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Abstract

In this work we explore the topological structure of net-
works that guarantee that any routing of selfish users is ef-
ficient, i.e., any Nash equilibrium achieves the social opti-
mum.

We distinguish between two classes of atomic network
routing games. In both classes the cost of the social op-
timum is the maximum cost over the players. In the first,
network congestion games, the player’s cost is the sum of
the latency costs over the edges in its route, while in the
second,bottleneck routing games, the player’s cost is the
maximum edge cost over the edges in its route.

Our interesting results are for the symmetric case of a
single source and a single destination (single-commodity).
We show that for network congestion games the efficient
topologies are exactly Extension Parallel Graphs, while for
bottleneck routing games the efficient topologies are exactly
Series Parallel Graphs. For the asymmetric case of mul-
tiple sources or destinations (multi-commodity), we show
that the efficient topologies are very limited and include ei-
ther trees or trees with parallel edges.

1 Introduction

A very natural setting of routing includes multiple play-
ers that each would like to establish a connection between
a source and a destination. Each of the players is self-
ish, and would like to route its connection as to minimize
its cost. An equilibrium is a collection of routes (one per
player) where no player can improve its cost by changing
its route (unilaterally). This general setting is anetwork
routing game.

Network routing games have been the subject of inten-
sive study initially in game theory and recently in computa-
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tional game theory, where the main aim has been to bound
the inefficiency of a Nash equilibrium in comparison to the
social optimum solution. The Price of Anarchy, which is
the ratio between the worst Nash equilibrium and the social
optimum cost, has been the major measure by which this
inefficiency has been quantified [12, 13, 1, 3, 14, 15, 2].

In this work we take a different approach. Rather than
quantifying the inefficiency of Nash equilibrium, we char-
acterize the topologies that guarantee that the cost of any
Nash equilibrium is the social optimum cost. We concen-
trate on topological properties of graphs, and say that a
graph isefficientif, for any assignment of non-decreasing
cost functions on the edges, the resulting congestion game
has the property that the cost of any Nash equilibrium coin-
cides with the social optimum cost.

One can view this separation between the graph topol-
ogy and the costs, as a separation between the underlying
infrastructure and the costs the players observe to purchase
routes. While one expects the infrastructure to be stable
over long period of times, the costs the players observe
can be easily modified over short time periods. Topologi-
cal characterizations for single-commodity network games
(i.e., where all players share the same source and destina-
tion nodes) have been recently provided for various equi-
librium properties, including (Nash and strong) equilibrium
existence [10, 4, 6, 7], equilibrium uniqueness [8] and equi-
librium efficiency [12, 9].

Our main results are for two classes of atomic network
routing games. In both classes the social cost is themaxi-
mumcost of the individual players (unlike the more “stan-
dard” social cost which is the sum, or equivalently average,
of the players’ costs). This social cost has been first stud-
ied in [13], where it was shown that in non-atomic single-
commodity network congestion games, the price of anarchy
is n− 1. We distinguish between two classes of atomic net-
work routing games with themaximumsocial cost. In the
first class, network congestion games, the player’s cost is
anaggregative cost, i.e., the sum of the edge costs over the
edges in its route. In the second class, bottleneck routing
games, the player’s cost is amaximum cost, i.e., the maxi-
mum edge cost over the edges in its route. The latter case
has been first studied by [2], who provided bounds for the
price of anarchy in the splittable and unsplittable flow mod-
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els.
Our social cost function resembles the Max-Min Fair-

ness criterion, where the goal of the network operator is to
maximize the fairness between the different network users.
The aggregative player’s cost is applicable in cases such as
delay, where the total user’s delay is composed of the de-
lay on the various links it traverses. The maximum cost can
represent a bandwidth allocation problem, where the user’s
bandwidth is limited by the most loaded link on its path.

Our interesting results are for the symmetric case of a
single source and a single destination. We show that for net-
work congestion games the efficient topologies are exactly
Extension Parallel Graphs (EPG), while for bottleneck rout-
ing games the efficient topologies are exactly Series Parallel
Graphs (SPG). Our proofs show an even stronger property
in such topologies. They show that each player, for any
joint action of the other players (a selection of paths), has
a best responsewhose cost is at most the social optimum
cost (recall that the social cost is the maximum over users’
costs).

