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tional game theory, where the main aim has been to bound
the inefficiency of a Nash equilibrium in comparison to the

In this work we explore the topological structure of net- social optimum solution. The Price of Anarchy, which is
works that guarantee that any routing of selfish users is ef- the ratio between the worst Nash equilibrium and the social
ficient, i.e., any Nash equilibrium achieves the social-opti optimum cost, has been the major measure by which this

mum.

We distinguish between two classes of atomic network

inefficiency has been quantified [12, 13, 1, 3, 14, 15, 2].
In this work we take a different approach. Rather than

routing games. In both classes the cost of the social op-quantifying the inefficiency of Nash equilibrium, we char-
timum is the maximum cost over the players. In the first, acterize the topologies that guarantee that the cost of any

network congestion gamethe player’s cost is the sum of

Nash equilibrium is the social optimum cost. We concen-

the latency costs over the edges in its route, while in thetrate on topological properties of graphs, and say that a

second bottleneck routing gameshe player’s cost is the
maximum edge cost over the edges in its route.

graph isefficientif, for any assignment of non-decreasing
cost functions on the edges, the resulting congestion game

Our interesting results are for the symmetric case of a has the property that the cost of any Nash equilibrium coin-
single source and a single destination (single-commodity) cides with the social optimum cost.
We show that for network congestion games the efficient One can view this separation between the graph topol-
topologies are exactly Extension Parallel Graphs, while fo  ogy and the costs, as a separation between the underlying
bottleneck routing games the efficient topologies are &xact infrastructure and the costs the players observe to puechas
Series Parallel Graphs. For the asymmetric case of mul- routes. While one expects the infrastructure to be stable
tiple sources or destinations (multi-commodity), we show gver long period of times, the costs the players observe
that the efficient topologies are very limited and include ei can be easily modified over short time periods. Topologi-
ther trees or trees with parallel edges. cal characterizations for single-commodity network games
(i.e., where all players share the same source and destina-
tion nodes) have been recently provided for various equi-
librium properties, including (Nash and strong) equilifoni
existence [10, 4, 6, 7], equilibrium uniqueness [8] and equi

A very natural setting of routing includes multiple play- librium efficiency [12, 9].
ers that each would like to establish a connection between Our main results are for two classes of atomic network
a source and a destination. Each of the players is self-routing games. In both classes the social cost isnhi-
ish, and would like to route its connection as to minimize mumcost of the individual players (unlike the more “stan-
its cost. An equilibrium is a collection of routes (one per dard” social cost which is the sum, or equivalently average,
player) where no player can improve its cost by changing of the players’ costs). This social cost has been first stud-
its route (unilaterally). This general setting isnatwork ied in [13], where it was shown that in non-atomic single-
routing game commodity network congestion games, the price of anarchy

Network routing games have been the subject of inten-isn — 1. We distinguish between two classes of atomic net-
sive study initially in game theory and recently in computa- work routing games with thenaximumsocial cost. In the
first class, network congestion games, the player’s cost is
anaggregative cost.e., the sum of the edge costs over the
edges in its route. In the second class, bottleneck routing
games, the player’s cost israaximum costi.e., the maxi-
mum edge cost over the edges in its route. The latter case
has been first studied by [2], who provided bounds for the
price of anarchy in the splittable and unsplittable flow mod-
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els. node (also called single-source single-destination @lsin

Our social cost function resembles the Max-Min Fair- commodity). Otherwise, it is callesymmetri¢either mul-
ness criterion, where the goal of the network operator is totiple sources, multiple destinations or both).
maximize the fairness between the different network users. Given a game\, we need to define itsocial cost Ab-

The aggregative player’s cost is applicable in cases such astractly, there is a functionost, such that the social cost
delay, where the total user’s delay is composed of the de-of S € X is costa(S), and the optimal social cost is
lay on the various links it traverses. The maximum cost can OPT(A) = minges costa(S). In this paper we concen-
represent a bandwidth allocation problem, where the user'strate on the case thabsta (S) = max;en ¢;(S)

bandwidth is limited by the most loaded link on its path. Pure Nash Equilibrium: A joint action S € X is apure

Our interesting results are for the symmetric case of a Nash Equilibriumif no playeri € N can benefit from uni-
single source and a single destination. We show that for net-laterally deviating from his action to another action, ,i.e.
work congestion games the efficient topologies are exactlyVi € N VS, € 3; : ¢;(S—:,S) > ¢i(S).

