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ABSTRACT
In keyword auctions, advertisers bid for keywords. Cur-
rently, bids and allocations are made on a per keyword ba-
sis. We show that this mechanism is neither efficient nor
truthful under demand or budget constraints and provide a
truthful efficient (quasi) polynomial mechanism for allocat-
ing keywords under budget constraints. As a side effect our
proposed mechanism has higher revenue than the current
mechanism in use by search engines.

1. INTRODUCTION AND RELATED WORK
There has been much work (e.g., [17, 8]) done on keyword

auctions. In a general keyword auction advertisers bid on
a set of keywords (sometimes with a budget constraint as
in [17, 19, 15]) and a search engine allocates each keyword
to the highest bidder and charges the winner a ”general-
ized second price” for the auction consisting only of that
keyword. There are also papers which charge a more so-
phisticated price which is truthful [1] but again only for the
auction consisting of a single keyword.

Multiple keywords are treated independently and alloca-
tions are made independently for each keyword. Although
some authors (e.g., [17, 19, 15]) utilize budget constraints
which can be a result of previous keywords and/or limit the
amount of budget allocated for each keyword in general the
allocation is not dependent on multiple keywords.

This is somewhat puzzling. Keyword auctions can be seen
as a special case of a combinatorial auction and since key-
words are (partial) substitutes the optimal allocation can
not be made locally but must be chosen across the entire
possibility of allocation with complex interdependencies be-
tween keywords.

It is true that when there are no budget constraints the
optimal allocation can be chosen by allocating the adver-
tiser with the highest payoff (value * click through rate) for
each impression but this is no longer the case when budget
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constraints are allowed (as is the case in theory and even in
practice).

In fact, the keyword auction with multiple keywords can
be considered a special case of a combinatorial auction (CA).
In this case a budget constraint can be understood as mod-
eling a risk neutral1 advertiser who enters a multi-unit auc-
tion for click-throughs and is interested in a finite number
of click-throughs. Of course, it would be easier to explicitly
state the number of click-throughs desired but a budget is
a good proxy for this when lacking complete information on
the costs. In this paper we will assume budget constraints
are given in terms of number of desired clickthroughs. By in-
terpreting budget constraints as a limit on the desired num-
ber of clickthrough we circumvent [5] and hence it is possible
to maximize welfare in this model. In section 7 we sketch
a way of translating monetary bounds on the budgets into
desired number of click-throughs in quasi-polynomial time.

Combinatorial auctions are a widely studied mechanism
(see e.g., [6]). The main problem with looking at the key-
word auction as a special case of a CA is that it is impossible
to approximate the welfare in a CA beyond a square-root
factor in polynomial time [16]. However, there are known
special cases in which the welfare can be approximated (e.g.,
[7, 18, 16]) or even achieved optimally for special domains
(e.g., [11, 10]) possibly using alternative solution concepts
[3, 2].

Our goal is to look at keyword auctions as a special case
of CA with multiple keywords acting as substitutes. In or-
der to circumvent the known hardness results we show that
keywords auctions are a special case of CA which can be
solved in (quasi) polynomial time.

The main technical tool which we use to avoid the hard-
ness results on CAs is a generalized min cost flow algorithm
[20]. By phrasing our problem as a flow problem we can
maximize the welfare. Our setting in which we can com-
pare possible allocations is a natural one for employing flow
algorithms.

Our proposed mechanism allows users to declare a desired
number of click-throughs (which in most of this paper except
section 7 stands in lieu of the budget) and the mechanism
will allocate impressions so as to maximize the total social
welfare. Our mechanism assumes that the probabilities of
click-throughs for each advertiser is known to the mechanism
but this is the generally made assumption. If the probabil-
ities are unknown the mechanism can learn them via such
results as [12, 4].

1Obviously for risk-negative advertisers the budget con-
straint is easily understood.



2. MODEL
We assume that there are n advertisers and m possible

keywords. For each advertiser i and keyword j there is a
probability pij that a user searching for keyword j will click
on the ad of advertiser i2. Note that if pij was independent
of j then all of the keywords would be the same and hence
the problem would be reduced to a multi-unit auction. We
assume that the probabilities of the CTRs pij ∈ Q3. Our
algorithms will be quasi-polynomial and we denote by B
the largest integer that appears in either the numerator or
denominator of pij .

