
BitStore: An Incentive­Compatible Solution for Blocked
Downloads in BitTorrent

Anirudh Ramachandran, Atish Das Sarma, and Nick Feamster
College of Computing, Georgia Tech

{avr, atish, feamster}@cc.gatech.edu

ABSTRACT

As many as 30% of all files shared on public BitTorrent

networks suffer from the lack of “seeders” (peers that have
complete copies of the file being shared); peers attempting
to download such a file (“leechers”) may have to wait indef-

initely to obtain certain file chunks that are not distributed in
the file’s network of peers (the “swarm”). We call this the
Blocked Leecher Problem (BLP).

To alleviate BLP, we propose BitStore, a larger, secure
network of BitTorrent users (not necessarily all sharing the

same content) where nodes offer their resources (such as
disk space and bandwidth) for public use. Peers sharing any
file can use the storage network to maintain replicas for each

chunk of the file. Any leecher seeking chunks that are absent
from in its own swarm can query the public network, locate

the node storing the said chunks, and retrieve them. BitStore
also provides robust incentives for nodes contributing re-
sources: In return for storing and serving chunks, such nodes

can negotiate micropayments using a second-price auction.
Peers who receive these credits may later use them to re-
trieve blocks they need from the storage network.

This paper quantifies the BLP, presents an overview of the
BitStore design, and discusses various challenges related to

storage management and incentives.

1. Introduction

BitTorrent [13] is one of the most common content-

distribution protocols on the Internet: Estimates place its

contribution to all Internet traffic at 35% [1]. Although Bit-

Torrent works well for popular content, it frustrates down-

loaders who wish to obtain less popular content, who may

often have to wait in the swarm indefinitely to meet peers

that have the blocks they need. This suboptimal behavior

in BitTorrent, which we call the Blocked Leecher Problem

(BLP), is common: Our investigation of torrent listings from

a torrent aggregator, Mininova [3], shows that almost 30%

of torrent file swarms analyzed have zero seeders but one or

more leechers.

We briefly describe BitTorrent to explain why BLP is com-

mon. A BitTorrent “swarm” comprises seeders (peers who

have complete copies of the file), leechers (peers who have

partial copies of the files), and a tracker (a per-torrent server

that enables peers to discover each other). Files are di-

vided into chunks (usually 64 – 512 KB each), and peers

distribute chunks among each other. A seeder only uploads

content, while leechers upload and download content until

their downloads complete (at which point they become seed-

ers). In a swarm with no seeders, leechers’ downloads will

only complete if the entire file can be reconstructed from

chunks that leechers in the swarm are sharing. If a swarm

does not collectively possess all chunks of the file, leechers

will never be able to recover more than a fraction of the file

(after sharing the chunks they possess among themselves);

they will then wait indefinitely for blocks that no leechers

in the swarm have.1 BLP is not to be confused with the

well-known last-block problem, which is merely an instance

of the coupon collector problem; BLP occurs when some

chunks of the file are not shared by any peer in the swarm.2

If the overlap between the active periods of leechers and the

last seeder are insufficient to distribute the whole file, the

leechers that remain in the swarm (as well as leechers that

arrive subsequently) find themselves facing BLP.

To solve BLP, we propose BitStore, which augments the

BitTorrent protocol by providing a persistent global store

that is shared among swarms. For each swarm, peers agree

to lazily maintain a minimum number of replicas of every

chunk of the original file. Essentially, the distributed stor-

age mechanism offered by BitStore supplants the need for a

seeder, since all blocks of the original file are guaranteed to

reside in BitStore. Unfortunately, the clients belonging to a

particular swarm are not sufficient to maintain these repli-

cas (otherwise, they would never face BLP as they would

be able to retrieve the chunks they need). Instead, BitStore

creates an auxiliary storage network, S, comprising clients

from other swarms such that the total number of nodes in

S is large (in particular, much greater than the number of

clients in any single swarm). In practice, this network may

include all peers tracked by an organization (e.g., a torrent

aggregator). Since even a single popular torrent aggregator

may track many millions of active peers, the size of S could

be quite large [4].