For the case of multiple destinations (or equivalently
multiple sources) we show that the efficient topologies are
very limited. For network congestion games the only effi-
cient topologies are either trees or two nodes with parallel
edges. For bottleneck routing games we show that the only
efficient topologies are trees with parallel edges.

2 Model

A gameΛ = (N, {Σi}i∈N , {ci}i∈N ), has a setN of
n ≥ 2 players, and for each playeri ∈ N , a finite set
of actionsΣi and a cost functionci mapping fromΣ =
Σ1 × . . . × Σn to the reals. LetS = (S1, . . . , Sn) ∈
Σ denote the joint action taken by the players, and let
S−i = (S1, . . . , Si−1, Si+1, . . . , Sn) denote the joint ac-
tion taken by players other than playeri. We also denote
S = (Si, S−i).

The network routing games that we will be considering
will have an underlying graphG = (V, E), whereV is the
set of nodes andE ⊂ V × V the set of edges. Each player
i ∈ N has a source nodesi ∈ V and a destination node
ti ∈ V . The action setΣi of playeri is a set of paths inG
connectingsi to ti.

Each edgee ∈ E is associated with a non-decreasing
cost functionℓe : {1, 2, . . . , n} → ℜ. Given a joint action
S = (S1, . . . , Sn), we denote byne(S) = |{i|e ∈ Si}| the
number of players that route using edgee in the joint action
S. In anetwork congestion gamethe cost of a player is the
aggregate cost, i..e., ci(S) =

∑
e∈Si

ℓe(ne(S)), and in a
bottleneck routing gamethe cost of a player is themaximum
cost, i.e.,ci(S) = maxe∈Si

ℓe(ne(S)).
A network routing game on a graphG is symmetric

if all players have the same source node and destination

node (also called single-source single-destination or single-
commodity). Otherwise, it is calledasymmetric(either mul-
tiple sources, multiple destinations or both).

Given a gameΛ, we need to define itssocial cost. Ab-
stractly, there is a functioncostΛ such that the social cost
of S ∈ Σ is costΛ(S), and the optimal social cost is
OPT (Λ) = minS∈Σ costΛ(S). In this paper we concen-
trate on the case thatcostΛ(S) = maxi∈N ci(S)
Pure Nash Equilibrium: A joint actionS ∈ Σ is a pure
Nash Equilibriumif no playeri ∈ N can benefit from uni-
laterally deviating from his action to another action, i.e.,
∀i ∈ N ∀S′

i ∈ Σi : ci(S−i, S
′

i) ≥ ci(S).
Since every congestion game possesses at least one pure

Nash equilibrium [11], it is guaranteed that there is a pure
Nash equilibrium. The proof for the existence of a pure
Nash equilibrium for bottleneck routing games is based on
showing that any best response dynamics converges to a
pure Nash Equilibrium, and is similar in spirit to that of
job scheduling [5].

Proposition 2.1 Every network congestion game and every
bottleneck routing game, possesses at least one pure Nash
equilibrium.

To fully characterize the set of network topologies in
which pure Nash equilibrium is the social optimum in
this family of games, we first provide a definition of an
optimum-inducing network topology.

Definition 2.2 A graph topologyG = (V, E) is optimum-
inducing for a family of network routing gamesF if for
every network routing gameΛ ∈ F on the graphG,
maxS∈Φ(Λ)costΛ(S) = OPT (Λ), whereΦ(Λ) is the set
of pure Nash equilibria of the gameΛ.

We also need the following definition of embedding. A
graphG′ is embeddedin a graphG if G′ can be obtained
from G by a sequence of removal of edges and contraction
of edges (identification of the two vertices connected by an
edge). Note that intuitively, removal of an edge is equiva-
lent to assigning the edge the latency functionℓe(x) = +∞
and contraction of edge is equivalent to assigning the edge
the latency functionℓe(x) = 0. It is easy to see that if the
embedded graphG′ is not optimum inducing for a given
network routing game, then any graphG, such thatG′ is
embedded inG, is also not optimum inducing (this is shown
by simulating the game ofG′ on the graphG using appro-
priate latency functions).

