Zurich, Switzerland, 2006.

[14] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella
Revisited: The Bell Tolls? IEEE Distributed Systems Online, 6(6), 2005.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
Algorithm for Reputation Management in P2P Networks. In Proc. WWW,
pages 640–651, 2003.

[16] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing Peer-to-Peer
System Resilient to Dynamic Adversarial Churn. In Proc. 4th Int. Workshop
on Peer-To-Peer Systems (IPTPS), Ithaca, New York, USA, February 2005.

[17] K. Lai, M. Feldman, J. Chuang, and I. Stoica. Incentives for Cooperation in
Peer-to-Peer Networks. In Proc. Workshop on Economics of Peer-to-Peer
Systems (P2PEcon), 2003.

[18] Q. Lianz, Y. Pengx, M. Yangx, Z. Zhangy, Y. Daix, and X. Li. Robust
Incentives via Multi-level Tit-for-Tat. In Proc. 5th Int. Workshop on Peer-
to-Peer Systems (IPTPS), 2006.

[19] R. B. Ma, S. M. Lee, J. S. Lui, and D. Y. Yau. A Game Theoretic Approach
to Provide Incentive and Service Differentiation in P2P Networks. In
SIGMETRICS, 2004.

[20] S. J. Nielson, S. Crosby, and D. S. Wallach. A Taxonomy of Rational
Attacks. In Proc. 4th Int. Workshop on Peer-to-Peer Systems (IPTPS),
pages 36–46, 2005.

[21] A. M. Odlyzko. The Case Against Micropayments. In Financial Cryptog-
raphy, pages 77–83, 2003.

[22] T. G. Papaioannou and G. D. Stamoulis. Effective Use of Reputation of
Peer-to-Peer Environments. In Proc. IEEE/ACM CCGRID 2004, GP2PC
Workshop, 2004.

[23] T. G. Papaioannou and G. D. Stamoulis. Reputation-based Policies that
Provide the Right Incentives in Peer-to-Peer Environments. Computer
Networks, 50(4):563–578, 2006.

[24] M. Raab and A. Steger. ”Balls into Bins” - A Simple and Tight Analysis. In
Proc. 2nd Int. Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), pages 159–170. Springer-Verlag, 1998.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content Addressable Network. In Proc. of ACM SIGCOMM 2001, 2001.

[26] J. A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press,
1995.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc. 18th
IFIP/ACM Int. Conf. on Distributed Systems Platforms (Middleware), pages
329–350, 2001.

[28] J. Shneidman and D. C. Parkes. Rationality and Self-Interest in Peer to Peer
Networks. In Proc. 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS),
2003.

[29] W. Stahel. Statistische Datenanalyse. Eine Einfuehrung fuer Naturwis-
senschaftler. Vieweg, Braunschweig, 2000.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proc. ACM SIGCOMM Conference, 2001.

[31] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A Secure
Economic Framework for P2P Resource Sharing. In Proc. P2PEcon, 2003.

[32] W. Wang and B. Li. Trust Based Incentive in P2P Network. In Proc. Int.
IEEE Conf. on E-Commerce Technology for Dynamic E-Business (CEC-
East), pages 302–305, 2004.

[33] W. Wang and B. Li. Market-driven Bandwidth Allocation in Selfish
Overlay Networks. In Proc. IEEE INFOCOM, 2005.

Page 74 of 82

Manipulability of PageRank under Sybil Strategies

Alice Cheng ∗ Eric Friedman †

Abstract

The sybil attack is one of the easiest and most com-
mon methods of manipulating reputation systems. In
this paper, we quantify the increase in reputation due
to creating sybils under the PageRank algorithm. We
compute explicit bounds for the possible PageRank
value increase, and we use these bounds to estimate
the rank increase. Finally, we measure the effect
of sybil creation on nodes in a web subgraph. We
find that the resulting rank and value increases agree
closely with the analytic values.

1 Introduction

Ranking systems are an important tool in a wide
range of online settings, such as online shopping (Ama-
zon, eBay), as a means of inferring reputation of sell-
ers or goods; in the peer-to-peer setting, to weed out
untrustworthy or freeloading users; and the area of
online search, as a means of ranking webpages.