Extension Parallel Graphs (EPG), while for bottleneck+rout Since every congestion game possesses at least one pure
ing games the efficient topologies are exactly Series Rarall Nash equilibrium [11], it is guaranteed that there is a pure
Graphs (SPG). Our proofs show an even stronger propertyNash equilibrium. The proof for the existence of a pure

in such topologies. They show that each player, for any Nash equilibrium for bottleneck routing games is based on
joint action of the other players (a selection of paths), has showing that any best response dynamics converges to a
a best respons#hose cost is at most the social optimum pure Nash Equilibrium, and is similar in spirit to that of
cost (recall that the social cost is the maximum over users’job scheduling [5].

Costs).

For the case of multiple destinations (or equivalently
multiple sources) we show that the efficient topologies are
very limited. For network congestion games the only effi-
cient topologies are either trees or two nodes with parallel 1, fully characterize the set of network topologies in
edges. For bottleneck routing games we show that the onlyyhich pure Nash equilibrium is the social optimum in
efficient topologies are trees with parallel edges. this family of games, we first provide a definition of an

optimume-inducing network topology.

Proposition 2.1 Every network congestion game and every
bottleneck routing game, possesses at least one pure Nash
equilibrium.

2 Model Definition 2.2 A graph topologyG = (V, E) is optimum-

inducing for a family of network routing game% if for
A gameA = (N,{X;}ien, {ci}ien), has a setV of every network routing gamd € F on the graphG,

noz 2 players, and for each_play@re N a finite set mazsean)costa(S) = OPT(A), whered(A) is the set
of actionsX; and a cost functior; mapping fromY = of pure Nash equilibria of the game

¥ X ... x X, to the reals. LetS = (51,...,5,) €

Y. denote the joint action taken by the players, and let We also need the following definition of embedding. A

S_; = (S1,...,8i-1,S8i+1,-..,5,) denote the joint ac- graphG’ is embeddedn a graphG if G’ can be obtained

tion taken by players other than player We also denote  from G by a sequence of removal of edges and contraction

S =(Si,S5-:). of edges (identification of the two vertices connected by an
The network routing games that we will be considering edge). Note that intuitively, removal of an edge is equiva-

will have an underlying grapt¥ = (V, E), whereV is the lent to assigning the edge the latency functipfx) = +oo

set of nodes and’ C V' x V the set of edges. Each player and contraction of edge is equivalent to assigning the edge

1 € N has a source node € V and a destination node the latency functiord.(z) = 0. Itis easy to see that if the

t; € V. The action seE; of playeri is a set of paths iid7 embedded grapli’ is not optimum inducing for a given

connectings; to ¢;. network routing game, then any graph such thati’ is
Each edge: € F is associated with a non-decreasing embedded id7, is also not optimum inducing (this is shown

cost function?, : {1,2,...,n} — R. Given a joint action by simulating the game a&’ on the graptG using appro-

S = (S1,...,5,), we denote by:.(S) = |{ile € S;}| the priate latency functions).

number of players that route using edge the joint action

S. In anetwork congestion gantke cost of a playeristhe 2.1 Extension Parallel and Series Parallel

aggregate costi..e., c;(S) = > cg. le(ne(S)), and in a Graphs
bottleneck routing gaméle cost of a player is thmaximum
cost i.e.,c;(S) = maxeegs; le(ne(9)). Our graphs would have sourcenode and aink node.

A network routing game on a grap# is symmetric ~ We first define the following actions for composition of
if all players have the same source node and destinationgraphs.



¢ |dentification: Theidentificationoperation allows to
collapse two nodes to one. More formally, given graph
G = (V, E) we define thédentificationof a nodev; €
V andv, € V forming a new node € V as creating a
new graph’ = (V', E’), whereV' =V \ {v1,v2} U
{v} andE’ includes the edges @ where the edges of
v1 andvy are now connected t@

e Parallel composition: Given two graphsy; =
(Vi, Eq) and Gy = (Va, E»), with sourcess; € V;
ands, € V5 and sinkst; € V; andty, € Vs, respec-
tively, we define a new grapfi = G1||G as follows.

