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ABSTRACT
We propose a model for the evolution of market share in the
presence of social influence. We study a simple market in
which the individuals arrive sequentially and choose one of
the products. Their decision of which product to choose is
a stochastic function of the inherent quality of the product
and its market share.

Using techniques from stochastic approximation theory,
we show that market shares converge to an equilibrium. We
also derive the market shares at equilibrium in terms of the
level of social influence and the inherent fitness of the prod-
ucts.

In a special case, when the choice model is a multinomial
logit model, we show that inequality in the market increases
with social influence and with strong enough social influence,
monopoly occurs. These results support the observations
made by Salganik et. al. [27] in their experimental study of
cultural markets.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; C.4
[Performance of Systems]: Modelling techniques

General Terms
Theory, Economics

1. INTRODUCTION
The objective of this paper is to study markets in which

the decision of individuals in choosing a product does not
depend just on the quality of the product but also its market
share. This is observed in many online social settings like
Youtube or Digg, in which clips or news items that have
a high “market share” or high number of views are chosen
more frequently [6].

These markets give rise to very interesting questions. Do
they converge to an equilibrium? Is the outcome (or the
equilibrium) of this market predictable? Can we observe a
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significant difference in the outcome if we increase the level
of social influence? What is the effect of the inherent appeal,
or quality, of the products on their market share?

We consider a market in which individuals sequentially
choose one of the available products based on its inherent
quality as well as its market share. The market share of a
product is defined as the fraction of people who have chosen
that product before. Also, the decision of every individual
is a stochastic function of these two parameters.

We show that market shares converge to an equilibrium if
there is a sufficiently large number of participants. Further-
more, it is possible to derive the equilibrium as a solution of
an Ordinary Differential Equation (ODE). The proof of this
theorem uses techniques from stochastic approximation the-
ory, which relate the limit behavior of a stochastic process
to the limit behavior of a differential equation.

We also study the rate of convergence to the equilibrium.
We prove that the difference of the stochastic process and
its corresponding ODE, converges weakly to a Gaussian dif-
fusion. In other words, for a sufficiently large number of
people in the market, with high probability, the difference
between the market share and the equilibrium point is less
than c√

n
, where c depends on the social influence.

The above results are for a very general class of functions
and imply some of the existing results on balls and bins
processes in [21, 9]. In these models, balls are sequentially
thrown into bins so that the probability that a bin with
n balls receives the next ball is proportional to f(n), for
some feedback function f . The feedback function is of type
f(n) = np for p > 0. It has been shown that when p > 1,
almost surely there is some bin that gets all but finitely
many balls. This is what we refer to as the monopoly case.
When p is less than 1, the asymptotic fraction of balls in
each bin are the same, whereas p = 1 becomes the classic
Polya Urn model. Our analysis imply these results for p < 1
and p > 1.

Our final result deals with the case when the choice prob-
ability function is logit. As a special case, we focus on the
multinomial logit model due to its wide use for modeling so-
cial influence in economics literature. There are also many
empirical studies that use the logit model to analyze social
influence [29, 14, 1, 11, 24].

By focusing on this special case, we can measure the effect
of social influence on the market share more directly. For
example, we can show that the number of equilibria increases
with the social influence. This can be interpreted as the
increase of the unpredictability of the market.

We also study the effect of social influence on inequality.



Our measure of inequality is Gini coefficient as defined in
[27]:

G =
1

2M

X
α,β

|φα − φβ |

M is the number of products and φα is the market share
of product α. We observe that Gini coefficient is monotone
with the social influence. Furthermore, with large enough
social influence, monopoly occurs, that is, one of the prod-
ucts gets the largest market share while for the rest, the
market shares become almost zero.

Both of these results are consistent with the observations
made in Salganik et al. [27].

1.1 Related Literature
The effect of social influence on collective behavior has

been studied by extensively. Social learning models and
herding models, have been incorporated into standard mod-
els of economic decision-making by a growing number of
theoretical studies.

Initially, the problem was pointed out by [28, 12, 15],
where authors started studying the effects of interacting
agents. Later it was studied in well-known results of [2, 4,
13]. Quantitative models of herding and interaction effects
have also been observed by [22, 10, 7, 20, 23, 26].