However, many ranking systems are vulnerable
to manipulation, and users often have incentives to
cheat. A higher ranking may offer an economic bene-
fit - for example, a study of the eBay reputation sys-
tem found that buyers are willing to pay a premium of
8% for buying from sellers with high reputation [11].
Another example is in online search, where websites,
in order to gain web traffic, use the services of on-
line companies which help sites improve their search
engine rankings.

PageRank is currently one of the most widely used
reputation systems. It is applied in peer-to-peer net-
works in the EigenTrust algorithm [7], and in web
search, as the foundation for the Google search al-
gorithm [9]. Although PageRank has proven to be a
fairly effective ranking system, it is easily manipula-
ble by a variety of strategies, such as collusion or the
sybil attack [12, 5].

∗Center for Applied Mathematics, Cornell University, al-
ice@cam.cornell.edu

†School of Operations Research & Industrial Engineer-
ing and Center for Applied Mathematics, Cornell University,
ejf27@cornell.edu

0Work supported by NSF. ITR-0325453

We focus primarily on the sybil attack, described
by Douceur [4]. In this attack, a single user creates
several fake users - called sybils - who are able to
link to (or perform false transactions with) each other
and the original user. For example, in the web, a
user can create new webpages and manipulate the link
structure between them. In many online settings, new
identities are cheap to create, and it may be difficult
to distinguish between sybils and real users. In the
case of PageRank, users have already been observed
performing sybil-like strategies, such as forming link
farms [5].

It is easy to see that PageRank is vulnerable to
sybil attacks. However, as we showed in earlier work,
almost all practical reputation systems are vulner-
able to sybil attacks [3]. It may be unrealistic to
restrict one’s attention only to sybilproof reputation
systems, and reputation systems may vary widely in
their exploitability. For example, the indegree repu-
tation function (where a user’s reputation value is his
indegree) is easily exploitable - a user may increase his
indegree to any desired value by creating sybils. On
the other hand, a reputation function based on maxi-
mum flow is not sybilproof with respect to rank, but is
more difficult to manipulate. Thus, it becomes impor-
tant to gauge the degree of vulnerability of different
reputation systems. In order to systematically com-
pare PageRank to other reputation systems, we de-
velop a method of estimating the potential PageRank
rank and value improvement of a node in a web-like
graph.

In this paper, we begin this research program with
a formal and experimental analysis of the vulnerabil-
ity of PageRank to sybil attacks. We provide analytic
estimates of this vulnerability, which only depend on
the overall PageRank distribution in the graph and
then check the tightness of our analysis on empirical
web graph data. We find a very close agreement and
are led to believe that our estimates can be applied
to estimate the vulnerability of PageRank on web-like
graphs.

1

Page 75 of 82

2 Related Work

Our work is related to [12] which considers the ef-
fect of collusion on PageRank. Collusion is a strat-
egy where users mutually agree to alter their outlink
structure in order to improve their reputations. Col-
lusive strategies and sybil strategies differ in at least
two critical ways. First, a sybil creator can gain rep-
utation at the expense of his sybils, while colluders
are unlikely to cooperate unless both can raise their
reputations. Second, sybil strategies are likely to be
less constrained in size - a user can often easily cre-
ate a large sybil group, while it may be more difficult
to find an equal number of users to form a colluding
group.

Other related work includes Gyongyi and Garcia-
Molina who give a fairly exhaustive list of strate-
gies to falsely boost reputation on the web [5]. The
PageRank algorithm itself has generated a lot of inter-
est and study. Bianchini, Gori, and Scarselli consider
the total PageRank within a community of nodes, and
give methods for a community to boost its total rep-
utation [2]. A survey paper by Langville and Meyer
gives a general overview of the PageRank algorithm,
and discusses many issues including PageRank stabil-
ity and efficient computation [8].

3 Preliminaries

Given a set of users V , we represent the setting as a
directed graph G = (V, E) . The edges E represent
direct trust between users. For example, in the web,
an edge (i, j) ∈ E may represent a hyperlink from site
i to site j. Let n = |V |. Let d(i) be the outdegree
of the node i ∈ V . We require that every node has
positive outdegree. Since this isn’t always the case
for real world graphs, we will insert a self-loop for all
nodes with outdegree 0. We will assume that no other
nodes have self-loops.