Figure 1. Graph(a) is embedded in every graph which is
not EPG, and grapfb) is embedded in every graph which

LetG’ = (V1 U Vs, Eq U E») be the union graph. To 's not SPG.
createG = G1||G, we identify the sources, andss,
forming a new source nodg and identify the sinks,
andt,, forming a new sink. [12]. In this section we characterize optimum-inducing net
work topologies in symmetric network congestion games
e Series composition: Given two graplds, = (V1, E) with a maximum latency social cost. Milchtaich [9] pro-
andGy = (Vs Fy), with sourcess; € Vi andsy € vided a similar characterization for the non-atomic éase

V» and sinkst; € Vi andt, € Vs, respectively, we  Our main focus is on symmetric network congestion games,
define a new graply = G; — G as follows. Let  since we show that for asymmetric network congestion
G' = (V1 UVa, E1 U E5) be the union graph. To create games any optimum-inducing graph is a forest or a graph

G = G; — Gy we identify the vertices; and s,, with two vertices.
forming a new vertexs. The graphG has a source Consider a symmetric network congestion game on an
s = s and a sinkt = . extension parallel graph. Then, in any joint action of the

players the cost of the best response strategy of any player
e Extension composition : A series composition when is at most the optimal social cost.
one of the graphs; or G, is composed of a single
edge is an extension composition, and we denote it byLemma 3.1 Let A be a non-increasing symmetric network
G =G, —, Gs. congestion game on an extension parallel graghwith
sources and sinkt. Consider any joint actior$ € X. Let

An extension parallel graph (EPG} a graphG con- I be a best response of any playerThenc;(F;, S—;) <

sisting of either: (1) a single edds, ¢), (2) a graphd =  OPT(A).
G1]|G2, whereG, and G, are extension parallel graphs, , )
or (3) a graph? = G —. Gia, where eitheiG, or G Proof: We prove the lemma by induction on the network

is composed of a single edge and the other is an extensior?i2€ |V|- Let A be a non-increasing network congestion
parallel graph. Aseries parallel graph (SPGs a graph game on an EPG@ = (V, E). The claim obviously holds if
G consisting of either: (1) a single edge ¢), (2) a graph V= 2 .
G = G1||G or (3) a graplG = G1 — Go, whereG; and Extgnsmn composmon: Suppose the grapfi = Gl. —e
G» are series parallel graphs. Gsis an extension composition of the gra@gh consisting
of a single edge = (s1,t1) and an EPGFy = (V2, E»)
. o . with terminalss,, t2, such thats = s; andt = ¢, (the case
3 Efficient Topologies in Network Congestion  thatG, is a single edge is similar). LeY’ be the original
Games game on the grapfis. The joint actionS’ of the game\’ is
obtained fromS by removing the edge from the strategy
In a non-increasing network congestion game, the de->j Of any player;. Let P/ be a best response of playen
lay function £, (z) is non-decreasing im, andc;(S) =  (hegamel’andlet?; = P U {e}. Then, by the induction
€ ! 4 f ’oQr ’
S ecs, Le(ne(S)). There are two common social costs that hypothesis:; (P}, SZ;) < OPT(A"). Hence;(F;, S—i) <
are studied in the context of network congestion games,OPT(A)' . )
namely the maximum latency [13] and the total latency ~arallel composition: Suppose the grapli = G1||G is
[12, 15, 14]. Here, we consider the maximum latency so- & Parallel composition of two EPG grapfs andG,. Let
cial cost,cost(S) = max; ¢;(S). We note that for the to- "~ P€ the optimal joint action, i.eQPT(A) = costa(S7).
tal latency social cost function, the price of anarchy is un- IMilchtaich’s definition of Pareto efficiency coincides withe social
bounded even for a simple topology of two parallel edges optimum under the maximum latency social cost.




Let T; be the set of players using paths(¥ according to Corollary 3.5 In a symmetric network congestion game
Sandz; = |T}|. LetT be the set of players using paths in - with the maximum latency social cost, a graph topolagy

G; according toS* andz; = |T;‘|. There are two cases: is optimum-inducing if and only @ is an EPG.
Case l:z; = z] andxy = x5. LetA; andA; be the orig- . . o .
inal game on the respective grar@s andGy with p|ayers Flna”y we characterize efficient tOpOlogIes for asymmet-

T, andT; respectively. LeS be a joint action of the players ~ ric network congestion games.
in the game\ and letS’ andS” be the induced joint actions
of the players in the game's; and A, respectively. By the
induction hypothesis for every playein the game\; with
best response strate@y, c;(P;, S”;) < OPT(A;) and for
every playet in the game\, with best response strategdy,
¢i(P;, 8”,) < OPT(A3). SinceOPT(A;) < OPT(A),
we obtain that for every playeérc;(P;, S—;) < OPT(A).
Case 2: There exists a network; for which 27 > x;.
W.l.o.g., suppose? > x;. Consider playei. Letz) =
|77 U {i}|. Then,z; > x1 + 1 > ). Let A; be the orig-
inal game on the grap&’; with playersT; U {i}. Let S
be the joint action of the players in the original gamdet
S’ be the induced joint action of the playérsin the game
A; and letP; be the best response strategy (path) of player
1 in A for the joint actionS’. It follows from the induc-
tion hypothesis that ih; we havec;(P;, S") < OPT(A4).
Sincex} > z, we have thaOPT(A;) < OPT(A), and
therefore it follows that; (P;, S_;) < OPT(A).