One branch of research on herding uses rational learn-
ing explanations, grounded in theories of Bayesian learning.
In this setting, herding is described as a Bayes rational re-
sponse to imperfect information. Here, social information
that comes from the action of others is used during the
Bayesian updating of a priori probabilities. These results
also establish the presence of a stable solution [8, 4].

The underlying hypothesis in these models is that indi-
viduals are rational and different people will, on average,
behave in the same way. Our model relaxes this assumption
by the affect of the noise term. At the same time, the opti-
mization problem solved by each consumer in our model is
not as complicated as the Bayesian model.

Despite many theoretical studies, social effects have been
hard to quantify empirically. This is mostly due to the dif-
ficulty of drawing inferences from the data as described in
detail by [19]. One can still find empirical studies on herding
in many different contexts such as crime [14], labor supply
[30], stock market participation [17], and choice of health
plans [3]. One of the main inspirations for this paper has
been the result of Salganik et. al. [27]. In this paper, the
authors study a web-based music market with over 14,000
consumers to understand the effect of social influence in cul-
tural markets. They conclude that the inequality and un-
predictability in the market increases with social influence.

2. OUR MODEL
We consider a market with m products. At each time step

n, a new participant enters the market. After observing the
market share of each product, he chooses a product i ∈
{1, ...,m} that satisfies

i ∈ argmax
j

(Jh(φj(n)) + fj + εj)

J is a parameter that measures the social influence, φj(n)
is the market share of the product j at time n, h is a mono-

tone smooth function, fj is the inherent quality of the prod-
uct j, and εj is the noise. We call the sequence of market
shares, φ(n), generated according to this model as the mar-
ket share sequence. According to our model, each customer’s
decision is influenced by what others have chosen before him
(the market share), the social influence (for J > 0), and the
quality of the products. Once the stochastic terms are real-
ized, each customer chooses an alternative that maximizes
the above equation. From now on we will use vectors in
our notation; φ(n) = (φ1(n), ...φm(n)) is the market share
vector at time n and f = (f1, ...fm) is the quality vector.

The above model can be considered as an instance of
the additive random utility model in discrete choice the-
ory, which is frequently used by economists [25]. In this
model, an agent must choose from a set of alternatives A =
{1, ...,m} offering some base utility, in our case

xj = Jh(φj(n)) + fj

and some stochastic utility εj . Each agent chooses the al-
ternative whose total utility is the highest.

We define the choice probability function as

L : Rm → Pm

where

Li(X) = P (argmax
j

xj + εj = i)

The most common choice probability function used to
model herding is the logit choice function [29, 14]. If εj are
independent identically distributed random variables with
the extreme value distribution, such that

F (ε) = exp(−exp(−η−1ε− γ))

where γ is the Euler constant, then the choice probability
function is the logit choice function

Li(X) =
eη
−1xiP

j e
η−1xj

In our model the nth customer will choose product i with
probability

CJi (φ(n)) = Li(Jh(φ(n)) + f)

As a side note, let us give two examples of this function:
Example 1: Let h be the identity function, and η = J−1.

Then,

CJi (φ(n)) =
eJφi(n)+fiP
j e
Jφj(n)+fj

Example 2: Let h = ln(x) and αi = exp(fi). Then our
model becomes a generalization of the preferential attach-
ment:

CJi (φ(n)) =
αi(φi(n))JP
j αj(φj(n))J

For J = 1, the above model is used in [5] as preferential
attachment with fitness. Also, if fitness of each product is
the same, our model becomes the balls in bins process with
feedback, where the feedback function is f(x) = xJ .



2.1 Main Theorems
Using the above model, we study the behavior of the mar-

ket shares when a sufficiently large number of customers
have visited the market. In the first theorem, we will show
that in the general case, the stochastic process of the market
share asymptotically follows a deterministic path, which is
the solution of an ODE. Next, we will show that the market
share converges to an equilibrium at infinity in the special
case where h is linear. In the third theorem, we study the
rate of convergence of the equilibrium.