3.1 PageRank

The PageRank values on a network graph G are given
by the stationary probabilities of the following ran-
dom walk on G: with probability 1− ε, a walker at a
node i walks along an outgoing edge of i, choosing the
edge uniformly with probability 1

d(i) , and with proba-
bility ε, jumps to a node chosen uniformly at random.
Let v be the vector of stationary probabilities - vi is
the stationary probability of the node i. The resulting
PageRank ranking is given by the order of the values
of v, sorted from highest to lowest (note that a higher
value vi corresponds to a lower numbered rank). For

convenience, we will typically not talk about the sta-
tionary vector of probabilities v, but will instead use
π = nv. Clearly, π yields the same ranking as v. For
a node i, we will refer to πi as its PageRank value and
its order on a highest to lowest list sorting the πj ’s as
its rank.

Given G, we can construct the adjacency matrix
of G, A, Aij = 1 if (i, j) ∈ E, and 0 otherwise. Let
M(G) be the matrix given by M(G)ij = Aji

d(j) .
Note that π is the principal eigenvector (with eigen-

value 1) of the matrix (1− ε)M(G) + ε
n

−→
1
−→
1 T , where−→

1 is the vector of all ones. That is, π satisfies the
following matrix equation:

(1− ε)M(G)π + ε
−→
1 = π

We may sometimes find it convenient to express
the above as a scalar equation: for a node i ∈ V ,

πi = (1− ε)
∑

j→i

πj

d(j)
+ ε,

where j → i to denotes (j, i) ∈ E (i.e. j points to
i).

We can also consider the iterative version of the
above equations, where πt

i → πi as t →∞ [8].

π0
j = 1, ∀j; πt

i = (1− ε)
∑

j→i

πt−1
j

d(j)
+ ε

3.2 Sybil Strategies

In a sybil strategy, a node creates k sybils, and manip-
ulates his own outlinks and those of his sybils. More
formally,

Definition 1 Given a graph G = (V,E) and a node
i ∈ V , a sybil strategy for the node i, is a new
graph G′ = (V ′, E′), such that V ′ = V ∪ S, where
S = {s1, . . . , sk} is a set of sybils (disjoint from the
original node set) and E′ is such that for all j ∈ V, j 6=
i, for all x ∈ V , (j, x) ∈ E ⇔ (j, x) ∈ E′.

A sybil collective is the node set S ∪ {i} (i and
its sybils). Let ri be the rank of i in G, πi be the
PageRank value of i in G. Let ρi be the new PageRank
value for i in G′ and r′i be the new rank. Then a
strategy is successful for i with respect to value if
ρi > πi. It is successful with respect to rank if r′i < ri.

We say that a reputation function is value (or
rank) sybilproof if for all graphs G, no node has a suc-
cessful sybil strategy with respect to value (or rank).

It is straightforward to come up with an exam-
ple where a node can increase its PageRank through
creating sybils. In [3], we showed that no nontrivial

2

Page 76 of 82

symmetric reputation system (i.e. one that is invari-
ant under a relabelling of the nodes) can be sybil-
proof. The version of PageRank that we described in
the previous section is clearly symmetric, so there is
a network where a node could benefit from creating
sybils. Further, by this result, we know that adjust-
ing some of the parameters of PageRank (such as the
value of ε) in a nontrivial way while maintaining sym-
metry cannot yield a sybilproof mechanism. However,
it is easy to show that even an asymmetric version of
PageRank (such as the version used in EigenTrust)
may be manipulated with sybils.

Note that a sybil creator may choose any config-
uration of edges within the sybil collective. However,
for the purposes of this paper, we focus on one partic-
ular sybil strategy. In this strategy, a node i removes
his outlinks, creates k sybils, and links to each of his
sybils. The sybils link only to the sybil creator i. Fig-
ure 4 (in the appendix) depicts a node applying this
strategy with 3 sybils.

Bianchini et. al. show that this configuration con-
centrates the maximum amount of reputation on the
sybil creator [2]. Intuitively, any random walk inside
the sybil collective must hit i on every other step.
Further, removing any links from the collective to
nodes outside of the collective improves their overall
PageRank - a random walk which enters the collective
must remain there until a random jump.

4 Analysis

Our main results are analytic bounds for the value
increase upon creating sybils which are presented be-
low. We then compare these bounds with empirical
data.