In BitStore, leechers can retrieve missing file chunks from

S, since seeders would have replicated all chunks of the file

1Usually, if a seeder leaves a swarm, it is unlikely to return and contribute
content; he has no incentive to do so. A swarm with no seeders can be
thus “blocked” until altruistic seeders return (usually after out-of-band pleas
for help, illustrated by the numerous plaintive ‘Please seed!’ messages on
torrent tracker websites.)
2Because BitTorrent peers use a Local Rarest First policy for picking new
blocks to download, BitTorrent is less prone to the last block problem than
most P2P filesharing networks [8].

on S before leaving. In return for hosting content for the

storage network S, nodes obtain micropayments [23], where

the amount of payment received is determined according to

a second-price auction. A node can then later use these to-

kens to retrieve chunks from S for other files on which it is

blocked.

This paper’s main contribution is the design of BitStore,

which is, to our knowledge, the first system to address the

Blocked Leecher Problem. BitStore uses the spare band-

width and disk-space of peers to create a unified, quasi-

persistent store for blocks of files for all participating

swarms. Despite its conceptual simplicity, BitStore must

address several challenges that arise from the fact that the

distributed store, S, is maintained by BitTorrent peers them-

selves, which must be properly incented to donate storage

and bandwidth resources to S. BitStore’s design provides

these incentives and has the following salient features:

• BitStore’s lazy replication scheme guarantees that,

with high probability, the distributed store, S, will con-

tain the complete file chunks for unpopular files that

lack seeders (Section 4.2).

• BitStore’s distributed store is robust to resource ex-

haustion attacks (Section 4.3).

• BitStore provides strong privacy and anonymity guar-

antees. In particular, peers that store blocks for S have

no knowledge of the blocks that they are storing for

other peers (Section 4.4).

• BitStore provides incentives (through token-based mi-

cropayments) for peers to contribute resources to S,

which guarantees that S (Section 5).

In addition, BitStore operates in parallel with BitTorrent’s

chunk swapping mechanisms and thus requires no modifica-

tions to existing BitTorrent protocols or software.

After presenting a brief overview of BitTorrent and related

work in Section 2, we present an overview of the BitStore

protocol in Section 3. Sections 4 and 5 describe the details

of storage management and incentives, respectively; we con-

clude in Section 6.

2. Background and Related Work

We describe the BitTorrent protocol and its desirable prop-

erties, as well as why BLP is common. (Section 2.1). Next,

we present relevant related work (Section 2.2).

2.1 BitTorrent Overview

Content is published using a .torrent file, a small (typ-

ically less than 1 MB) file that contains hashes of all chunks

of the content being distributed, as well as the domain name

and port of the tracker. A single machine typically tracks

multiple torrents, and busy trackers often track thousands of

torrents (and, hence, hundreds of thousands of clients). The

majority of public trackers are offered as a free service to

users, by a small set of organizations (e.g., Mininova [3],

The Pirate Bay [5], Demonoid [2], etc.); these organizations

also offer web-based interfaces for users to search, locate,

and obtain torrent files to start their downloads. We refer

the reader to Cohen’s original paper [13] and subsequent re-

search [18, 25, 8] for more details.

BitTorrent has many desirable properties, including: (1)

Scalability: A BitTorrent network’s capacity to serve con-

tent grows with more clients (“self scalable”); (2) Robust

Incentives: BitTorrent offers participants robust incentives

to contribute content to the swarm; and (3) Avoidance of the

Last-Block Problem: BitTorrent participants employ the Lo-

cal Rarest First (LRF) policy in choosing blocks to download

from peers, diminishing the effects of the last-block prob-

lem. Unfortunately, BitTorrent does not provide any incen-

tives for seeders to stay to contribute blocks after their down-

loads have completed, which can give rise to BLP, especially

for unpopular files.

2.2 Related Work

We briefly survey previous work on replicated systems and

incentive systems for peer-to-peer networks.

Replicated Systems. Replicated systems have been popu-

larly used for fault tolerance including byzantine fault toler-

ant [11] systems such as BAR [6] and quorum systems [22].

BitStore does not provide byzantine fault tolerant guaran-

tees, but instead uses cryptographic techniques to verify

chunks served by nodes. BitStore’s storage infrastructure is

based on the DHash [14] block storage system.

