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ABSTRACT

Automated construction of revenue maximizing auctions poses

many challenges which are not addressed by classic auction
theory. In this paper we describe a system that facilitates
generic automatic construction of near optimal auctions for
realistic scenarios. In order to test our system we execute it
on several benchmark distributions. On all of these bench-
marks, our system yields revenue higher than the English
auction. On some of them, the gap is significant. The sys-
tem gives initial insights into several issues that have not
been explored so far, such as the price of fairness in single
item auctions, the power of ascending auctions, etc. Many
open questions are presented as well.

Keywords: auctions, mechanism design, systems.

1. INTRODUCTION

In recent years, the usage of auctions has become a promi-
nent method of trade. The applications of auctions are very
diverse and range from selling multi billion dollar compa-
nies, to trading small articles over the Internet. In eco-
nomics auction theory is broad and studies any situation
in which a selling or a procurement method is to be de-
signed. Thus, auctions play a major role in both economics
and electronic commerce. Moreover, they give rise to many
fascinating problems on the border of economics and com-
putation. Perhaps the most basic auction design problem
is to design revenue maximizing mechanisms for selling one
item®.

The standard setup of optimal auction theory is as follows:
there are n potential self-interested buyers termed agents.
Each agent i has a privately known value v; for winning the
object. wv; represents the agent’s maximum willingness to
pay for the item. The agent’s value is zero if it does not win
the auction. Each agent selfishly tries to maximize its own
utility, i.e., the difference between its value and its payment.
An auction is any protocol which decides who wins the item
(if at all) and for what price. Given a joint probability
distribution ¢ on the values of the agents, the goal is to

*Faculty of Industrial Engineering & Management, Tech-
nion, Israel. Email:byuricQgmail.com

TFaculty of Industrial Engineering & Management, Tech-
nion, Israel. = The author was supported in part by
grant number 969/06 from the Israel Science Foundation.
Email:amirr@ie.technion.ac.il

!The design of minimal payment procurement mechanisms
is similar and the methods described in this paper can be
applied to it as well.

Amir Ronent

design an auction that maximizes the expected revenue of
the seller.

Auction theory focuses on mechanisms that satisfy two
major properties: individual rationality and incentive com-
patibility. Fach of these properties has two major variants.
Informally, ez-post individual rationality (abbreviated IR)
means that only the winner pays for the item and that
the winner’s payment is bounded by its private value. For
many applications, this property is of great importance if
not mandatory. In this work we only consider auctions that
satisfy this property. In the Bayesian variant of IR, non
negative utility is guaranteed to the bidders only if all of
them follow a given Bayesian equilibrium. This variant is
problematic for many applications (e.g. [8, p. 400]) and is
not considered here. Incentive compatibility (IC) means that
each agent has a dominant strategy, i.e., a strategy which is
always optimal for it. An auction satisfies Bayesian incen-
tive compatibility if there exists a Bayesian equilibrium in
the resulting game of incomplete information. An auction
that satisfies both, IC and IR is called valid. The celebrated
Vickrey auction is an example of a valid auction. Simi-
larly, an auction that satisfies IR and Bayesian IC is called
Bayesian valid.

The expected revenue of a valid auction equals the ex-
pected payment of the winner when the agents follow their
dominant strategies and their values are drawn from the un-
derlying distribution ¢. An auction is called optimal if its
revenue is maximal among all valid auctions. The definitions
for Bayesian valid auctions are similar.

Let v1 denote the maximal value max(v1,...,v2) and va
denote the second highest one. Note that any auction that
satisfies IR (even only in the Bayesian sense), cannot ex-
tract a revenue of more than E[v1]. On the other hand, the
standard Vickrey auction has an expected revenue of E[va].

Currently, the vast majority of auctions which are used
in practice are variants of the English auction [12]. Such
auctions are almost equivalent to either Vickrey auctions or
to Vickrey auctions with reserve price, and are by no means
optimal. Thus, automated auction design has the potential
of significantly impacting the way that people are trading.