4.1 Value Increase

We give the following upper and lower bounds for
value increase:

Theorem 2 Let π be the old PageRank value vector,
and ρ be the new PageRank vector when node i creates
k sybils by the above strategy, keeping all other nodes
fixed. Then, if i has no self-loop in the original graph,
we have the following bounds:

πi + k
1− ε

2− ε
≤ ρi ≤ πi + ε(1− ε)k

ε(2− ε)

Since we typically talk about the ratio between ρ
and π, we give the corresponding bounds for the value
inflation ratio ρi/πi:

1 +
(

1− ε

2− ε

)
k

πi
≤ ρi

πi
≤ 1

ε(2− ε)
+

(
1− ε

2− ε

)
k

πi

A proof of this theorem is included in the ap-
pendix.

These bounds allow us understand how the value
increase changes as we increase the number of sybils
or vary ε. Further, for given values of ε and π, we
can estimate the number of sybils needed to increase
a node’s reputation by some given amount.

Increasing k increases both the upper and lower
bounds, and appears to yield larger increases in the
value inflation ratio when πi is small. For example, for
ε = 0.15, we have 1 + 0.46(k

πi
) ≤ ρi

πi
≤ 3.6 + 0.46(k

πi
),

meaning that for a node with value πi equal to the
mean value 1, doubling one’s value requires between
1 and 3 sybils. For a node with the median value,
which is ≈ 0.3 in our data sample, it requires only 1
sybil.

The above bounds are tight. The upper bound is
attained for nodes i that are contained in no cycles.
One can show (using similar techniques as in the proof
of the theorem), that in this case, the reputation of
i’s recommenders (those nodes j with j → i) are un-
changed when i removes its outlinks. With a simple
computation (or by following the proof of the above
theorem), the equality follows.

The lower bound is attained for subgraphs in a
“petal” configuration, where the node i points only to
nodes who point only back at i (as in the sybil config-
uration). This configuration attains the lower bound
because i’s recommenders were previously “sybil-like”,
in that they attained most of their reputation from
i and returned as much reputation as possible to i.
Once i removes its outlinks, the value of the links
(j, i) to i become very small.

However, most nodes may not lie in either of the
extremes described above. Indeed, it is reasonable
to expect (due to the observed high clustering in the
web [1]) that some nodes lie on short cycles, leading
to configurations similar to the “petal”. At the same
time, some of the edges out of i are likely not part of
short cycles, suggesting configurations as in the upper
bound.

4.1.1 Data for k = 1

In this section and the ones that follow we use a
dataset from a webcrawl, available at [6]. The to-
tal number of nodes is n = 281, 903. We preprocess
the graph to insert self-loops for each node with out-
degree 0, to guarantee that the matrix M(G) of the
graph (defined above) is indeed stochastic. In the
first experiment, we select 10000 nodes uniformly at
random from the graph, and for each node selected,
we create a single sybil for that node under the above
sybil strategy, keeping all other nodes fixed. We set

3

Page 77 of 82

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

old PageRank value

n
e
w

 P
R

 v
a

lu
e
/o

ld
 P

R
 v

a
lu

e

3.6 + (0.46/x)

1 + (0.46/x)

Figure 1: Old PageRank value (x axis) versus new
value/old value ratio for the case of 1 sybil, jump
parameter ε = 0.15. The lines are given by the theo-
retical upper and lower bounds.

the jump parameter ε to 0.15.
In Figure 1, we plot the old PageRank value πi

versus the ratio ρi

πi
. For the sake of visual clarity, we

cut off the graph at πi = 3, which still includes the
vast majority of the nodes (∼ 97%). We observe that
the nodes are able to achieve an average linear factor
increase of 4.7. Further, the upper and lower bounds
of the data appear to match closely with the com-
puted bounds. For larger values of πi, we found that
both the upper and lower bounds appear to be tight,
and the data points are roughly evenly distributed
between the bounds. For smaller values, the upper
bound appears tight, while the lower bound is not.
One possible explanation for this discrepancy is that
the lower bound (as discussed in the previous section)
is attained when the original node is in a sybil-like
structure, where the node is contained nearly exclu-
sively in small cycles (i.e. many paths out of the node
are small cycles). However, being in such a structure
may also suggest a higher reputation value than a typ-
ical node, so nodes that nearly attain the lower bound
may tend also to have higher reputation. In fact, the
central node of a petal will have a PageRank value
πi ≥ 1, and we note that the lower bound appears
tight in this regime in our plot.