Incentives in P2P Networks. In contrast to barter systems

like BitTorrent [13], filesharing networks such as Kazaa [19]

and eMule [15] offer reputation-based incentive mechanisms

to reward altruistic peers. Reputation systems(e.g., [20]) are

susceptible to collusion and are not scalable; BitStore instead

uses pairwise currency exchanges to incent peers providing

service. Incentive mechanisms have also been proposed for

new [21] P2P content-distribution systems, media stream-

ing [17], and for the general case [16]. Recent research has

showed how BitTorrent’s incentive system may be exploited

by selfish peers to gain better performance [24].

3. The BLP and BitStore

We first describe the Blocked Leecher Problem (Sec-

tion 3.1) and discuss its prevalence in today’s BitTorrent

networks. We then present an overview of BitStore (Sec-

tion 3.2).

3.1 The Blocked Leecher Problem

The Blocked Leecher Problem (BLP) affects any peer-to-

peer network where files are divided into chunks and stored

across peers (BitTorrent is one example of such a network).

As a file decreases in popularity, the number of peers dis-

tributing chunks from that file also decreases, as does the

likelihood that the set of peers will collectively have all

chunks of the file.

The last seeder to leave a swarm might have left when

there were few leechers, but as more leechers join later, all of

them face BLP. Note, in particular, that while the last seeder

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-04 0.001 0.01 0.1 1 10 100 1000

C
D

F

Seeder:Leecher Ratio

Figure 1: CDF of the ratio for seeders to leechers for a snapshot of

138,500 torrents from the Mininova torrent aggregator.

was active, its upload bandwidth was likely not saturated by

peer downloads; the BLP occurs because the overlap win-

dow between the active periods of the seeder and leechers are

small (or zero, for leechers who join after the seeder leaves.)

Figure 1 shows that the potential for the BLP is high: 30% of

all torrents have at least one leecher with no seeders. Leech-

ers in these torrents have little chance of completing their

downloads.

3.2 BitStore Overview

BitStore exploits the following property of BitTorrent

swarms: Though the number of peers in any single swarm

may fluctuate, the total number of peers at any time is large.

BitStore aggregates these peers into a single loosely orga-

nized network (which we call S, for “storage” network),

where each peer may use other peers as a “buffer” for con-

tent that cannot be distributed in its own swarm.

S is the union of all peers that are tracked by a cooperating

set of trackers (e.g., the set of all trackers run by a single

organization). The peers in S maintain a fixed number of

replicas for all chunks in their respective swarms using S
as a buffer. If a node discovers a shortage of copies of any

particular chunk in its swarm, it stores that chunk to S to

allow other nodes in its swarm to retrieve them later.

To encourage peers to participate in S, nodes that serve

chunks from S receive payment (in “tokens”) from other

nodes that retrieve blocks that they are serving (the price

of each block is dictated by market mechanism that we dis-

cuss in detail in Section 5). The coordinating trackers act

as a Trusted Third Party for money exchanges: they pos-

sess cryptographic key pairs, can convert real-world money

to tokens and vice versa, and can sign and verify messages

on behalf of nodes connected to them.

Nodes in BitStore can act in three capacities: 1) Departing

seeders, who use S to maintain replicas for file chunks; 2)

Buyers, who download file chunks stored by nodes in S; and

3) Sellers, who offer resources (bandwidth, disk space) for

S to buyers. Figure 2 describes at a high-level the protocol a

node follows for each of these roles.

CASE 1: NODE A WISHES TO DISTRIBUTE REPLICAS OF CHUNK C
IN S :
Let s = set of nodes in S designated to store C
foreach node n in s
if n does not have a copy of C

replicate C at n
CASE 2: NODE A WISHES TO DOWNLOAD A COPY OF CHUNK C

FROM S :
Let s = set of nodes in S designated to store C
Let q = |r|, where r ⊆ s are nodes that still have a copy of C
Choose a node n ∈ r at random
Participate in a second-price auction at n for C
if A is the winning bidder

securely pay n the second-highest price (in tokens)
in return for C

else

Back off, and repeat CASE 2 possibly after earning
more tokens

if |r| < |s|
Execute CASE 1 to replenish replicas of C in S

CASE 3: NODE A ∈ S HAS A SET OF CHUNKS, C ,
FOR SALE

Let b = upload bandwidth A can spare for service
Let Nc = number of chunks A is willing to serve at any instant