2.1 Extension Parallel and Series Parallel
Graphs

Our graphs would have asourcenode and asink node.
We first define the following actions for composition of
graphs.
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• Identification: Theidentificationoperation allows to
collapse two nodes to one. More formally, given graph
G = (V, E) we define theidentificationof a nodev1 ∈
V andv2 ∈ V forming a new nodev ∈ V as creating a
new graphG′ = (V ′, E′), whereV ′ = V \ {v1, v2} ∪
{v} andE′ includes the edges ofE where the edges of
v1 andv2 are now connected tov.

• Parallel composition: Given two graphs,G1 =
(V1, E1) andG2 = (V2, E2), with sourcess1 ∈ V1

ands2 ∈ V2 and sinkst1 ∈ V1 andt2 ∈ V2, respec-
tively, we define a new graphG = G1||G2 as follows.
Let G′ = (V1 ∪ V2, E1 ∪ E2) be the union graph. To
createG = G1||G2 we identify the sourcess1 ands2,
forming a new source nodes, and identify the sinkst1
andt2, forming a new sinkt.

• Series composition: Given two graphs,G1 = (V1, E1)
andG2 = (V2, E2), with sourcess1 ∈ V1 ands2 ∈
V2 and sinkst1 ∈ V1 and t2 ∈ V2, respectively, we
define a new graphG = G1 → G2 as follows. Let
G′ = (V1∪V2, E1∪E2) be the union graph. To create
G = G1 → G2 we identify the verticest1 and s2,
forming a new vertexu. The graphG has a source
s = s1 and a sinkt = t2.

• Extension composition : A series composition when
one of the graphs,G1 or G2, is composed of a single
edge is an extension composition, and we denote it by
G = G1 →e G2.

An extension parallel graph (EPG)is a graphG con-
sisting of either: (1) a single edge(s, t), (2) a graphG =
G1||G2, whereG1 and G2 are extension parallel graphs,
or (3) a graphG = G1 →e G2, where eitherG1 or G2

is composed of a single edge and the other is an extension
parallel graph. Aseries parallel graph (SPG)is a graph
G consisting of either: (1) a single edge(s, t), (2) a graph
G = G1||G2 or (3) a graphG = G1 → G2, whereG1 and
G2 are series parallel graphs.

3 Efficient Topologies in Network Congestion
Games

In a non-increasing network congestion game, the de-
lay function ℓe(x) is non-decreasing inx, and ci(S) =∑

e∈Si
ℓe(ne(S)). There are two common social costs that

are studied in the context of network congestion games,
namely the maximum latency [13] and the total latency
[12, 15, 14]. Here, we consider the maximum latency so-
cial cost,cost(S) = maxi ci(S). We note that for the to-
tal latency social cost function, the price of anarchy is un-
bounded even for a simple topology of two parallel edges

t

e3

e2

e4

e1

s

(a)

t

e3

e2

e4

e1

s

(b)

e5

Figure 1. Graph(a) is embedded in every graph which is
not EPG, and graph(b) is embedded in every graph which
is not SPG.

[12]. In this section we characterize optimum-inducing net-
work topologies in symmetric network congestion games
with a maximum latency social cost. Milchtaich [9] pro-
vided a similar characterization for the non-atomic case1.
Our main focus is on symmetric network congestion games,
since we show that for asymmetric network congestion
games any optimum-inducing graph is a forest or a graph
with two vertices.

Consider a symmetric network congestion game on an
extension parallel graph. Then, in any joint action of the
players the cost of the best response strategy of any player
is at most the optimal social cost.

Lemma 3.1 Let Λ be a non-increasing symmetric network
congestion game on an extension parallel graphG with
sources and sinkt. Consider any joint actionS ∈ Σ. Let
Pi be a best response of any playeri. Thenci(Pi, S−i) ≤
OPT (Λ).