Further, we can note that aside from the devia-

tion from the lower bound for lower reputation nodes,
the nodes appear fairly evenly spread between the
bounds, suggesting, as we stated earlier, that most
nodes are widely distributed between the extremes of
being in no cycles and being in many short cycles.

4.1.2 Data for k = 1, 2, 5, 10

For this experiment, we select a node uniformly at
random from the graph. For each node selected, we
set up a sybil strategy for that node with k = 1, 2, 5, 10.
We set the jump parameter to ε = 0.15. We repeat
this 1000 times.

We plot the ratio of new PageRank to old PageRank
in Figure 5, in the appendix. The data points ap-
pear roughly of the same shape as in the k = 1 case,
and the boundaries of the data points agree with our
computed bounds. Further, as in our bounds, we can
observe that lower value nodes tend to gain larger in-
creases with k and higher value nodes tend to have
more modest increases.

4.2 Rank Increase

In many settings (such as web page ranking) one cares
mainly about the ranking implied by the PageRank
values and not the actual values themselves. In this
section we evaluate the rank increases for a large class
of graphs based on an analysis of a large web graph.

Given the value bounds from Theorem 2, if we as-
sume that the PageRank values of most other nodes
remain roughly fixed, we can estimate the rank in-
crease using the PageRank distribution. Panduran-
gan et.al. estimate the probability density of PageRank
in a large web subgraph, and find a density of ≈ c

x2.1 ,
where c is a constant [10]. If we assume that the
PageRank density is F (x) = c

x2.1 , then Pr(πi ≥ x) =
d

x1.1 for some constant d. For a node i, if its PageRank
value is πi, a rough estimate of its rank would be
nPr(πi ≥ x) = nd

x1.1 . We found that our dataset
matches the rough estimates above fairly closely - for
nodes with rank < 40000, the value to rank function
is ≈ c1v

−1.1, and for nodes with rank > 50000, the
value to rank function is ≈ c2v

−0.86.
Let ri be the old rank of i and r′i be the new

rank. Let r(x) = cx−1.1 be the PageRank value to
rank function (for some constant c). Then, the new
rank to old rank ratio r′i

ri
≈ r(ρi)

r(πi)
= (πi

ρi
)1.1, using the

PageRank value ratio bounds, satisfies the bounds

(
1

1
ε(2−ε) + (1−ε

2−ε)
k
πi

)1.1

≤
(

πi

ρi

)1.1

≤
(

1
1 + (1−ε

2−ε)
k
πi

)1.1

.

4

Page 78 of 82

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6
x 10

4

old rank

n
e
w

 r
a
n

k

y = 0.14*x + 2.1e+03

Figure 2: Old rank (x axis) versus new rank for the
case k = 1, ε = 0.15

For ε = 0.15, and k = 1, the above bounds are
(πi

3.6πi+0.46)1.1 ≤ (πi

ρi
)1.1 ≤ (πi

πi+0.46)1.1. For large πi,
we expect a lower bound in the rank increase of 0.28
and an upper bound of ≈ 1. For nodes with small
πi, say πi < 1, which accounts for more than 80%
of the nodes in our graph, we have a lower bound
of approximately 0.13, and an upper bound of 0.66.
From our analysis of the bounds for the value ratio
in the previous section, we expect the lower bound to
be much more accurate than the upper bound in the
small πi regime.

Given these tools, we can estimate the number of
sybils needed for the median node (with rank n

2) to
rise to the top k, for any k. Take the rank function
r(v) to be r(v) = c

v1.1 for a constant c. Let r1 = n
2

be the rank of the median node. r2 = k. We can
estimate the corresponding values for a graph of size
n: v1 = r−1(r1) = (2c

n)1/1.1, v2 = r−1(r2) = (c
k)1/1.1.