Let t = Nc

b
, the period between auctions at A

every t units of time
Aggregate all chunks that had requests in the last t units
into the set Cr = {c1, c2, . . . , ck}, Cr ⊆ C
foreach ci ∈ Cr

Let pi = reserve price for chunk ci

if number of requesters for ci > 1

Conduct second-price auction among requesters of ci

if winning bid meets pi

Accept payment and serve ci to the winner
else

if requester’s price meets pi

Accept payment and serve ci

Refuse service to everyone else

Figure 2: The BitStore protocol for nodes assuming various roles.

4. Storage Management

This section presents the distributed replica storage system

in BitStore. We first describe the basic storage mechanisms

based on DHash and necessary modifications to DHash to

facilitate replica maintenance. We then describe BitStore’s

defenses against resource exhaustion and other guarantees

regarding privacy and anonymity.

4.1 Basic System Structure

Peers in any swarm must be able to use S to store and

retrieve blocks 1) within a reasonable number of lookups,

2) without any persistent bookkeeping information, and 3) in

the presence of failures and changing network conditions.

To achieve these properties, S relies on the DHash [14] Dis-

tributed Hash Table (DHT) block storage system, layered on

top of Chord lookup protocol [28], to efficiently distribute

chunks among nodes in S. DHash offers simple primi-

tives for operating on blocks (i.e., file chunks) over nodes

in the Chord ring: 1) put(block): Computes block’s key

by hashing its contents, and sends the block to the appro-

priate server (as dictated by Chord rules) for storage; 2)

get(key): Locate the server responsible for storing the

block identified by key and retrieve the requested block.

3

BitStore should be able to serve content even if nodes fail

or otherwise unpredictably depart. Thus, BitStore must dis-

tribute content so that nodes that fail together (due to net-

work topology or malice) will not affect all replicas of any

given chunk. Chord offers provable guarantees for the num-

ber of lookups in locating a server storing a key, robustness

to failures, and scalability, but BitStore requires several mod-

ifications to the basic DHash scheme to allow maintenance

of multiple replicas, to defend against resource exhaustion,

to protect privacy, and to provide incentives for nodes to con-

tribute resources to S.

4.2 Replica Maintenance

In Chord, every peer node, and each block, hashes

to exactly one position, but BitStore must store multiple

copies of each block in S. Accordingly, BitStore com-

putes Chord indices using a hash function of the form

h(chunk hash, secret, i), where chunk hash refers to a

hash that uniquely identifies the chunk; secret is a secret

that is provided by the tracker and is known only to nodes

in the swarm the chunk belongs to; and i is the index of

the replica. The index of the replica, i, runs from 0 through

qs—the maximum amount of replicas of a chunk that need

to be stored on S—implying that one block is stored at qs

distinct nodes in S. Though the node performing the lookup

does not have a copy of the chunk (and hence cannot directly

compute the hash of the chunk), it may obtain the hash of the

chunk from the .torrent file; thus, chunk hash refers to

the hash of the hash of the chunk.

secret is a per-torrent secret provided by the tracker that

allows members of a particular swarm to locate replicas for

their file, but prevents nodes in S that are not in that swarm

from discovering these replicas (i.e., since only nodes in

that swarm know the secret, other nodes cannot compute the

Chord indices for these replicas).

Using estimates from a snapshot of a torrent aggrega-

tor’s statistics, we claim that even modest contributions from

nodes can achieve high replication factors (Appendix A pro-

vides the calculation for this estimate).

Claim 4.1 For a uniform number of replicas for each

swarm, say q = 10, any node in S will have to store only
a few hundred MB of data.

Modifications to DHash BitStore modifies DHash’s access

primitives and presents the following interface to clients:

• mput(block): mput is a wrapper to the DHash

put primitive, and encapsulates the algorithm in Case

1 of Figure 2. The node computes hash functions to

generate qs keys, locates the nodes in S responsible for

the keys, and issues store requests to each of them.