Theorem 1. Let φ(n) be the market share at time n.
Then, there exists a sequence (t̄k)k≥1 such that as t̄k →∞

lim
k→∞

|φ(k)− φ̄(t̄k)| = 0, (1)

where φ̄ is the solution of the following ODE:

d

dt
φ̄(t) = C(φ̄(t))− φ̄(t). (2)

Proof. For each customer n, define the indicator In ∈
RM , representing the product selected by customer n. In
other words, Ini = 1 if customer n selects product i, other-
wise Ini = 0.

Suppose product i has been chosen Nn
i times by the first

n customers. Let Nn be a vector with m components where
component i is Nn

i . Here we assume that each customer
buys exactly one product. Therefore,

Nn+1 = Nn + In+1

By definition, market share is φ(n) = 1
n
Nn and C

`
φ(n)

´
=

E[In|φ(n)]. Hence,

φ(n+ 1) =
n

n+ 1
φ(n) +

1

n+ 1
In

E
ˆ
φ(n+ 1)− φ(n)

˛̨
φ(n)] = − 1

n+ 1
φ(n) +

1

n+ 1
E[In|φ(n)]

= − 1

n+ 1
φ(n) +

1

n+ 1
C(φ(n))

Let εn = 1
n+1

, g(x) = C(x) − x, and dn = In − C(φ(n)).
Therefore,

φ(n+ 1) = φ(n) +
1

n+ 1
g(φ(n)) + εndn (3)

So, εndn = (φ(n + 1) − φ(n)) − εng(x) is a Martingale
difference with respect to the filtration generated by market
share. Note that

P∞
n=1 εn = ∞, and

P∞
n=1 ε

2
n < ∞. Fur-

thermore, C(x) is a probability vector, so ‖g(x)‖ ≤ 2 and
‖φ(n)(·)‖∞ ≤ 1, and ‖dn| ≤ 2.

Define t0 = 0 and tn =
Pn
i=1

1
i
≈ logn for all n. Consider

a continuous time interpolation φ0(·) of φ(n) on (−∞,+∞)
by:

φ0(t) = φ(0) for t ≤ 0

φ0(t) = φ(n) for tn ≤ t ≤ tn+1 (4)

Also, define the sequence of the shifted process φn(·) by:

φn(t) = φ0(tn + t) for all t ∈
`
−∞,+∞

´
(5)

ODE Method, developed in stochastic approximation [18]
gives strong tools to study the behavior of this type of func-
tion sequences.

Now we can apply Theorem 2.1 in [18]. This theorem im-
plies that the sequence of functions (φn(·)) has a convergent
subsequence such as (φrm(·)), which converges uniformly to
φ̄(·), the trajectory of the ODE:

d

dt
φ̄(t) = C(φ̄(t))− φ̄(t)

Consider a sequence δm that converges to zero. Then, there
exists a subsequence (φrm(.)) such that, for all t, we have:‚‚φrm(t)− φ̄(t)

‚‚ ≤ δm
From the definition, we know that (φrm(t)) = φ0(t +

trm) = φ(k) for some k such that tk ≤ trm + t < tk+1.
So for each m, and large enough k, we have:‚‚φ(k)− φ̄(tk − trm)

‚‚ ≤ δm
Now, we want to show that there exists a sequence (t̄k)k≥1

such that as t̄k →∞

lim
k→∞

|φ(k)− φ̄(t̄k)| = 0

k is bounded by a constant that depends on m, let us show
it by k > um, so now let fm = max(r2

m − 1, um). Then
fm is an increasing sequence going to infinity. For each
fm+1 > k ≥ fm, define t̄k = tk − trm . It is clear that

t̄k = tk − trm > tr2m−1 − trm >
Pr2m
i=rm+1

1
i
> ln(rm), so t̄k

goes to infinity as k increases.

The natural question here is the stability of the above
ODE. In the next theorem, we show that if h is a linear
function for most of the choice probability functions, the
equlibrium is stable. The following theorem also shows that
the market share converges almost surely to a finite discrete
set of points under some conditions.

Theorem 2. Let C : Rm → Pm be the choice probabil-
ity function defined in the previous section, where h is the
identity function, i.e.