The value ratio v2
v1

= (n
2k).91. Plugging in the value

ratio from the theorem inequalities (for ε = 0.15),
we have k ∼ πi

.46 (n
2k).91. Therefore, for a graph with

∼ 300000 nodes, and median πi = 0.3, a median node
requires ∼ 500 sybils to rise to the top 100. In a
graph with median value πi < 1, a median node would
require less than ∼ 76 sybils to rise to the top 1%.

4.2.1 Data for k = 1

The experimental setup is identical to the one de-
scribed in section 3.1.1. We plot the old rank ver-
sus the new rank in Figure 3. We find that all but
the very highest or very lowest ranked nodes are able
to improve (or decrease) in rank by a factor of ap-
proximately 0.14 times - approximately a 6-fold im-
provement. This value agrees well with our computed
lower bound (for small π) of 0.13. Further, we can ob-
serve that for nodes with original rank > 50000 (these
nodes have πi > 1), the improvement in rank is much
more spread out, and less significant - which may be
explained by the fact that the PageRank value ratios
are more spread out, and attain the upper and lower
bounds in the large πi regime.

4.2.2 Data for k = 1, 2, 5, 10

The experimental setup here is identical to the one
described in section 3.1.2. We plot the old rank versus
the new rank in Figure 6 (in the appendix) for k =
1, 2, 5, 10.

We see a much more dramatic improvement in
rank than value resulting from increasing the num-
ber of sybils. We find average ratios of old rank to
new rank, ri

r′i
of 7.1 for k = 1, 16.4 for k = 2, 40

for k = 5, and 90.9 for k = 10. As expected, as
in the value case and suggested by our bounds, sybil
creation tends to be more effective for higher ranked
(i.e., lower πi) nodes.

4.3 Varying ε and sybil strategies

One way to vary the PageRank algorithm is to alter
the parameter ε, which determines the probability of
making a random jump at each step of the random
walk. Our value bounds show that as ε increases, the
potential increase in value declines. Intuitively, if ε
is high, the effect of creating sybils may be reduced,
since a random walk does not remain trapped in sybil
collectives for a long time. By repeating the previous
experiments for various values of ε, we found that the
value increase does decline predictably as ε increases.
However, nodes were still able to achieve significant
rank improvements as we increased ε. In fact, higher
values of ε yielded slightly higher average increases in
rank for sybil-creating nodes. Figure 6 plots the av-
erage old rank to new rank ratio as ε varies. Though
the value increase declines as ε increases, raising ε
increases the likelihood of choosing a node at ran-
dom in the PageRank random walk, making the over-
all PageRank distribution more uniform, compressing
the set of typical pagerank values

5

Page 79 of 82

We also considered two different sybil strategies.
In one, users do not remove their outlinks to non-
sybil nodes. In the other, users move their outlinks
to a sybil node. In both of these cases, we observed
an improvement in PageRank value and rank, though
slightly less than in the original strategy.

5 Future Work

Our analysis shows that PageRank is extremely ma-
nipulable, even with simple strategies using a small
number of sybils. We provided tight analytic approx-
imations that can be used to estimate the manipula-
bility of Pagerank in a variety of settings.

One issue that we haven’t considered is the cor-
relations between web pages on similar topics. For
example, typically - and particularly in the web set-
ting - a node is competing with a subset of nodes
relating to the same topic (e.g. an electronics retailer
probably doesn’t care about ranking above a politi-
cal weblog). Therefore, one potential further area of
study is an analysis of how much the improvements
observed above allow a typical node to beat its most
likely competitors. Further the subset of competitors
may look very different from a uniformly random sub-
set of the web. For example, a subset of nodes all re-
lating to the same topic may be more clustered than
a random subset of the web. Is sybil creation more
effective or less in this setting?

In this paper, we focus entirely on the PageRank
algorithm, and find that it is easily manipulable. How-
ever, there are many other potential reputation sys-
tems, and we do not expect all of them to be as eas-
ily manipulable with sybils. Similar studies on the
manipulability of other reputation systems may al-
low direct comparison of the manipulability of various
reputation systems.

In particular, one would expect that there would
be a trade off between the quality of the ranking sys-
tem its manipulability. For example, as shown in
[3], the “shortest path” ranking system is immune
to sybil attacks; however, it is most likely less effec-
tive at ranking than PageRank. The development of
robust and efficient ranking mechanisms is an impor-
tant open problem.