• mget(key): mget is the implementation for Case 2

of Figure 2, and is issued by a node wishing to obtain a

chunk from S. mget locates nodes as in mput, but the

node ultimately buys the chunk from just one “seller”

of the chunk (typically in an auction). Upon winning

an auction, the node also issues an mput to bring the

number of replicas up to qs.

When a seeder arrives, it uses mput to create the initial set

of qs replicas in S. Although this initial replica creation can

tax the seeder’s bandwidth [9], this overhead can be reduced

with multicast [10] or a BitTorrent-like distribution mecha-

nism. The swarm’s tracker stores and informs any node in

that swarm both the secret (secret) and the number of repli-

cas (qs); any node in the swarm can then compute the hash

functions for any chunk and retrieve chunks directly from

nodes in S.

Replicas can be depleted if either a node storing a cer-

tain replica fails, or the replica’s lifetime expires (after which

the node can safely assume that no leecher is seeking this

chunk). Replica maintenance occurs lazily: After a leecher

issues an mget request to obtain a chunk, it issues an mput

for the same chunk, which increases number of replicas of

that chunk in S to qs. Any node which has the chunk ig-

nores the mput (i.e., it does not store duplicates of the same

chunk). Though chunks may be replicated less than qs times,

a sufficiently large value of qs and uniformly distributed stor-

age across S implies that, with high probability, at least one

replica will be available.

With qs replicas, the probability that no replica is avail-

able is exponentially small in qs. Although, in the worst

case, mput should check for successful insertion of all qs

replicas, the following claim shows that verifying the suc-

cessful insertion of only c < qs replicas can provide the

same asymptotic failure guarantees.

Claim 4.2 A leecher can ensure replication at only c out of
qs nodes (c < qs), where c is selected uniformly at random,
without compromising on the asymptotic failure probability.

Appendix B provides a proof sketch for this claim. To pro-

vide intuition on the failure probability we can guarantee,

suppose there are requests to chunk i approximately every t
time units. Let qs = 10, c = 3, and the probability of failure

in time interval t be p = 1/10. Then, the failure probability

is on the order of 10−10.

4.3 Defense Against Resource Exhaustion

Malicious nodes could flood S with bogus chunks of data,

exhausting storage and denying service to legitimate users.

BitStore must defend against this attack by allowing any

node in S to verify whether the storage request is legitimate.

A legitimate client that wants to store a chunk on S
constructs a message M =< chunk hash, i >, where

chunk hash is computed as in Section 4.2 and i is the in-

dex of the replica (0 ≤ i ≤ qs), and presents it to its tracker.

The tracker now generates the Chord key k using the hash

function defined in Section 4.2 and returns M ′ =< M, k >,

signed with its private key, to the client. The client presents

M ′ and the tracker’s signature with the request to store the

chunk to the node in S responsible for storing the key k.

When a node in S receives a request to store a chunk, it

performs two checks. First, it verifies the signature presented

4

with the request using its own tracker (as all trackers know

each others’ public keys). Second, the node verifies that it is

indeed responsible for storing the key k (obtained from M ′)

by performing a Chord lookup. The node accepts the storage

request only if both tests succeed.

To support these operations, each tracker must have a pri-

vate/public key pair and be able to perform two operations:

1) sign a message at the request of any client currently con-

nected to it using its private key; and 2) verify the signature

on any message presented to it by a client, where the signa-

ture may be from a tracker from a different organization.

4.4 Privacy and Anonymity

To preserve privacy, nodes that contribute storage to S
should not be able to discover the origin of content that they

store (e.g., the .torrent file for the chunks of any file

they are storing). BitStore solves this problem by encrypt-

ing all chunks stored in S, for example by using the secret

shared between all members of a given swarm. This encryp-

tion also prevents nodes from discriminating against serving

different types of content, and also provides the node plau-

sible deniability. (Other systems have also provided similar

guarantees [12, 29].)

5. Incentives

This section describes the incentive system that BitStore

provides to encourage nodes to contribute resources to S.