The following theorem follows directly from Lemma
3.1.

Lemma 3.6 Any connected graph with at lea3tvertices
containing a cycle is not optimum-inducing for asymmetric
network congestion games.

Proof: We prove the claim by showing that every graph
containing a cycle of lengtR or a cycle of length3 is
not optimum-inducing for asymmetric network congestion
games. Suppose the graghcontains a cycle of length.
Consider the grapty given in Figure 2(a) with the follow-
ing delay functions’,, (z) = z,l.,(x) = 2,l.,(x) = 2.
Consider an asymmetric network congestion game with two
players played on the grapfi. The two players share
a common source and the sinks of players and2 are
t; andts respectively. One can verify that this game ad-
mits a pure Nash equilibrium in whick; = {e;} and
Sy = {e1,es}, resulting incost(S) = 4. However, the
joint action S’ in which S] = {e2} and S, = {e1,es}
yields cost(S’) = 3 < 4 = cost(S). Therefore,G is
not optimum-inducing. Now suppose the graghcon-
tains a cycle of lengtt3. Consider the graply given in
Figure 2(b) with the following delay functione., (z) =
2z, L, (z) = 2z, L, () = x. Consider an asymmetric net-
work congestion game with two players played on the graph
Next we show that the only efficient topology for symmetric G- The two players share a common sous@nd the sinks
network congestion games is an EPG. of playersl and2 aret; andt, respectively. One can ver-
ify that this game admits a pure Nash equilibrium in which

Theorem 3.3 Let G' be a graph that is optimum-inducing  S; = {es,e3},S2 = {e1,e3}, resulting incost(S) = 4.
for symmetric network congestion games. Th@&ris an However, the joint actionS” in which S| = {e;} and
EPG. S = {ez} yields cost(S') = 2 < 4 = cost(S). There-

] fore, G is not optimum-inducing. [ |
Proof: Let @ be a graph that is not an EPG. We use the  Thg following theorem follows directly from Lemma
following lemma, which is implicit in [9]. 3.6.

Theorem 3.2 If a graph G is an EPG, then it is optimum-
inducing for symmetric network congestion games.

Lemma 3.4 [9] Let G be a graph thatis notan EPG. Then,

s . Theorem 3.7 For asymmetric network congestion games,
the network in figure 1(a) is embeddedin

every optimum-inducing connected graph is a tree or a

Consider the graph given in Figure 1(a) with the follow- graph with two vertices.

ing delay functions:l., (x) = 2,0¢,(x) = z,le,(x) =
z,le,(x) = 2. Consider a symmetric network conges-

tion game with two players played on the graghwith 4 Efficient Topologies in Bottleneck routing

sources and sinkt. One can verify that this game admits games

a pure Nash equilibrium in whicld; = Sy = {eq,e3},

resulting incost(S) = 4. Consider the joint actior’ In a bottleneck routing game, the delay functiQiiz)

in which S7 = {ej,es} and S5, = {es,esq}. It holds is non-decreasing i, ¢;(S) = maxees, Le(n.(S5)), and

that cost(S’) = 3 < 4 = cost(S). Therefore,G is not the social cost igost(S) = max; ¢;(S). We note that for

optimume-inducing. || the total bottleneck social cost function, i.east(S) =
Theorem 3.2 and Theorem 3.3 yield the following corol- 3" ¢;(S), the price of anarchy is unbounded even for a

lary. simple topology of two parallel edges. This is shown by



€1 €2 bottleneck routing games.

composition case in Lemma 3.1. [ |
The following theorem follows directly from Lemma
€1 €9 4.1.
Theorem 4.2 Any SPG is optimum-inducing for symmetric
32’? €3 Next we show that the only efficient topology for symmetric
@ @ bottleneck routing games is an SPG.
b Theorem 4.3 Let G be a graph that is optimum-inducing
a) ( ) for bottleneck routing games. The®,is an SPG.