Proof: We prove the lemma by induction on the network
size |V |. Let Λ be a non-increasing network congestion
game on an EPGG = (V, E). The claim obviously holds if
|V | = 2.
Extension composition: Suppose the graphG = G1 →e

G2 is an extension composition of the graphG1 consisting
of a single edgee = (s1, t1) and an EPGG2 = (V2, E2)
with terminalss2, t2, such thats = s1 andt = t2 (the case
thatG2 is a single edge is similar). LetΛ′ be the original
game on the graphG2. The joint actionS′ of the gameΛ′ is
obtained fromS by removing the edgee from the strategy
Sj of any playerj. Let P ′

i be a best response of playeri in
the gameΛ′ and letPi = P ′

i ∪ {e}. Then, by the induction
hypothesisci(P

′

i , S
′

−i) ≤ OPT (Λ′). Hence,ci(Pi, S−i) ≤
OPT (Λ).
Parallel composition: Suppose the graphG = G1||G2 is
a parallel composition of two EPG graphsG1 andG2. Let
S∗ be the optimal joint action, i.e.,OPT (Λ) = costΛ(S∗).

1Milchtaich’s definition of Pareto efficiency coincides withthe social
optimum under the maximum latency social cost.

3



Let Tj be the set of players using paths inGj according to
S andxj = |Tj |. LetT ∗

j be the set of players using paths in
Gj according toS∗ andx∗

j = |T ∗

j |. There are two cases:
Case 1:x1 = x∗

1 andx2 = x∗

2. Let Λ1 andΛ2 be the orig-
inal game on the respective graphsG1 andG2 with players
T1 andT2 respectively. LetS be a joint action of the players
in the gameΛ and letS′ andS′′ be the induced joint actions
of the players in the gamesΛ1 andΛ2 respectively. By the
induction hypothesis for every playeri in the gameΛ1 with
best response strategyPi, ci(Pi, S

′

−i) ≤ OPT (Λ1) and for
every playeri in the gameΛ2 with best response strategyPi,
ci(Pi, S

′′

−i) ≤ OPT (Λ2). SinceOPT (Λj) ≤ OPT (Λ),
we obtain that for every playeri, ci(Pi, S−i) ≤ OPT (Λ).
Case 2: There exists a networkGj for which x∗

j > xj .
W.l.o.g., supposex∗

1 > x1. Consider playeri. Let x′

1 =
|T1 ∪ {i}|. Then,x∗

1 ≥ x1 + 1 ≥ x′

1. Let Λ1 be the orig-
inal game on the graphG1 with playersT1 ∪ {i}. Let S

be the joint action of the players in the original gameΛ, let
S′ be the induced joint action of the playersT1 in the game
Λ1 and letPi be the best response strategy (path) of player
i in Λ1 for the joint actionS′. It follows from the induc-
tion hypothesis that inΛ1 we haveci(Pi, S

′) ≤ OPT (Λ1).
Sincex∗

1 ≥ x′

1, we have thatOPT (Λ1) ≤ OPT (Λ), and
therefore it follows thatci(Pi, S−i) ≤ OPT (Λ).

The following theorem follows directly from Lemma
3.1.

Theorem 3.2 If a graphG is an EPG, then it is optimum-
inducing for symmetric network congestion games.

Next we show that the only efficient topology for symmetric
network congestion games is an EPG.

Theorem 3.3 Let G be a graph that is optimum-inducing
for symmetric network congestion games. Then,G is an
EPG.

Proof: Let G be a graph that is not an EPG. We use the
following lemma, which is implicit in [9].

Lemma 3.4 [9] Let G be a graph that is not an EPG. Then,
the network in figure 1(a) is embedded inG.