We assume that advertisers are risk neutral, with quasi-
linear utility and maximize their own utility.

We assume that the mechanism knows all of the pij . In
practice, this commonly made assumption is problematic.
However, by using a a learning mechanism or heuristics this
assumption is not completely groundless in practice. In most
work in the field (except for [12]) this is a commonly made
assumption.

Each advertiser i has two parameters which are the value
per click-through vi and the total number of click-throughs
desired ni. We assume that vi, ni are private information
and known only to advertiser i.

For each possible keyword j the number of appearances
aj of keyword j is known to the mechanism. This can actu-
ally be justified based on the law of large numbers and the
vast amount of data collected by the search engines. In the
conclusions we deal with the case where this is unknown.

It can be seen that this is a special case of a multi-unit
combinatorial auction and hence merely using the standard
VCG approach is not guaranteed to terminate in polynomial
time (nor to approximate it better than a square-root factor
in polynomial time).

The goal of our mechanism is to allocate slots to advertis-
ers so as to maximize the social welfare. Furthermore, this
should be individually rational as well as incentive compat-
ible.

Since we look at a probabilistic setting (where click-throughs
are a random event) we choose to maximize the expected
welfare. This means that we allocate all of the possible im-
pressions and the start of the protocol and do not take into
account actual clicks throughs. It is possible although diffi-
cult to deal with actual events assuming that the advertisers
have no private information about any a-priori distribution.

Since we will compare the revenue and welfare of our pro-
posed mechanism to the mechanism which is currently used
for allocating keywords by the search engines4 we denote our
proposed mechanism by A and the current mechanism used
by the search engines by A′.

It is interesting to compare our result with [9]. In [9] it
is shown that a linear fraction of the optimal value can be
achieved by advertisers bidding a fixed value. This however
assumes that the current mechanism used by search engines5

2It is also possible to generalize our mechanism to the case
where players have different values for different keywords.
3We assume that this is the smallest representation. This
assumption is necessary for our solution to complete in poly-
nomial time.
4Ranking by payoffs and charging second price
5The current mechanism ranks bidders by payoff and
charges critical values. We assume for ease of presentation
that there is a single slot associated with each keyword. The
generalization to multiple slots with different quality is triv-

(which loses a lot of welfare) is in effect. [9] does not compare
the loss of welfare incurred by the choice of mechanism.

Another interesting comparison is with [17]. [17] discover
an approximation of the welfare by allocating at each time
period based on the remaining budget. Unfortunately, this
is not truthful and in fact advertisers can arbitrarily in-
crease their utility by lying. However, our result makes the
strong assumption that there is a known distribution on the
appearance of keywords and our result only maximizes the
expected welfare. Furthermore, [17] looks at the case when
all probabilities are the same and hence the problem is one of
determining a matching between bidders and keywords and
does not take into account possibly different probabilities.

3. THE PROBLEM
The problem with the current mechanism for allocating

keywords arises is when a closely competed (i.e. is desired
by many advertisers) slot ”runs out” and the difference in
CTRs (and hence payoffs) for the other slots are big. The
following example shows that the current mechanism is nei-
ther efficient nor truthful.

1. There are three advertisers 1, 2, 3 and two keywords
1, 2. The probabilities are as follows: p11 = 1, p12 = 1 −
ε, p21 = 1− ε, p22 = 0, p31 = p32 = ε′ > ε and the valuations
are v1 = v2 = v3 = 1 budgets are b1 = b2 = b3 = 1. There is
also a single time slot for each keyword.

If advertisers compete independently for each keyword that
advertiser 1 will win keyword 1 and advertiser 3 will win
keyword 2 (since advertiser 1 doesn’t have sufficient budget
for both keywords). The welfare of this allocation is v1∗p11+
v3 ∗ p32 = 1− ε + ε′ = 1

However, the optimal allocation is to allocate player 2 key-
word 1 and allocated player 1 keyword 2. The welfare in this
case is v2 ∗ p21 + v1 ∗ p12 = 2− 2ε = 2

Note that although the example has a single impression
for each keyword, it is possible to build a similar example
with multiple impressions. It can be shown via a charging
argument that the loss in welfare can be bounded by a factor
2 and the above example shows that this bound is tight.
However, the example must assume budget constraints:

Remark 3.1. If there is no budget constraint the efficient
allocation is to allocate the keyword to the highest bidder for
that keyword.