Ci(X) = P (argmax
j

Jφj + fj + εj = i)

Also, assume that the random vector ε admits a strictly
positive density on Rm and is such that C is continuously
differentiable. If φ̄(t) is a trajectory of the ODE

d

dt
φ̄(t) = C(φ̄(t))− φ̄(t)

then, φ̄(t) is well-defined over the whole R and

lim
t→∞

(C(φ̄(t))− φ̄(t)) = 0 (6)

Proof. By Theorem 2.1 in [16] , there is some convex

function W̃ : Rn → R, such that ∇W̃ = C. Now let us
define W : Rn → R as:

W (P ) =
1

2

`
P
′
P
´
− W̃ (P )

It is clear that W for all P ∈ Rm:

∇W (P ) =
`
P − C(P )

´′



So, the domain of the trajectories of (6) is the whole (−∞,+∞).
Let φ̄(·) be the trajectory of the ODE. Then

d

dt
W (φ̄(t)) = (∇W (φ̄(t)))(

dφ̄

dt
)

=
`
φ̄(t)− C(φ̄(t)))

′`
C(φ̄(t))− φ̄(t)

´
= −

‚‚φ̄(t)− C(φ̄(t))
‚‚2

The above equality holds if φ̄(t) ∈ RP = {p ∈ Pm|C(p) =
p}.
In the next step, we will show that ‖W (X)‖2 goes to infinity
as X goes to infinity. Let X = αu where ‖u‖2 = 1. Clearly,
‖C(X)‖2 ≤ m. We have:

‚‚‚W̃ (X)
‚‚‚

2
=

‚‚‚‚Z α

0

d/dt(W̃ (tu))dt

‚‚‚‚
2

=

‚‚‚‚Z α

0

(C(tu)dt).u

‚‚‚‚
2

≤ αm (7)

So W (X) = 1/2 ‖X‖22 − W̃ (X) goes to +∞ as X goes to
infinity.
Since, W (X) is smooth, the minimum of W over Rm exists
and we have ∇W (X) = 0 for all of its minimizers. So, its
minimum points belong to RP .
Furthermore, if C(p) = p, p is an interior point of the sim-
plex. If pi = 0 for some i, by definition:

Ci(p) = P (argmax
j

(Jp+ fj + εj) = i) = 0

This contradicts our assumption about the support of ε’s
density. Hence, we can conclude that W (X) is a Lyapunov
function, and the trajectory of the ODE converges to a point
belonging to the set RP .

First we showed that the market share converges to an
equilibrium in our model. This equilibrium point belongs to
the solution of C(p) = p, which does not necessarily have a
unique solution. When C(p) = p has multiple solutions, the
market share can converge to one of these different points.
In other words, we have several candidates for the equilib-
rium point, and the beginning behavior of the market will
determine which one of these equilibria will be selected.

So, there is some φ̄ ∈ RP = {p ∈ Pm|C(p) = p} such that
φ(n)→ φ̄.

Our result also specializes to the balls in bins process with
feedback studied in [21, 9] as we discussed in example (2). In
this model, balls are sequentially thrown into bins so that
the probability that a bin with n balls gets the next ball
is proportional to f(n), for some feedback function f . The
above references focus on the feedback function; f(n) = nJ

for J>0 and it has been shown that this family of f has phase
transition at J = 1: Theorem 2.1 and Theorem 2.2 in [9],
states that for each i, φ̄i = limt→∞ φi(t) exists. The authors
show that when J > 1, monopoly occurs, i.e. the fraction
of balls in one of the bins goes to one. If J < 1, φ̄i = 1

m

for all bins, while for J = 1, the limit vector φ̄ is uniformly
distributed on the simplex at the same rate. These results
are corollaries of our Theorem 1: Let h(x) = lnx and let
the fitness of all products be the same. In this case, the

probability choice function is:

Ci(φ) =
φJiP

j φj(t)
J
,

and the ODE in equation (2) has the form:

d

dt
φi(t) =

φi(t)
JP

j φj(t)
J
− φi(t).

It is easy to see that this dynamic system is stable and the
results above follow.

Theorem 3. Assume φ(n) is a market share sequence,
where C(φ) is smooth and φ̄ is an isolated stable point of
the ODE in equation 2;

Then, there is some matrix Σ1 such that

Un =
√
n(φ(n)− φ̄)

converges weakly to normal distribution with covariance Σ1.