1.1 Related Work

Auction design is a major topic in economics. An in-
troduction can be found in recent books by Klemperer[6]
and Krishna[7]. Still, notoriously little is known about the
design of revenue maximizing auctions, in particular when
ex-post IR is required. A seminal paper of Myerson [9] char-
acterizes the optimal valid auction when the agents’ values
are independent and the distribution of each agent’s value



is continuous with full support and regular (i.e. the func-
tions v;(x) = z+ 1}?%()1 ) are non decreasing where F; and f;
denote the cumulative distribution and the density of agent
i’s type). Little progress has been made for more general
probability distributions. Myerson [9] also studies the case
where individual rationality is only required in a Bayesian
equilibrium (Bayesian IR). He characterizes the optimal auc-
tion for this case for general independent distributions. For
non independent agents, Crémer and McLean [2] show that
under certain conditions on the distribution, it is possible
to extract a revenue equal to the expected highest value
E[v1]. Unfortunately, for many applications, Bayesian IR is
unacceptable (see e.g. [8, p. 400]). A paper by Neeman
shows that English auctions can extract a large portion of
the optimal revenue in many natural environments [10].

In computer science, the study of revenue maximization
was pioneered by Goldberg, Hartline, and Wright [4] who
considered the case of unlimited supply. Since then, most
of the work on revenue maximization focuses on this case
and provides impressive guarantees against the worst case.
(An interesting hybrid approach can be found in [5].) There
are fundamental differences between the problem that we
consider and the unlimited supply case. In particular, it
is impossible to provide any worst case guarantee in our
setup and focusing on the average case, which is standard
in economics, is more natural [14]. Moreover, the sampling
techniques which proved as very powerful in the unlimited
case, are hardly relevant to the one item setup.

Several papers by Conitzer and Sandholm study what
they call automated mechanism design (e.g. [16]). In these
works, the emphasis is on the algorithmic side of mechanism
design problems, and on solving specific instances, rather
than constructing generic mechanisms. Applications of au-
tomated mechanism design include dispute settlement with
2-bidders, Myerson optimal auction for IID distributions[9],
optimal combinatorial auctions, and optimal Bayesian mech-
anisms for public goods problem. As far as we know, all
these works deal with very small instances of the corre-
sponding mechanism design problems. In addition, the cor-
responding type distributions are fully available to the de-
signer. A comprehensive discussion of the emerging litera-
ture on automated mechanism design is outside the scope of
this exposition. A good description can be found in [1].

1.1.1 KILA auctions

KLA is a generic method for the construction of near op-
timal valid or Bayesian valid mechanisms [13, 14]. In a nut-
shell, a KLLA-auction is a two stage mechanism. In the first
stage, all except the k-highest bidders are rejected. This
stage can be implemented either by a revelation auction or
by a standard English auction. Let Tes = Vp+1 be the high-
est value of a rejected agent and let ¢ be the conditional
distribution over the high agents, given the values and iden-
tities of the rejected agents. In the second stage, a valid
auction which is optimal among all valid auctions with re-
serve price r, is conducted on the high bidders only.

The KLA method has many virtues. For any distribution
¢, its expected revenue is at least 1/2 of the revenue of the
optimal mechanism. When the distribution is independent,
the revenue is at least kLH of the optimum. This property
is approximately preserved as long as the agents are not
strongly dependent in some sense (see [14]). The method
can be used to get upper bounds on the optimal revenue by

setting the auction’s revenue to res whenever no agent wins
the item. Finally, it is possible in the second stage of the
auction, to optimize over a subfamily of valid mechanisms.

In this work we consider several variants of KLLA mecha-
nisms. The first stage of all of these mechanisms is identi-
cal. The difference is only in the family of mechanisms over
which the second stage auction is chosen. More details can
be found in the full version of this paper.

As we shall see, despite its computational efficiency, the im-
plementation of the KLA method requires overcoming sev-
eral major obstacles.

1.2  Our Contribution

In this paper we describe a system that facilitates generic
automatic construction of near optimal auctions for realis-
tic scenarios. We describe many novel challenges that stem
from the design of such a system along with our solutions,
report on experiments conducted in order to test the sys-
tem’s performance, and present many open questions.

Perhaps the most basic difference between this work and
previous work on automated auction design is the focus on
the design of the system as a whole. All previous works
on automated auction design assume that a full description
of the underlying distribution ¢ on the agents’ valuation is
available to the designer. This assumption is not reasonable
for many applications, neither from a cognitive nor from a
computational perspective. Therefore, our first step is to
provide the designer with an interface by which it can con-
veniently and feasibly describe the economic environment
to the system. Technically, the designer describes a sam-
pleable distribution via an XML file. The system allows
usage of sampleable stochastic variables that represent the
main factor that determine the agent values, mathematical
expressions over these variables, discrete ranges with round-
ing operations, etc. The system then generates an approxi-
mation of ¢ via sampling. In order to sample a type vector,
the system samples the basic variables and applies the above
expressions on them. This approach is far from being a mere
engineering issue. Since such a description is possible only
in an approximate fashion, it is not clear at all that results
from auction theory will hold up. Moreover, it is not clear
how to compute the auction from such an approximate de-
scription. At least empirically, we demonstrate that even
on complex (Section 2 presents example of complex envi-
ronment), realistic distributions, it is possible to overcome
these obstacles and obtain near optimal revenues.