This is due to the fact that if there is a positive marginal
utility for each impression than an advertiser will want to
win as many slots as possible. Maximizing welfare then de-
mands that we allow an advertiser to win as many keywords
as possible which in turn can be achieved by running an
auction for each keyword separately.

Remark 3.2. This example also shows that the current
mechanism is not truthful inasmuch as player 1 has an in-
centive to lie about his value for keyword 1 in order to reduce
payments. Even if players are restricted to a single value
which is independent of the keyword (which is not the case
today) the incentive for player 1 to lie remains.

To deal with the problem of having competitive keywords
sell out while we still have excess ”capability” in differing
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slots we add the ability to ”move” advertisers between key-
words. This will be done when such movement will improve
the total welfare even if this results in some advertiser not re-
ceiving the keyword with the highest probability. However,
we will ensure that the advertiser is not harmed by being
moved to another keyword (by allocating more impressions).

We cast our problem as a generalized minimum cost flow
problem which can be solved in quasi-polynomial time. In
the next section we review the results from generalized min-
imum cost flow problem which we use.

4. GENERALIZED MINIMUM COST
FLOW PROTOCOLS

In this section we briefly recap the definitions and results
for generalized min-cost flow (GMCF). We utilize the nota-
tions and results of [20].

Given a graph G = (V, E, u, c, γ). V is the vertex set, E
is the directed edge set. u : E →R+ is a capacity function,
c : E → R is a cost function and each e ∈ E has a positive
multiplier γ(e) called a gain factor associated with it. For
each unit of flow entering the edge e there are γ(e) units of
flow that exit the edge.

A feasible generalized circulation is a nonnegative function
g : E →R+ that satisfies the flow conservation constraints:

∀v ∈ V
X

(v,w)∈E

g(v, w) =
X

(w,v)∈E

g(w, v)γ(w, v)

as well as the capacity constraint:

∀(v, w) ∈ E : g(v, w) ≤ u(v, w).

The generalized minimum cost flow problem is to find a
feasible generalized flow of minimum cost. The following
result is taken from [20]:

1. (Theorem 8 in [20]) The scaling algorithm com-
putes an ε-optimal generalized minimum cost circulation in
Õ(|E|2|V |2 log 1

ε
). In

Õ(|E|3|V |2 log B) time it computes an optimal flow.

Now that we have reviewed the result we need, we proceed
to cast the question of an optimal welfare keyword auction
as a generalized minimum cost flow problem.

5. CONSTRUCTING THE FLOW GRAPH
Assuming that all of the probabilities pi,j are known we

build the following graph (See figure 5).

1. We construct a single source node s

2. We construct n nodes corresponding to advertisers.
Each advertiser node i6 has an edge from the source s.

This edge has a capacity of ni (the number of desired
click throughs), a unit-cost of 0 and a scaling factor of
1.

3. We construct m nodes which correspond to keywords.
Between each advertiser i and keyword j we construct
an edge with capacity ∞ and unit-cost of −vi the scal-
ing factor of an edge between advertiser i and keyword
j is 1

pij
.

6by abuse of notation we identify nodes with advertisers and
keywords

4. Finally we construct a target node t and an edge be-
tween each keyword and the target with capacity aj

(the number of appearances of j), cost of 0 and scal-
ing factor of 1.

Source

Target

Advertiser 1 Advertiser 2 Advertiser 3 Advertiser n

Keyword
1

Keyword
2

Keyword
3

Keyword
4

Keyword
m

(capacity, cost, scaling)

(n1,0,1)

Keyword

(n2,0,1) (n3,0,1)
(nn,0,1)

(∞,-v1,1/p11)

(a1,0,1)

(am,0,1)

(∞,-v2,1/p2m)

(Not all edges are drawn)

Figure 1: A schematic view of the flow graph

This graph is obviously a generalized flow graph with costs
and as such can be solved in quasi polynomial time via [20]
to find the minimum cost flow (MCF) g : E → R+. We
must show that g induces an optimal expected welfare for
the keywords problem. We also show that we can induce
prices (in polynomial time) that support this flow such that
advertiser i will report truthfully the value of ni, vi.