~

Figure 2. Asymmetric network routing games. Proof: Let G be a graph that is not an SPG. We use the
following lemma, which is implicit in [9]:

the same example given in [12] for the unbounded price Lemma 4.4 [9] Let G be a graph that is not an SPG. Then,
of anarchy in network congestion games with the total la- the graph in figure 1(b) is embeddeddh
tency social cost. In this section we characterize optimum-
inducing network topologies in bottleneck routing games Consider the graph given in Figure 1(b) with the following
with the maximum bottleneck social cost. We consider only delay functions?., (z) = fe,(z) = x,le, (x) = Le,(x) =
symmetric bottleneck routing games, since we show that/..(z) = 2z. Consider a symmetric bottleneck routing
for asymmetric bottleneck routing games every optimum- game with six players played on the gra@hwith source
inducing connected graph is a tree with possibly multiple s and sinkt. One can verify that this game admits a pure
parallel edges. Nash equilibrium in whichS; = S = S35 = {e2,e5,€e3}
Consider a symmetric bottleneck routing game on a se-andS, = S5 = Sg = {e1, e3} resulting incost(S) = 6.
ries parallel graph. Then, in any joint action of the players However, the joint actiors” in which S7 = S = {es, e4}
the cost of the best response strategy of any player is at mosandsS; = 5§ = Sf = S§ = {e1, e3} yieldscost(S’) = 4 <
the optimal social cost. 6 = cost(S). Therefore(s is not optimum-inducing. W

. ] Theorem 4.2 and Theorem 4.3 yield the following corol-
Lemma 4.1 Let A be a symmetric bottleneck routing game |gyy,

on a series parallel grapld: with sources and sinkt. Con-
sider any joint actionS € X. LetP; be a best response of  Corollary 4.5 For symmetric bottleneck routing games, a
any playeri. Thenc;(P;, S—;) < OPT(A). graph topologyG is optimum-inducing if and only if; is

. . an SPG.
Proof: We prove the lemma by induction on the network

size|V'|. The claim obviously holds ifl’| = 2. We show
the claim for a series composition, i.&, = G; — Go,
and for a parallel composition, i.ef = G1||G2, where
G1 = (Wi, E1) andG, = (Va, E») are SPG’s with sources | emma 4.6 Any graph containing a cycle of lengthis

s1, 2, and sinks', to, respectively. Lef\ be a bottleneck  not optimum-inducing for asymmetric bottleneck routing
routing game on an SPG = (V, E). games.

Series composition: Let G = G; — G,. Let Ay
and A, be the original game on the respective graphs Proof: Consider the grapty given in Figure 2(b) with the
andG.. Let S be a joint action of the gamé and letS’ following delay functions?,, (z) = l.,(x) = le,(z) = x.
and S” be the induced joint actions of the players in the Consider an asymmetric bottleneck routing game with two
gamesA; andAs respectively. Consider playéisuch that  players played on the graph. The two players share a
¢;(S) = max; ¢;(S). Let P/ and P/ be the best response common source and the sinks of playefisand2 aret; and
strategies (paths) of playerin the games\; and A, re- to respectively. One can verify that this game admits a pure
spectively and let’;, = P/ U P!/ be a strategy of player Nash equilibrium in whichS; = {es,e3}, 52 = {e1,es},
i in the original gameA. By the induction hypothesis, resulting incost(S) = 2. However, the joint actio$” with
¢i(P!,S8";) < OPT(Ay) andc;(P/,S”,) < OPT(As). Si = {e1} andSy = {es} yieldscost(S') =1 < 2 =
Since OPT(A) = max(OPT(A1),OPT(Az)), we get cost(S). Therefore(7 is not optimum-inducing. |
ci(P;, S—;) < OPT(A). The following theorem follows from Lemma 4.6 and
Parallel composition: the proof is similar to the parallel  the simple fact that in every asymmetric bottleneck routing

Finally we characterize efficient topologies for asymmet-
ric bottleneck routing games.



game on a tree with possibly multiple parallel edges and[13] T. Roughgarden. The Maximum Latency of Selfish
for every joint action of the players, the cost of the best re-
sponse strategy of every player is at most the optimal social

cost.

Routing. INSODA 20042004.

[14] T.Roughgarden. Selfish Routing with Atomic Players.

Theorem 4.7 For asymmetric bottleneck routing games ev-

ery optimum-inducing connected graph is a tree with poss

bly multiple parallel edges.
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