Another major difference between our work and previ-
ous work, is the scalability of our system and the generality
of the distributions that we can handle. We achieve these
properties by working with a set of samples instead of the
whole distribution, by applying the KLA method of [13, 14,
15] (with approximate conditional distributions), and by us-
ing either a novel method of extending incentive compatible
auctions from subsets of the type space, or by restricting
ourselves to simpler families of ascending auctions. Inter-
estingly, on most of our benchmarks, the revenues of the
ascending auctions and of the general incentive compatible
auctions were very close. We note that in practical applica-
tion, we can push the scalability of the system even further
by querying the user about the type distribution only after
the low agents have been rejected.

In order to examine the system we conduct several exper-



iments. We construct benchmark distributions that repre-
sent real life situations, and test the revenue of the system
on them. The results are very encouraging. On all our
benchmarks we beat the English auction, with and without
a predefined reserve price. On some of our benchmarks, the
gap between the English auction and the system is signifi-
cant. Moreover, we beat the English auction, even when the
system is limited to use simple ascending auctions. Typi-
cally, the revenue of our system is around the average be-
tween E[v1] and E[vz]. On all our benchmarks, the system’s
revenue is within 90% of the upper bound on the revenue of
the optimal valid mechanism (at least under the assumption
that the distribution is well approximated by the sampling
process). The welfare of our system is also high, ranging
from 90% to 100%.

Our experiments give initial insights into several issues
that were not investigated in the context of single item auc-
tions. These include a comparison between the revenue of
Bayesian and dominant strategy auctions, the price of fair-
ness, and the power of ascending auctions.

Remark: Due to space constraints, a lot of material was
omitted from this exposition. A full version of this paper is
available online at http : //iew3.technion.ac.il /~amirr.

2. EXAMPLE: TECHNOLOGY SELL

In order to illustrate the complexity of realistic auction
design problems consider the following example. A hi-tech
company that owns a unique technology is for sale. Five
companies are interested in buying it. Suppose that the
main factors that determine the worth of the company to
each potential buyer are the expected contribution of the
new technology to its profit, the expected increase in its op-
erational costs, and the expected change in its stock value.
All these parameters are likely to be stochastic and include
both common and private components. In addition, no com-
pany can pay more than its budget. It is unlikely, from
both cognitive and computational perspectives, that the de-
signer will be able to write down the joint distribution of
the agents’ values. Yet, it is more reasonable to expect that
the user will be able to estimate the distribution of each of
the main parameters that generate it (e.g. the budgets or
the operational costs). Needless to say, we do not expect
neither the resulting distribution to have a closed formula
nor the optimal auction to be easy to calculate.

The setup described above is one of our benchmarks. A
detailed description of the benchmark and the system’s per-
formance on it can be found in the full version of this paper.

3. MAIN CHALLENGES

This section describes the main challenges that we faced
along with the methods that we used in order to overcome
them.

3.1 Describing the distribution

By and large, the economic literature on auction design
implicitly assumes that a full description of the underlying
distribution ¢ on the agents’ valuations is available to the
designer. While this assumption facilitates obtaining a lot of
insight on auction design, it is impractical for many applica-
tions. First, it is not clear how the designer can extract such
knowledge about the agents. Second, even if it can, the size
of the distribution is exponential and hence it is not even

clear how to describe it to the computer. For concreteness,
if there are 10 agents, each with 20 possible values, there
are already more than 10*® possible combinations of values.
Moreover, in many applications, there are non trivial de-
pendencies between the valuations and there is no apparent
way of calculating the joint distribution (e.g. computing the
probability of a combination (v1,...,v,) in our technology
auction example). Thus, we seek for substitutions of direct
work with the underlying distribution ¢.

Our approach While it is not reasonable to expect the user
to be capable of describing the joint distribution directly, we
believe that it is plausible to expect it to describe how this
distribution is generated. This means, that it will be able to
describe the main factors that influence the valuations, and
to estimate the distribution of each one of them. Thus, our
first step is to provide the user with a convenient method of
supplying such descriptions.