References

[1] Lada Adamic. The small world web. In S. Abite-
boul and A.-M. Vercoustre, editors, Research and
Advanced Technology for Digital Libraries, Lec-
ture Notes in Comp. Sci.,1696, pages 443–452.
1999.

[2] Monica Bianchini, Marco Gori, and Franco
Scarselli. Inside pagerank. ACM Transactions
on Internet Technology, 5(1), February 2005.

[3] Alice Cheng and Eric Friedman. Sybilproof rep-
utation mechanisms. In Third Workshop on the
Economics of Peer-to-Peer Systems, 2005.

[4] J. Douceur. The sybil attack. In Proceedings of
the IPTPS02 Workshop, 2002.

[5] Z. Gyongyi and H. Garcia-Molina. Web spam
taxonomy. In In First International Workshop
on Adversarial Information Retrieval on the Web
(AIRWeb), 2005.

[6] Sepandar Kamvar. stanford.edu web crawl, 2002,
http://nlp.stanford.edu/ sdkamvar/data/stanford-
web.tar.gz.

[7] Sepandar D. Kamvar, Mario T. Schlosser, and
Hector Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In
Proceedings of the Twelfth International World
Wide Web Conference (WWW), 2003.

[8] Amy Langville and Carl Meyer. Deeper inside
pagerank. Internet Mathematics, 1(3), 2004.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order
to the web. In Proceedings of the 7th Interna-
tional World Wide Web Conference, pages 161–
172, 1998.

[10] Gopal Pandurangan, Prabhakar Raghavan, and
Eli Upfal. Using pagerank to characterize web
structure. In 8th Annual International Comput-
ing and Combinatorics Conference (COCOON),
2002.

[11] Paul Resnick, Richard Zeckhauser, John
Swanson, , and Kate Lockwood. The
value of reputation on ebay: A con-
trolled experiment. Working paper, avail-
able at http://www.si.umich.edu/ pres-
nick/papers/postcards/index.html, 2004.

[12] Hui Zhang, Ashish Goel, Ramesh Govindan,
Kahn Mason, and Benjamin Van Roy. Mak-
ing eigenvector-based reputation systems against
collusions. In The Third Workshop on Algo-
rithms and Models for the Web Graph, 2004.

6 Appendix

In this section, we wish to prove the following theo-
rem:

6

Page 80 of 82

Figure 3: On the left: a single node with both outlinks and inlinks from the rest of the graph (cloud). On
the right: the node removed its outlink, and created 3 sybils, arranged in the “petal” formation.

Theorem 3 Let π be the old PageRank value vector,
and ρ be the new PageRank vector when node i creates
k sybils by strategy A, keeping all other nodes fixed.
Then, if d(i) > 0, we have the following bounds:

ρi ≤ πi + ε(1− ε)k
ε(2− ε)

ρi ≥ πi + k
1− ε

2− ε

Let G = (V,E), be a directed graph with V =
{1, . . . , n}. For j ∈ V , let d(j) be the outdegree of
the node j. We define M(G) be the n × n matrix
such that

M(G)ij =
{ 1

d(j) if (i, j) ∈ E

0 otherwise

Define M̃, v, w such that

M(G) =
{

M̃ w
vT 0

}

WLOG let i = n. Let G′ = (V, E′) be the graph
where n removes its outlinks and creates a self loop.
Let G′′ be the graph where n has k sybils as in strat-
egy A.

Let π be the original PageRank vector for G, with
‖π‖1 = n, and let π′ be the PageRank vector for
G′, with ‖π′‖1 = n. Let ρ be the n + k vector such
that ρx = π′x for all x < n, ρn = 1−ε

2−εk + 1
2−επ

′
n and

ρx = 1
2−ε + 1−ε

2−ε
π′n
k for all x > n. By considering the

matrices M(G′),M(G′′) in block form as above, an
easy computation shows that (1−ε)M(G′′)ρ+ε

−→
1 = ρ.

Therefore, ρ is the unique PageRank vector of G′′

(normalized to n + k).
It suffices then to show that (2− ε)πn ≤ π′n ≤ πn

ε

Lemma 4 π′j ≤ πj for all j < n.