5.1 Overview of Token Scheme

S cannot rely on the BitTorrent-like tit-for-tat chunk trad-

ing scheme between nodes to ensure fairness: The node that

is blocked and is requesting a chunk from some node in S
will likely not have any data that the node offering the chunk

wants. The rewards offered to a node providing service must

be in a form different from content. Accordingly, BitStore

uses currency—in the form of tokens—that are used to pay

for chunks obtained from S. The token scheme has the fol-

lowing properties:

• BitStore compensates a node in S only after the suc-

cessful retrieval of a stored chunk. Otherwise, a dis-

honest node may discard content it was paid to store.

• A storage node should receive compensation in propor-

tion to the services it has rendered. For instance, a node

serving more chunks from S should receive higher pri-

ority while downloading chunks it needs.

• Tokens have real monetary value; this property auto-

matically addresses concerns of replication, hoarding,

etc. It also allows leechers to place a real dollar value

on using blocks from S to become “unblocked”.

Each token has a fixed denomination, but its value is sub-

ject to market forces much like in a real market. Any node

may reuse tokens in subsequent sessions, but the same token

cannot be used twice by any node; well-studied digital cash

systems (e.g., [27, Ch.6], [30], [31]) can be used to imple-

ment tokens.

5.2 Using Tokens

Any node can obtain and use tokens in the following way.

Obtaining Tokens. Tokens can be obtained in two ways.

First, any node can buy tokens using real money (e.g., us-

ing a credit card or a bank account) at exchange portals

(run by the same organizations that run trackers) at the of-

fered conversion rate (similar to foreign currency exchange).

Maintaining portals offers a source of income (e.g., adver-

tisements) for these organizations. Second, a node can earn

tokens by participating in S and serving requests.

Using Tokens. A node that wants to download a chunk

from S first issues an mget(). On finding a node that has

the chunk, the node participates in a second price auction

with other nodes that are requesting the same chunk from

that seller (Section 5.3 describes the auction mechanism in

detail). The requesting node (the “buyer”) can choose any

seller among the replicas storing the chunk that gives it the

best price and performance, and the seller is free to deny ser-

vice if the winning buyer does not meet its reserve price. At

the conclusion of the auction, the winning bidder’s tokens

are exchanged for the chunk using a secure mechanism [7].

5.3 Auction Mechanism

A secure, sealed-bid auction is held by a seller at regular

time intervals. Note that even losers in an auction can benefit

since the winner is a peer in B’s swarm: B can then obtain

that chunk with conventional tit-for-tat block exchange.

Second-Price Auction and Reserve Price. The basic auc-

tion protocol is described in case 3 of Figure 2. This second-

price auction has the desirable truthfulness property that it

gives buyers the incentive to bid their true valuation of the

chunk [26]. Each auction also has a reserve price, the min-

imum payment the seller demands for the chunk, that is

known only to the seller. If the auction has only one buyer,

then the block is sold at the reserve price, assuming the re-

serve is met.

If no bidder is able to meet the reserve price, the chunk is

not sold. Buyers however are free to try again later (possibly

after earning or buying tokens). Alternatively, sellers may

altruistically agree to sell the chunk below its reserve price

(or specifically, for free); this mechanism is equivalent to op-

timistic unchokes in BitTorrent. Because sellers are allowed

to sell the same chunk twice (described next), altruism does

not suffer disincentives.

Bidding for a Set of Chunks in Parallel Auctions. Because

each node ultimately cares about downloading an entire file

rather than individual chunks, a node will typically value a

set of chunks from S higher than the sum of its valuations for

individual chunks. To ensure that nodes bid their valuation

for the collection of chunks, we propose following mecha-

nism. Assume that a node needs k chunks of a file from S for

a total valuation of V . The node can bid V
k

at each chunk’s

auction. If it loses some auctions, these auctions will be won

by nodes in its own swarm. With high probability, the node

5

will obtain these chunks through exchanges and thereby the

entire set of k chunks it desired, for less than V .

Double-selling. Although a seller serves only one buyer (the

winning bidder) at a time, it may serve the same chunk to

multiple buyers over time. This is advantageous to BitStore

as the seller receives payment for the service, not the good.

Of course, the seller must still offer reasonable prices for this

service, since the buyers may choose among all given sellers

before buying any chunks; moreover, a seller may not be

able to sell a chunk too frequently as if a chunk was sold

recently, a copy is likely to be in the corresponding swarm.