Technically, the user describes a sampleable distribution
via an XML file. The system allows the usage of sampleable
stochastic variables, mathematical expressions over these
variables, discrete ranges with rounding operations, etc. For
example, the value of an agent in the technology auction ex-
ample is simply represented as the following expression:

v; = min(budget;, max(resale Price;, commonProfit - a; —
commonCost - B; + p; - marketPrice;))

where the parameters, both common and private, are either
constants or stochastic variables.

The system then generates an approximation of ¢ via sam-
pling. In order to sample of a type vector, the system sam-
ples the basic variables and applies the above operators on
them. Due to computational reasons, the system stores the
samples in a database and works directly with the set of
samples.

Remarks and open questions When either a full descrip-
tion of the distribution or a set of samples are available, the
system can work directly with them. In the future, we plan
to incorporate statistical methods in order to approximate
the distribution from partial descriptions. It is also possible
to introduce sensitivity analysis into the system. Such anal-
ysis can be done either over the distribution as a whole or
over parameters provided by the user (e.g. budget).

The size of the distribution ¢ is exponential in the num-
ber of bidders. Thus, any feasible approximation method,
causes some information loss. It is possible to generate dis-
tributions in which this information loss causes significant
revenue loss (see [14]). Yet we believe that such examples
are artificial. Indeed, on all our benchmarks, the system ex-
tracts near optimal revenues. We leave a theoretical study
of the revenue loss, e.g. as a function of the entropy of ¢, to
future work.

Finally, one can view the problem of choosing the optimal
auction from a family of possible mechanisms as a learning
problem. The number of samples required in order to learn
which auctions to choose may vary between families. This
may give an advantage to simple classes of mechanisms over
the class of all possible valid mechanisms. As far as we know,
this topic has not yet been studied in the context of single
item auctions.

3.2 Approximating conditional distributions of
the high agents



In the first stage, a kla-auction finds the types and the
identities of the low agents. The auction then computes
the conditional distribution on the types of the k highest
agents. When ¢ is given, this conditional distribution can be
calculated in a straightforward manner. However, when it is
only possible to sample ¢, an exponential number of samples
may be required in order to produce samples in which the
low types match the actual types of the low agents. In order
to overcome this, we exploit only partial information from
the types of the low agents. Let res = vip41 be the k + 1'th
highest value. We define

o(vi,...,vk) = Pr[(vi,...

i.e., we use only the information that the values of the high
agents are greater than r. We leave other methods of ap-
proximating the conditional distribution to future research.

The set of samples that corresponds to ¢ is obtained from
the set of samples of ¢ by querying the database and nor-
malizing. In the second stage, we work directly with this set
of samples.

,0k) | Vi, v > res],

3.3 Computing optimal auctions

Perhaps the greatest challenge in implementing the KLA
method was to overcome the immense complexity of the op-
timal auction problem. While this problem can be trans-
lated into an integer program (see details in the full ver-
sion of this paper), the size of this program is exponential
in the number of agents. Even for a very small number of
agents, solving the program is usually infeasible. In order to
overcome this we developed a novel method of solving the
problem on a subspace of the set of all possible type vec-
tors, and then extending the solution to a valid auction on
the whole type space. The method is described in Section
4. Currently, our method works only for dominant strat-
egy IC. Even with our method, we can only cope with the
fractional version of the problem. We also compute other
mechanisms such as the Vickrey auction which is optimal
among all Vickrey auctions that use up to k reserve prices;
one per buyer. We call this mechanism k-reserve. This auc-
tion is simple, deterministic, and can be implemented via a
standard ascending auction. As we shall see, the revenue of
this mechanism is often close to the optimal revenue. Thus,
in such cases, it may be better to use the k-reserve mech-
anism. The system computes the expected revenues of all
the second stage mechanisms as well as bounds on the rev-
enue of the optimal valid and Bayesian valid mechanisms.
The user can use these estimations in order to decide which
auction format to choose.

4. WORKING WITH SAMPLES

As we noted, perhaps the main challenge in implementing
the system was to solve the optimal auction problem. A
huge gain is obtained from the KL A method since we only
need to solve the problem for a small number k of agents.
Still, the size of the type-space S plays a crucial role. In
the full paper we describe a novel method of constructing
valid mechanisms from samples, and by this, drastically re-
duce the complexity of the problem. Currently, our method
works only for valid auctions. The Bayesian case is left as
an intriguing open problem.