Proof. Let Un =
√
n(φ(n) − φ̄). As we have done in

the proof of Theorem 1 while constructing φn(·) from the
sequence φ(n), let Un(·) be a piecewise constant right con-

tinuous interpolation on [0,∞). So, Un(t) = Um(t+tn).
Let εn = 1

n+1
, so φ(n) satisfies the equation

φ(n+ 1) = φ(n) + εng(φ(n)) + εndn (8)

= φ(n) + εnYn (9)

where g(φ(n)) = C(φ)− φ, and dn is a Martingale differ-
ence. So, φ(n) satisfies Algorithm 10.2.1 in [18]. We used
Theorem 10.2.1 in [18] for our proof, so let us check the
assumptions of this theorem; A2.0 to A2.7.

We have already showed in the proof of Theorem 1, g(φ(n))+
dn = I−φ(n) and we know that ||g(φ(n))||2 < 1 so ||Mn||2 <
2. Thus, ||Yn|| = ||g(φ(n))+dn|| ≤ 2. As a result, {YnI|φ(n)−φ̄|≤φ}
is uniformly integrable, which satisfies A.2.1.

As already shown, φ(n)→ φ̄ so, A.2.2 holds.
The tightness condition, A.2.3, can be concluded from the

theorem 10.4.1 in [18]. Also from the fact that g(φ(n)) =
C(φ)− φ = 0, assumption A.2.5 is satisfied.

By the assumption of C being smooth, g(φ(n)) = C(φ)−φ
is also smooth, so assumptions A.2.4 and A.2.6 hold, where
in our case A = DC(φ)− I is a Hurwitz matrix.

Define Σ = diag{C(φ̄)} − CT (φ̄)C(φ̄). From dn = In −
C(φ(n)) and ||Mn||2 < 2, it can be shown

En[(dn)(dn)
′
I(φ(n)− φ̄) ≤ ρ]→ Σ

Thus, A.2.7 holds. Now, we can apply Theorem 10.2.1 in
[18]. So, Un(·) converges weakly in Dm[0,∞] to a stationary
process U(·), where U(·) is the solution of:

U(t) = U(0) +

Z t

0

(A+ I/2)U(s)ds+W (t)

where W (·) is a Weiner process with covariance matrix Σ.
We know that the solution of this SDE is Ornstein-Uhlenbeck
Process and its stationary distribution is Gaussian with co-
variance matrix Σ1 = (A+ I/2)−1Σ.

In the proof of Theorem 3, we use the standard analysis on
the rate of convergence problem for general unconstrained
stochastic approximations. Here, we show that

Un =
√
n(φ(n)− φ̄)



converges weakly to a Gaussian distribution. So for large
enough n, with high probability,

||φ(n)− φ̄|| ≤ ε√
n

In other words, for sufficiently large number of people in
the market, with high probability, the difference between
the market share and the equilibrium point is less than ε√

n

where ε is a function of J . In fact, Theorem 3 shows that
the variance of the stationary measure is a function of the
social influence.

Example.
Suppose there are m = 3 products in the market and their

fitness’ are f1 = 1, f2 = 2, and f3 = 3.
When J = 4, there are 3 potential fixed points:

CR = {(0.9615, 0.0249, 0.0135),

(0.0100, 0.8803, 0.1097),

(0.0026, 0.0071, 0.9903)}

Running Monte Carlo simulation showes that the process
converges to the first equilibrium with a probability close to
.68 and converges to the second with probabilty close to .3.

When J = 1, there is only one fixed point:

CR = {(0.0862, 0.2380, 0.675)}

3. A SPECIAL CASE: LOGIT MODEL
Next, we will focus on the case when the choice probability

function is logit. This is a special case of our model:

i ∈ argmax
j

(Jh(φj(n)) + fj + εj)

when the function h is the identity function and the noise
terms, εj , are independent and identically Gumbel distributed.