6. Conclusion

This paper has presented the design of BitStore, a dis-

tributed storage system for solving the Blocked Leecher

Problem. BitStore builds on previous work in DHT-based

cooperative storage systems, but extends these systems to

provide replica maintenance, robustness against resource ex-

haustion attacks, and strong privacy and anonymity guaran-

tees.

BitStore leverages the fact that the total number of peers

in a BitTorrent network is larger and more stable than nodes

in any individual swarm to construct a storage system for

blocks that would otherwise be unavailable when seeders

depart. BitStore allows nodes in the BitTorrent network to

contribute resources in exchange for tokens, which the node

can later exchange either to unblock its own download (pos-

sibly for a different file) for money. BitStore requires no

modifications to existing BitTorrent protocols and can thus

be easily added as an auxiliary system to the already widely

deployed base of BitTorrent networks.

REFERENCES
[1] Cachelogic Estimate for BitTorrent’s Contribution to Internet Traffic.

http:

//in.tech.yahoo.com/041103/137/2ho4i.html, 2005.

[2] Demonoid Torrent Tracker. http://www.demonoid.com/,
2007.

[3] Mininova Torrent Tracker. http://www.mininova.org/,
2007.

[4] Mininova Torrent Tracker Statistics.
http://www.mininova.org/stats, 2007. Retrieved on 23
February 2007.

[5] The Pirate Bay. http://thepiratebay.org/, 2007.

[6] AIYER, A. S., ALVISI, L., CLEMENT, A., DAHLIN, M., MARTIN,
J.-P., AND PORTH, C. Bar fault tolerance for cooperative services.
In SOSP ’05: Proceedings of the twentieth ACM symposium on
Operating systems principles (New York, NY, USA, 2005), ACM
Press, pp. 45–58.

[7] ASOKAN, N., SCHUNTER, M., AND WAIDNER, M. Optimistic
protocols for fair exchange. In ACM Conference on Computer and
Communications Security (1997), pp. 7–17.

[8] BHARAMBE, A. R., HERLEY, C., AND PADMANABHAN, V. N.
Analyzing and Improving a BitTorrent Network’s Performance
Mechanisms. In Proceedings of 25th IEEE International Conference
on Computer Communications (INFOCOM 2006) (April 2006),
pp. 1–12.

[9] BLAKE, C., AND RODRIGUES, R. High availability, scalable
storage, dynamic peer networks: Pick two. In Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP) (Lake George,
NY, Oct. 2003).

[10] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A.,
ROWSTRON, A., AND SINGH, A. SplitStream: High-bandwidth
content distribution in cooperative environments. In Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP) (Lake George,
NY, Oct. 2003).

[11] CASTRO, M., AND LISKOV, B. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems 20,
4 (Nov. 2002), 398–461.

[12] CLARKE, I., SANDBERT, O., WILEY, B., AND HONG, T. Freenet:
A distributed anonymous information storage and retrieval system. In
Proc. the Workshop on Design Issues in Anonymity and

Unobservability (Berkeley, CA, July 2000).

[13] COHEN, B. Incentives build robustness in BitTorrent. In Workshop
on Economics of Peer-to-Peer Systems (Berkeley, CA, USA, June
2003).

[14] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proc. 18th
ACM Symposium on Operating Systems Principles (SOSP) (Banff,
Canada, Oct. 2001).

[15] The eMule Project. www.emule-project.net/.

[16] FELDMAN, M., LAI, K., STOICA, I., AND CHUANG, J. Robust
incentive techniques for peer-to-peer networks. In EC ’04:
Proceedings of the 5th ACM conference on Electronic commerce

(New York, NY, USA, 2004), ACM Press, pp. 102–111.

[17] HABIB, A., AND CHUANG, J. Incentive mechanism for peer-to-peer
media streaming. In Twelfth IEEE International Workshop on Quality
of Service (IWQOS), 2004.

[18] IZAL, M., URVOY-KELLER, G., BIERSACK, E., FELBER, P.,
HAMRA, A., AND GARCES-ERICE, L. Dissecting bittorrent: Five
months in a torrent’s lifetime. In Proceedings of the 5th Passive and
Active Measurement Workshop. (April 2004).

[19] KazaA filesharing network. http://www.kazaa.com/.