Proof: Note that the outdegrees of nodes j < n
in G′ are equal to their outdegrees in G, so we can
write the outdegree of x for x < n as d(x). Re-
call the iterative version of PageRank: (π′j)

t = (1 −
ε)

∑
x→j

(π′x)t−1

d(x) + ε, for t ≥ 1, and (π′j)
0 = 1 for all

j. Since (π′j)
t → π′j as t → ∞, it suffices to show

that (π′j)
t ≤ πt

j for all t, and for all j < n. This is
trivially true for t = 0. By induction, assume that
(π′x)t−1 ≤ πt−1

x for all x < n. Consider some node
j < n.

(π′j)
t = (1− ε)

∑

x:(x,j)∈E′

(π′x)t−1

d(x)
+ ε

≤ (1− ε)
∑

x:(x,j)∈E,x<n

(πx)t−1

d(x)
+ ε

≤ πt
j

The first inequality follows from induction and the
fact that n doesn’t point to any j < n in G′.

Plugging in πj for each π′j in the PageRank for-
mula for πn gives the upper bound. For the lower
bound, we have the following lemma:

Lemma 5 π′n ≥ (2− ε)πn.

Proof: Note that we require the assumption that
d(n) > 0 for this lemma. Consider a node i 6= n. In
the graph G′, we have

π′i = (1− ε)
∑

j→i,j 6=n

π′j
d(j)

+ ε,

7

Page 81 of 82

0 0.5 1 1.5 2
4

6

8

10

12

14

16

18

20

22

24

n
e
w

 P
R

 v
a

lu
e
/o

ld
 P

R
 v

a
lu

e

old PageRank value

k=1
3.6 + 1*(.46/x)
k=2
3.6 + 2*(.46/x)
k=5
3.6 + 5*(.46/x)
k=10
3.6 + 10*(.46/x)

Figure 4: Old PageRank value (x axis) versus old
value/new value ratio (y axis) for k = 1, 2, 5, 10. The
lines are the theoretical upper bounds for the various
values of k

by the fact that n points to no nodes other than itself
in G′. Applying the previous lemma, we have

π′i ≤ (1− ε)
∑

j→i,j 6=n

πj

d(j)
+ ε.

Note that πi = (1−ε)
∑

j→i,j 6=i
πj

d(j)+(1−ε)δni
πn

d(n)+ε,
where δni = 1 if (n, i) ∈ E, and 0 otherwise. There-
fore, we have

π′i ≤ πi − (1− ε)δni
πn

d(n)
.

We can sum the inequality over all i 6= n:
∑

i6=n

π′i ≤
∑

i6=n

πi − (1− ε)πn,

where we note that there are exactly d(n) nodes among
i 6= n with δni = 1 (n had no self-loops in the original
graph). Adding πi + π′i to both sides, we have

πi +
∑

i∈V

π′i ≤ π′i +
∑

i∈V

πi − (1− ε)πn.

Finally, by normalization,
∑

i∈V πi =
∑

i∈V π′i = n,
so πi ≤ π′i−(1−ε)πn. Rearranging, we get the desired
inequality: (2− ε)πi ≤ π′i

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6
x 10

4

old rank
n

e
w

 r
a
n
k

k=1
k=2
k=5
k=10

Figure 5: Old rank versus new rank for k = 1, 2, 5, 10,
ε = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

jump parameter

a
v
e

ra
g

e
 o

ld
 r

a
n

k
/n

e
w

 r
a

n
k

Figure 6: Jump parameter epsilon vs. average old
rank/new rank ratio

8

Page 82 of 82

	program.pdf
	ne06-assessing.pdf
	ne06-punishment.pdf
	ne06-reciprocity.pdf
	ne06-market.pdf
	ne06-streaming.pdf
	ne06-dandelion.pdf
	ne06-rational.pdf
	ne06-path-auction.pdf
	ne06-bootstrapping.pdf
	ne06-ranking.pdf
	1 Introduction
	2 A Generic Model for Ranking Systems
	3 Desiderata
	3.1 Case for Incentives

	4 Incentive Based Mechanisms for Ranking
	4.1 Ranking Mechanisms
	4.1.1 Tokens
	4.1.2 Incentives
	4.1.3 Properties of the System

	4.2 Comparison to Information Markets

	5 Future Directions

	ne06-havelaar.pdf
	ne06-sybil.pdf