Consider the graph given in Figure 1(a) with the follow-
ing delay functions:ℓe1

(x) = 2, ℓe2
(x) = x, ℓe3

(x) =
x, ℓe4

(x) = 2. Consider a symmetric network conges-
tion game with two players played on the graphG with
sources and sinkt. One can verify that this game admits
a pure Nash equilibrium in whichS1 = S2 = {e2, e3},
resulting in cost(S) = 4. Consider the joint actionS′

in which S′

1 = {e1, e3} and S′

2 = {e2, e4}. It holds
that cost(S′) = 3 < 4 = cost(S). Therefore,G is not
optimum-inducing.

Theorem 3.2 and Theorem 3.3 yield the following corol-
lary.

Corollary 3.5 In a symmetric network congestion game
with the maximum latency social cost, a graph topologyG

is optimum-inducing if and only ifG is an EPG.

Finally we characterize efficient topologies for asymmet-
ric network congestion games.

Lemma 3.6 Any connected graph with at least3 vertices
containing a cycle is not optimum-inducing for asymmetric
network congestion games.

Proof: We prove the claim by showing that every graph
containing a cycle of length2 or a cycle of length3 is
not optimum-inducing for asymmetric network congestion
games. Suppose the graphG contains a cycle of length2.
Consider the graphG given in Figure 2(a) with the follow-
ing delay functions:ℓe1

(x) = x, ℓe2
(x) = 2, ℓe3

(x) = 2.
Consider an asymmetric network congestion game with two
players played on the graphG. The two players share
a common sources and the sinks of players1 and 2 are
t1 and t2 respectively. One can verify that this game ad-
mits a pure Nash equilibrium in whichS1 = {e1} and
S2 = {e1, e3}, resulting incost(S) = 4. However, the
joint action S′ in which S′

1 = {e2} and S′

2 = {e1, e3}
yields cost(S′) = 3 < 4 = cost(S). Therefore,G is
not optimum-inducing. Now suppose the graphG con-
tains a cycle of length3. Consider the graphG given in
Figure 2(b) with the following delay functions:ℓe1

(x) =
2x, ℓe2

(x) = 2x, ℓe3
(x) = x. Consider an asymmetric net-

work congestion game with two players played on the graph
G. The two players share a common sources and the sinks
of players1 and2 aret1 andt2 respectively. One can ver-
ify that this game admits a pure Nash equilibrium in which
S1 = {e2, e3}, S2 = {e1, e3}, resulting incost(S) = 4.
However, the joint actionS′ in which S′

1 = {e1} and
S′

2 = {e2} yields cost(S′) = 2 < 4 = cost(S). There-
fore,G is not optimum-inducing.

The following theorem follows directly from Lemma
3.6.

Theorem 3.7 For asymmetric network congestion games,
every optimum-inducing connected graph is a tree or a
graph with two vertices.

4 Efficient Topologies in Bottleneck routing
games

In a bottleneck routing game, the delay functionℓe(x)
is non-decreasing inx, ci(S) = maxe∈Si

ℓe(ne(S)), and
the social cost iscost(S) = maxi ci(S). We note that for
the total bottleneck social cost function, i.e.,cost(S) =∑

i ci(S), the price of anarchy is unbounded even for a
simple topology of two parallel edges. This is shown by
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Figure 2. Asymmetric network routing games.

the same example given in [12] for the unbounded price
of anarchy in network congestion games with the total la-
tency social cost. In this section we characterize optimum-
inducing network topologies in bottleneck routing games
with the maximum bottleneck social cost. We consider only
symmetric bottleneck routing games, since we show that
for asymmetric bottleneck routing games every optimum-
inducing connected graph is a tree with possibly multiple
parallel edges.

Consider a symmetric bottleneck routing game on a se-
ries parallel graph. Then, in any joint action of the players
the cost of the best response strategy of any player is at most
the optimal social cost.

Lemma 4.1 LetΛ be a symmetric bottleneck routing game
on a series parallel graphG with sources and sinkt. Con-
sider any joint actionS ∈ Σ. LetPi be a best response of
any playeri. Thenci(Pi, S−i) ≤ OPT (Λ).