S. DESCRIPTION OF THE SYSTEM

This section describes the architecture of our system. The
system is illustrated in Figure 1. The main steps of the
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Figure 1: Main Steps

system are as follows:
1. Getting the user’s description of the environment.

2. Generating samples of the environment’s distribution
¢.
3. Getting the actual types signals from buyers.

4. Computing the inputs of the second stage auction: top
k agents, reserve price vi+1, and the conditional dis-
tribution ¢.

5. Computing the second-stage mechanisms.

6. Executing the second-stage mechanisms on the high
agents and outputting the allocation and payment.

We now elaborate on each of the above steps.

5.1 Environment description

In our system the user describes the underlying environ-
ment via an XML file. This file contains information about
the number of agents, constants, distributions of the vari-
ous variables that determine the agents’ values, value ranges,
etc. We use type expressions in order to let the user express
how the above variables determine the agents’ private types.
We support standard operations to build expressions ’(’, ’)’,
7,0 R 0 imax(.), and min(.) as well as complex ex-
pressions. The user can also load its own functions in order
to create custom expressions via API interfaces. An exam-
ple of such an XML file can be found in the full version of
the paper.

In order to sample the type vector, the system samples
each of the above variables, and then applies the above ex-
pressions for computing the agents’ types. In order to ease
on the usage of discrete distributions, we round the agents’
types according to range classes provided by the user.

5.2 Approximation of the environment’s dis-
tribution ¢

After the system initializes itself according to the envi-
ronment description, it approximates the underlying distri-
bution by sampling the agents’ type vector. The sampling
process generates these type vectors by sampling the vari-
ables provided by the user and applying the type expressions
on them. We store the set of samples in a database and work
directly with it.



5.3 Getting the actual type signals

The buyers are requested to report their actual types to
the system. Since our mechanisms are valid (or Bayesian
valid), it is the agents’ interest to report their actual types.
In the experiments, we simulate the actual types of the
agents by further samples of the environment description.
We stress that we use additional samples and not the sam-
ples that were used to prepare ¢.

5.4 Computing the input of the second stage

After constructing ¢ and getting the agents’ values, the
system computes the input of the second stage of the auc-
tion. It sorts the agents according to their values and finds
out the ones with the k highest values. The (k+ 1)’th value,
vg+1, will be used as a reserve price in the second stage. The
computation of the conditional distribution ¢, is described
in Section 3.2.

5.5 Computing the second stage mechanisms

In the second stage of the auction, the system constructs
several mechanisms: KLA which is approximately optimal
among all valid auctions, k-reserve which is optimal among
all the Vickrey auctions that use k reserve prices, k-fair
which is optimal among all Vickrey auctions with a sin-
gle reserve price, and Bayesian which is optimal among all
Bayesian valid auctions. The details of these mechanisms
can be found in the full version of this paper.

In the second stage, the system already knows that the
types of all the high agents are above vi+1. Every agent also
has a maximal type v;"®* in the set of samples ¢. We thus
solve the optimization problem that corresponds to each of
the above mechanisms, only for type vectors in which the
type of each agent 7 is between vi4+1 and v]* %"

Along with each of the above mechanisms, the system
computes an estimation of its expected revenue. The system
also computes some other intermediate mechanisms and up-
per bounds on the revenues of the optimal valid and Bayesian
valid auctions. In reality, the system can use these estima-
tions in order to determine which auction format to use in
the second stage.

5.6 Executing the second stage mechanisms on
the actual type vector

After computing the second stage mechanisms, the final
stage of the system is to execute these mechanisms on the
actual type vector of the high agents. The result of each
of these mechanisms is an allocation and payment. In the
experimental setup, we add the payment and the welfare
to the statistics of each mechanism. In reality, the system
would only choose one of the above auctions and execute it
on the high agents.

6. EXPERIMENTS

In order to test our system we defined benchmark dis-
tributions that represent various realistic situations. In all
of the experiments we approximate ¢ via sampling, then,
in a loop, we sample a new actual type vector from the
user’s description, compute the inputs to the second stage,
execute the various second stage auctions on the sampled
signal, and take statistics. The reported results refer to an
average of about 100 runs of each mechanism. Due to space
constraints we only report the results of five benchmarks.

We also constructed several other distributions that yielded
similar phenomena.

A detailed description of the benchmark distributions and
the results of the experiments can be found in the full version
of this paper.