We first show how to translate the MCF into an alloca-
tion. For each keyword we must decide how to allocate the
keyword whenever it appears. From keyword j there is an
edge to the target node t. For a MCF g if the edge (i, j)
from advertiser i to keyword j has flow g(i, j) we say that i

contributes g(i,j)
pij

to the flow along edge (j, t).

Given an MCF g for any appearance of a keyword j we
allocate the impression of that keyword to advertiser i with

probability g(i,j)
g(j,t)pij

. We first show that this is a probability

distribution:

5.1. The assignment which allocates to advertiser i the

keyword j with probability g(i,j)
pijg(j,t)

is a probability distribu-

tion.

Proof. The proof is algebraic and is omitted.

We call this allocation the allocation induced by the MCF.
We now proceed to prove that this flow has an optimal

expected welfare:

2. The allocation A induced by the MCF has an optimal
expected welfare if the advertisers report their values cor-
rectly.

Proof. In order to show that the induced allocation has
an optimal expected welfare we must show that it is indeed
an allocation.



5.2. The induced allocation maintains the constraints of
the problem.

Proof. By the definition of the graph and the fact that
we have a feasible flow, no advertiser is allocated more than
the desired number of click throughs and no keyword is al-
located more than the number of times it appears

We now show that the allocation has optimal expected
welfare.

5.3. The induced allocation has optimal expected welfare.

Proof. Suppose for a contradiction that there exists an
allocation A′ with higher expected welfare. Then A′ defines
a flow as follows:

• If advertiser i is allocated u(i) units in A′ then there
is a flow of u(i) on the edge (s, i).

• If advertiser i is allocated in A′ uj(i) impression of

advertiser j then there is a flow of
uj(i)

pij
leaving i and

going to j.

• The flow on (j, t) is defined by
P

i pijuj(i).

It is clear that this is a flow. This flow has cost which is
equal to the negated welfare of A′ which by definition is
higher than the negated welfare of A in contradiction the
the definition of A.

These two lemmas provide the desired theorem.

In order to ensure truthfulness we use the standard VCG
prices7 where advertisers pay by critical value. Since this is
a multi-unit auction this ensures truthfulness for both the
value and the desired number of units. Note that although
this mechanism charges for impressions it can easily be mod-
ified to charge for clickthoughs.

We then get our main theorem:

3. There exists a quasi polynomial time, truthful mecha-
nism which maximizes welfare for the keywords problem with
budget constraints.

6. REVENUE MAXIMIZATION
Theorem 3 shows that our proposed mechanism optimizes

welfare. However, it has been brought to our attention that
some of the search engines wish to maximize revenue (see
e.g., [14]) . In this section we show that our mechanism
actually increases the revenue over the current method of
auctioning keywords.

We will show that the allocation that our mechanism A
discovers is an equilibria for the current mechanism A′ used
to allocate keywords. This will then show that the allocation
defined by A is an allocation supported by an equilibria
report by the players for the current mechanism A′. This
allows us to prove that payments are higher in A then in
the same allocation in A′8.

We first note that for risk-neutral players there is no dif-
ference between paying for a probability of an impression

7Since we use augmenting flows, the standard VCG prices
can be characterized as distances in the residual flow graph.
8Of course, this assumes that the expectation (on number
of keywords) is known to the advertisers.

and paying for an impression. We now need to show that
any player i allocated the entire demand desired ni is happy
with the keywords chosen and any player i′ not allocated ni′

is also happy not to be allocated.

6.1. There is no player i who wishes to increase his allo-
cation allotted in A given that the allocation and prices are
determined by A′.

Proof. Suppose that such a player exists. Then there is
a keyword j that i wants to receive. There are two cases:

1. i does not receive ni units: In this case we look at
the player i′ with the lowest payoff for j. Now by
definition i′ payoff for j is higher than i’s payoff for j
(as otherwise A which maximizes welfare would have
allocated it to i) and hence the price that i would pay
for j is higher than i value.

2. i receives ni units: In this case i has no marginal ben-
efit from an increased allocation. We show below that
i has no benefit from transferring a unit received from
one keyword to another.

6.2. For any player i and any allocation that A outputs,
i will not attempt to reduce his allocation in A′.

Proof. By the incentive compatibility of A any i has
a positive marginal utility from an unit allocated to i. It
remains to show that i still has a positive marginal utility
in the current mechanism (with the different prices). Since
i has a positive value for every keyword j and since (by the
previous lemma) for any advertiser i′, i′ does not want to
increase his allocation of keyword j in A, then the payoff for
i′ must be less than the payoff for i and hence the payment
of i must be less than i’s utility.