Proof: We prove the lemma by induction on the network
size|V |. The claim obviously holds if|V | = 2. We show
the claim for a series composition, i.e.,G = G1 → G2,
and for a parallel composition, i.e.,G = G1||G2, where
G1 = (V1, E1) andG2 = (V2, E2) are SPG’s with sources
s1, s2, and sinkst1, t2, respectively. LetΛ be a bottleneck
routing game on an SPGG = (V, E).

Series composition: Let G = G1 → G2. Let Λ1

andΛ2 be the original game on the respective graphsG1

andG2. Let S be a joint action of the gameΛ and letS′

andS′′ be the induced joint actions of the players in the
gamesΛ1 andΛ2 respectively. Consider playeri such that
ci(S) = maxj cj(S). Let P ′

i andP ′′

i be the best response
strategies (paths) of playeri in the gamesΛ1 andΛ2 re-
spectively and letPi = P ′

i ∪ P ′′

i be a strategy of player
i in the original gameΛ. By the induction hypothesis,
ci(P

′

i , S
′

−i) ≤ OPT (Λ1) andci(P
′′

i , S′′

−i) ≤ OPT (Λ2).
Since OPT (Λ) = max(OPT (Λ1), OPT (Λ2)), we get
ci(Pi, S−i) ≤ OPT (Λ).

Parallel composition: the proof is similar to the parallel

composition case in Lemma 3.1.
The following theorem follows directly from Lemma

4.1.

Theorem 4.2 Any SPG is optimum-inducing for symmetric
bottleneck routing games.

Next we show that the only efficient topology for symmetric
bottleneck routing games is an SPG.

Theorem 4.3 Let G be a graph that is optimum-inducing
for bottleneck routing games. Then,G is an SPG.

Proof: Let G be a graph that is not an SPG. We use the
following lemma, which is implicit in [9]:

Lemma 4.4 [9] Let G be a graph that is not an SPG. Then,
the graph in figure 1(b) is embedded inG.

Consider the graph given in Figure 1(b) with the following
delay functions:ℓe1

(x) = ℓe3
(x) = x, ℓe2

(x) = ℓe4
(x) =

ℓe5
(x) = 2x. Consider a symmetric bottleneck routing

game with six players played on the graphG with source
s and sinkt. One can verify that this game admits a pure
Nash equilibrium in whichS1 = S2 = S3 = {e2, e5, e3}
andS4 = S5 = S6 = {e1, e3} resulting incost(S) = 6.
However, the joint actionS′ in which S′

1 = S′

2 = {e2, e4}
andS′

3 = S′

4 = S′

5 = S′

6 = {e1, e3} yieldscost(S′) = 4 <

6 = cost(S). Therefore,G is not optimum-inducing.
Theorem 4.2 and Theorem 4.3 yield the following corol-

lary.

Corollary 4.5 For symmetric bottleneck routing games, a
graph topologyG is optimum-inducing if and only ifG is
an SPG.

Finally we characterize efficient topologies for asymmet-
ric bottleneck routing games.

Lemma 4.6 Any graph containing a cycle of length3 is
not optimum-inducing for asymmetric bottleneck routing
games.

Proof: Consider the graphG given in Figure 2(b) with the
following delay functions:ℓe1

(x) = ℓe2
(x) = ℓe3

(x) = x.
Consider an asymmetric bottleneck routing game with two
players played on the graphG. The two players share a
common sources and the sinks of players1 and2 aret1 and
t2 respectively. One can verify that this game admits a pure
Nash equilibrium in whichS1 = {e2, e3}, S2 = {e1, e3},
resulting incost(S) = 2. However, the joint actionS′ with
S′

1 = {e1} andS′

2 = {e2} yields cost(S′) = 1 < 2 =
cost(S). Therefore,G is not optimum-inducing.

The following theorem follows from Lemma 4.6 and
the simple fact that in every asymmetric bottleneck routing
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game on a tree with possibly multiple parallel edges and
for every joint action of the players, the cost of the best re-
sponse strategy of every player is at most the optimal social
cost.

Theorem 4.7 For asymmetric bottleneck routing games ev-
ery optimum-inducing connected graph is a tree with possi-
bly multiple parallel edges.
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