By finding an approximate solution for the equilibrium of
the multinomial logit model, we have the following three ob-
servations: In case of weak social influence, i.e. when J is
small enough, there is a unique equilibrium. On the other
hand, with strong social influence, monopoly occurs. In this
case, eventually any of the products can get the largest mar-
ket share, so the number of equilibria is m. Another obser-
vation for the logit model is that inequality coefficient G
increases with the social influence. These results support
the experimental result of Salganik et.al. [27].

Theorem 4. For the logit choice function, when J is small
enough, there is a unique equilibrium:

φi ≈
efi

A+
√
JB

+
Je2fi

(A+
√
BJ)2

where A and B are constants. When J is large enough,
for each equilibrium, there exits some i such that 1 − φ̄i =
Θ(e−J). In other words, product i has monopoly in the mar-
ket. Also, the inequality in the market, which is represented
by the Gini coefficient,

G =
1

2M

X
α,β

|φ̄α − φ̄β |

has an increasing drift with J for the logit case.

According to Theorem 2, equilibrium points satisfy:

8<:Ci(φ̄) = eJφ̄i+fiPm
i=0 e

Jφ̄i+fi
= φ̄i

DC(φ̄)− I � 0
(10)

Let F (x) = x−lnx. When we define u = ln(
Pm
i=0 e

Jφ̄i+fi),
from (10):

F (Jφ̄i) = u− fi − ln J

We can find two inverse functions for F . F−1
1 (x) for x ≥

1 and F−1
2 (x) for x ≤ 1, where F−1

1 (x) is an increasing
function while F−1

2 (x) is a decreasing function. Let S = {i :
φ̄i ≤ 1

J
}. Therefore, equation (10) is equivalent to finding u

such that:X
i∈S

1

J
F−1

2 (u− fi − ln J) +
X
i/∈S

1

J
F−1

1 (u− fi − ln J) = 1

(11)

From the fact that DC(φ̄) − I is positive semidefinite, we
can conclude |S| ≥ m − 1, i.e. there exists at most one i
such that φ̄i ≥ 1

J
.

Let f̄ = maxi fi and

J∗ =
X
i

F−1
2 (f̄ − fi + 1)

Equation (11) has a unique solution when J ≤ J∗ if and
only if S = {1, · · · ,m}. We refer to this case as weak social
influence case.

Similarly, we can define some constant Ji such that if J >
Ji the equation (11) has a solution when i /∈ S. We show
that in this case, in equilibrium, φi is close to one and all
other φj are close to zero. We call this case as strong social
influence case.

In both of these cases, we can use the lemma below to find
an approximation of the equilibrium points:

Lemma 1.

x+ lnx+
1

2
≥ F−1

1 (x) ≥ x+ lnx

e−xee
−x+1

≥ F−1
2 (x) ≥ e−xee

−x

By applying Lemma 1, we have the following bound for
weak social influence case:

φi ≤
efi

.8A+
q

1
2
JB

+
Jce2fi

(.8A+
q

1
2
BJ)2

(12)

φi ≥
efi

A+
√
cJB

+
Je2fi

(A+
√
BJ)2

(13)

In the strong social influence case, using Lemma 1, we can
find a bound for φi when i /∈ S :

Aie
−J+α + cBiJe

−2(J−α) ≥ 1− φi ≥ Aie−J +BiJe
−2J

By using the approximations derived above, we can ob-
serve that there exist increasing functions U(J), L(J) that
bound the Gini coefficient:

U(J) ≥ G(J) ≥ L(J)

Now we look at the two cases above more specifically.



When φi ≤ 1
J

for all i,

U(J)− L(J) ≤ C1 max(J,C2)

where C1 and C2 are constants.
When φi ≥ 1

J
for some i, U(J)− L(J) ≤ Ce−J , where C

is a constant.

4. CONCLUSION
We have presented an analysis for the dynamics of market

share when social influence is present. By using techniques
from stochastic approximation theory, which relate the limit
behavior of a stochastic process to the limit behavior of a
differential equation, we show that market share converges
to an equilibrium in our model. We also focus on the case
when the choice model is the multinomial logit model. In
this special case, we show that inequality in the market in-
creases with social influence, and with large enough social
influence, monopoly occurs. Our observations for the logit
model supports the empirical results of a study from a recent
Web-based music market experiment [27].
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