6.3. Given an allocation A output by A, there is no player
i who prefers to win in different keywords in the current
mechanism than the keywords that are allocated to i in A.

Proof. At first glance this appears obvious inasmuch as
A maximizes welfare and charges VCG prices. However,
since the current mechanism charges different prices this
might no longer be true.

Suppose for a contradiction that i is an advertiser who
wishes to move a unit of allocation from keyword j to key-
word j′. Denote by i′ the loser with the highest payoff in
j and by i′′ the winner with the lowest payoff in j′. Since
A optimizes welfare the payoff of i′′ is more than the payoff
of i′ and hence in A′ i will pay more when winning j′ then
when winning j. In contradiction.

Now that we’ve shown that player will not attempt to
change the allocation in A′ if they are allocated based on
our mechanism we need to show that there are prices in the
current mechanism that can support the allocation induced
by our proposed mechanism.

6.4. For any player i and any allocation A that A out-
puts there exists values for players that support A in the A′

Proof. Since A′ allows different values for different key-
words simply set the price to be the critical value for each
keyword.



Remark 6.1. This proof utilizes the fact that in A′ dif-
ferent values can be set for different keywords. It is possible
although more difficult to show that the lemma holds even
when players are constrained to give a single value for any
clickthrough.

Combining the above lemmas we get the following theo-
rem:

4. The allocation A output by A is an equilibria for the
A′.

We now need an additional technical lemma:

6.5. The price paid by any player i in A is at least the
price paid by i in the equivalent equilibria in the A′.

Proof. Since the allocation induced by the generalized
min cost flow is an equilibria it suffices to show that the
prices are higher. Since we have shown that the set of win-
ners (and hence the set of losers) is the same for the induced
allocation as well as the equilibria it remains to show that
prices are higher.

This follows from the observation that the prices in the
current mechanism for any allocation of any keyword is set
to be the critical value for winning that keyword. In A it is
set to be the critical value for winning any keyword. Since
the set of losers is the same obviously the latter value is
higher.

This then yields the desired corollary:

6.6. There exists an equilibria for A′ whose revenue is
no more than the revenue of A.

Remark 6.2. The ratio between the current revenue and
the revenue in our mechanism might be O(m). It is easy to
show by a greedy argument that the ratio can be bounded by
m. The following example shows that this ratio can indeed
be as bad as O(m).

2. Let there be m+1 players. For all ∀i : vi = bi = 1For
1 ≤ i ≤ m pii = 1−ε and otherwise pij = 0. ∀j : pm+1,j = 1.
A′ will allocate to player m + 1 as well as to m − 1 other
players. However, the first allocation will be to player m+1
which will pay 1− ε. After player m + 1 is satisfied there is
no competition for any other keyword so the revenue for all
keywords beyond the first one is zero.

In contrast A will have revenue of m(1− ε) since the crit-
ical value for any player is 1− ε (as otherwise a higher flow
can be achieved by not allocating to that player).

7. WHEN ADVERTISERS PUT MONETARY
BOUNDS ON BUDGETS

In the discussion above we assumed that the advertisers
bound the number of click-throughs that they want. In prac-
tice, advertisers today bound the budget that they wish to
spend on advertising in monetary form. In this section we
show that we can translate the budget constraints into a
constraint on the number of click-throughs. We show that
this transformation can be done in quasi polynomial time.

Our reduction will proceed in stages. We will first start
out with each advertiser demanding

P
j aj click throughs.

Therefore the initial total demand is n
P

j aj . We will itera-
tively reduce the demand until no advertiser is over budget.

Obviously, if we succeed in reducing the demand and at each
stage this yields a quasi-polynomial reduction. Denote by
bi the budget of advertiser i.

At each stage t:

1. Look at the set St of advertisers who currently pay
more than bi.

2. For each i ∈ St we independently reduce the demand
so that i does not pay more than bi. Obviously, this
can be done in quasi-polynomial time.

3. Find the i′t /∈ St s.t. the welfare is maximized if we
increase the allocation of i′t by mini,j pij and this in-
crease will not cause i′ to be over budget.