6.1 Outcomes and conclusions

The performance of our system.

As we noted, the vast majority of the auctions that are
currently used in practice are English (with or without pre-
defined reserve prices). An English auction without a reserve
price yields an expected revenue of E[vz] (up to discretiza-
tion effects). On all our benchmarks, even the optimal pre-
defined reserve price never improved the expected revenue of
the English auction by more than 2%. Thus we used E[vy]
as a baseline for comparison.

Figure 2 shows the average full surpluses E[v1] and the av-
erage revenues of our system. The advantage of the system
over the English auction ranged from 41% in the coupling
benchmark to 10% in the Art case. On all the benchmarks,
the systems’s revenue is around the average of E[vi] and
E[vz]. When there is a significant gap between the two
highest bidders, the advantage of the system over English
auctions is considerable. The welfare of the system ranged
from 90% to 100%. Our system outputs an upper bound
on the revenue of the optimal valid auction (at least under
the assumption that the sampling process yields a sufficient
approximation of ¢). On all our benchmarks the system
yielded a revenue within 90% to 100% of this upper bound.
In cases where the extension method was invoked, there was
an additional loss of 0% to 15% in the KLA mechanism,
even when the size of the type space was much larger then
the feasible size.

Ascending auctions.

The mechanism computed by the KLA method can be
non intuitive and probabilistic. Often, it is desired to use
simpler and more intuitive auctions. k-reserve is an example
of such an auction. It is equivalent to an English auction
except that different reserve prices can be put on different
agents. Such a mechanism can be implemented either as a
revelation mechanism or as an ascending auction.

On all the benchmarks except coupling, the revenues of
both auctions where close to each other. Thus, in many
cases, it may be better to use ascending auctions. In the
coupling example, we got a much higher revenue by setting
k to 2. This is non surprising since the coupling is between
pairs. In the future we plan to add the possibility to wait
until other agents will drop out or at least to optimize over
all k’-reserve auctions where k' < k.

The price of fairness.

Both KLA and k-reserve auctions treat different agents
differently. In various settings, such unfair treatment may be
unlawful or a source of disputes. There are several natural
definitions of fairness in auctions (see, e.g., [3]). Perhaps the
strongest is to choose the reserve price in advance and then
conduct a Vickrey auction. In this case, both, the allocation
and the payment are symmetric functions. A weaker but
still reasonable notion of fairness is envy freeness. In this
case, either no agent wins or the highest agent wins and
its payment is at least v2. In such a case, no agent can



benefit from “switching” the outcome with another agent.
The expected revenue of any envy free auction, as well as
of any English auction with a predefined reserve price, is
bounded by the expected revenue of a k-fair auction with
k = 1. At least on all our benchmarks, the revenue of this
auction never exceeded E[vs] + 2.5%. We thus conclude
that the price of fairness in single item auctions is often
significant.

Dominant VS Bayesian auctions.

The set of the Bayesian valid auctions is a strict superset
of the set of valid auctions. Indeed we saw an advantage
typically between 3% to 5% to the Bayesian model. Since
the concept of dominant strategies is much stronger than
Bayesian equilibrium, we are not sure that such margins
justify abandon the advantages of a dominant strategy im-
plementation.

Benchmarks Comparison (V1 vs System)
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7. FUTURE RESEARCH

In this paper we demonstrated the huge potential but also
the complexity of automated auction design. Many open
issues stem from this work. This section illustrates some of
them.

This work focuses on single item auctions in the private
value model. In the future we would like to extend the sys-
tem to support multi-attribute procurement auctions[11],
multi-unit auctions, and perhaps even combinatorial auc-
tions. Other extensions include interdependent valuations,
and the relaxation of the IR and IC properties. All these
extensions require solving non trivial theoretical problems
as well as overcoming implementation obstacles. Extensions
which are easier to implement include the introduction of
risk attitudes for the seller and the buyers, incorporating
sensitivity analysis, optimizing according to multiple crite-
ria (e.g. efficiency and revenue), etc. Even in its current
form, the system can support the management of ascend-
ing auctions. We would like to extend it to support other
non-revelation mechanisms such as first price auctions.

The optimal auction problem is extremely difficult and
poses many non trivial algorithmic challenges. Other com-
putational questions are related to our extension method
and to methods of approximating the underlying distribu-
tion from partial descriptions. Open questions which are
related to the connection between our setup and computa-
tional learning theory were presented within the body of the
paper.
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