[20] LAI, K., FELDMAN, M., STOICA, I., AND CHUANG, J. Incentives
for cooperation in peer-to-peer networks. In Proceedings of the 5th
ACM conference on Electronic commerce (EC), 2004 (2003).

[21] M. SIRIVIANONS AND J. H. PARK AND X. YANG AND

STANISLAW JARECKI. Dandelion: Cooperative Content Distribution
With Robust Incentives. In Proc. USENIX Annual Technical
Conference (Santa Clara, CA, June 2007).

[22] MALKHI, D., AND REITER, M. Byzantine quorum systems. In
Proceedings of the 29th annual ACM symposium on Theory of

computing(STOC) (1997), pp. 569–578.

[23] MICALI, S., AND RIVEST, R. L. Micropayments Revisited. Lecture
Notes in Computer Science, 2271 (2002), 149–263.

[24] PIATEK, M., ISDAL, T., ANDERSON, T., KRISHNAMURTHY, A.,
AND VENKATARAMANI, A. Do Incentives Build robustness in
BitTorrent? In Proc. 4th USENIX NSDI (Cambridge, MA, Apr.
2007).

[25] POUWELSE, J. A., GARBACKI, P., EPEMA, D. H. J., AND SIPS,
H. J. The Bittorrent P2P file-sharing system: Measurements and
analysis. In 4th Int’l Workshop on Peer-to-Peer Systems (IPTPS) (Feb
2005).

[26] ROBERT GIBBONS.Game Theory for Applied Economists. Princeton
University Press, 1992.

[27] SCHNEIER, B. Applied Cryptography: Protocols, Algorithms, and
Source Code in C, Second Edition. Wiley, October 1995.

[28] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proc. ACM SIGCOMM (San Diego, CA,
Aug. 2001).

[29] WALDMAN, M., AND MAZIÈRES, D. Tangler: A
censorship-resistant publishing system based on document
entanglements. In Proc. 8th ACM Conference on Computer and
Communications Security (Philadelphia, PA, Nov. 2001).

[30] Digital Cash. http://www2.sims.berkeley.edu/
courses/is204/f97/GroupE/cash.html, 1997.

[31] Micropayment Products. http://www2.sims.berkeley.
edu/courses/is204/f97/GroupE/micro.html, 1997.

6

APPENDIX

A. Estimate of Disk Space Requirement

The statistics retrieved from the Mininova torrent aggre-

gator [4] on March 21, 2007, show the following:

Total number of seeders, s: 3,964,445

Total number of leechers, l: 4,950,150

Total users, u = l + s: 8,914,595

Total torrent files, t: 3,583,654

Average file size, f : 60.15 MB

For a uniform replication of each file 10 times, the amount

of disk space contributed by each user (assuming uniform

distribution) = (t × f × 10)/u) ≈ 242MB.

B. Proof Sketch of Failure Probability

Theorem B.1 Failure Probability in case of an mget re-

quest by a leecher for chunk i is proportional 2−qi .

PROOF SKETCH. Assume that there has been an mget re-

quest for chunk i in the previous T units of time, where T is

proportional to the average lifetime of nodes.

By our protocol, at the time of this mget request, at least

c copies of chunk i were received an mput request. More-

over, these c where chosen uniformly at random from the

qi. Therefore, the probability that these c stored a chunk but

none of the other qi − c did is
r!(n−r)!

n! where r = c and

n = qi. For appropriate c, this is exponentially small in

qi; this is because, after every mget, c of these are selected

at random, so over k such requests, each of the qi nodes is

checked kc
qi

times in expectation (c chosen such that this ra-

tio is constant bigger than 1); we assume that the probability

of a random node failing within k such requests is small.

This tells us that if every mget request is accompanied by

c mput requests we can guarantee that immediately after the

mget, with high probability, a large fraction of the qi repli-

cas indeed store the chunk. Now, the probability that all of

these nodes fail, before the next mget to chunk i (given that

this request is soon enough), is pt where p is the probability

of failure of a single node and t is the number of replicas of

the chunk. Using this, if the probability of a random node

failing between two successive mget requests to chunk i is
1
2 and t is a constant fraction of qi, the result in the theorem

follows.

7