4. This click through will be along some combination of
keywords.

5. Reduce the capacity of the keywords by what is allo-
cated to i′t.

6. Temporarily increase the demand of all i ∈ St to
P

j aj

and calculate the optimal allocation usingA when con-
straints are on demands.

7. Set the demand for all i ∈ St to be the amount allo-
cated to i in the previous step.

We first note that since St is monotonically decreasing
and since the capacity allocated to St strictly decreases at
any time the algorithm converges. Since the amount of ca-
pacity allocated to St decrease by mini,j pij the algorithm
converges in quasi-polynomial time.

Since i′ is chosen to be the optimal increase and since if
i′t does not receive this increase then for any t′ > t i′t′ will
not and hence for all i ∈ St the payment will be more than
the budget this maintains the optimal welfare property.

Although [5] shows an impossibility result on optimizing
welfare in the presence of budgets we circumvent this by
assuming that the welfare is optimized when the budget is
exhausted (i.e., achieving the optimal welfare achievable by
mechanisms when budgets exist).

8. CONCLUSIONS AND FUTURE WORK
We showed that current mechanism used by search en-

gines for allocating keywords suffer from a possibly large
inefficiency. We constructed a mechanism that rectifies this
problem. There are several important practical open ques-
tions.

The first question is whether advertisers will agree to par-
ticipate in a mechanism in which they lose control over which
exact keywords they receive in return for a guarantee of
higher welfare. Fortunately, we do not require that all of
the advertisers agree to participate. We can easily simulate
any advertiser who is unwilling to lose control over adver-
tisement placement by setting the relevant probabilities to
be zero9.

9It is even possible for advertisers to choose among which
keywords they are willing to relinquish control. It is also
possible for search engines to ”bundle” groups of keywords
such that advertisers have no choice what keywords in a
given bundle they receive.



A side effect of the ability of advertisers to opt in on a per
advertiser basis into this mechanism is that even given cur-
rent mechanisms for keyword auctions advertisers can min-
imize their payments while optimizing their value by calcu-
lating the equilibria given by our mechanism. This improves
current results of optimization on the advertiser level [19, 9].
However, we do assume that advertisers have knowledge of
the other advertisers demands as well as the supply of avail-
able keywords and the click through rates.

The loss of welfare of the current methods of allocating
keywords can be be a factor 2 in theory. In practice it would
be interesting to see what the actual loss is given the known
click through rates for different advertisers and keywords.
It is possible (although unlikely) that the problem that this
paper points out which depends on variances in probabilities
does not arise in practice.

Our mechanism is quasi-polynomial but finds the optimal
allocation, it is also to construct a fully polynomial truthful
approximation based on results that appear in [20]. This
however requires much more careful analysis. It is unclear
how important the question of quasi-polynomial is in prac-
tice given the click-through probabilities and the actual run-
ning time of the mechanism on real data10.

[17] pose the intriguing question of whether it is possible
to create a mechanism that on average has a revenue of
1− o(1) of the optimal and in the worst case has e−1

e
of the

optimal. It is tempting to do the following to answer their
open question:

1. Set a parameter p = o(1). Run A.

2. If during the running of A the distribution is unlikely
to have come from the original distribution (i.e., there
is a probability larger than p that the distributions dif-
fer) as defined by some predetermined statistical test
then:

3. Run the mechanism defined in [17].

The reason that such a scheme seems workable is that if
the distribution is the expected distribution w.h.p. we will
continue to think that the distribution is correct while with
some small probability we will run [17] at a loss of 1

e
of the

welfare. However, if the distribution is not the expected
distribution we will notice this relatively quickly and hence
move to [17] to achieve almost an e−1

e
approximation (with

some loss due to the time required to discover that we are
not in the expected distribution).

The problem is that the mechanism defined in [17] is not
efficient. This means that the e−1

e
approximation of the

revenue achieved by [17] might be higher than the optimal
welfare achieved by our mechanism.

There are two solutions to this problem. The first is to
look at a hybrid mechanism which is no longer truthful. The
second is to to define a variant of [17] that is δ-gain truthful a
concept defined recently by [13]. In this variant the equilib-
rium welfare can indeed be compared to the welfare achieved
by our mechanism and therefore we can create such a hybrid
mechanism. We are currently exploring this avenue.
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