
Competitive Routing over Time

Martin Hoefer
∗

Dept. of Computer Science
RWTH Aachen University

mhoefer@cs.rwth-
aachen.de

Vahab S. Mirrokni
Google Research

New York
mirrokni@google.com

Heiko Röglin
†

Dept. of Quantitative
Economics

Maastricht University
heiko@roeglin.org

Shang-Hua Teng
Microsoft Research

New England
shanghua.teng@gmail.com

ABSTRACT
Congestion games are a fundamental and widely studied
model for selfish allocation problems like routing and load
balancing. An intrinsic property of these games is that play-
ers allocate resources simultaneously and instantly. This is
particularly unrealistic for many network routing scenarios,
which are one of the prominent application scenarios of con-
gestion games. In many networks load travels along routes
over time and allocation of edges happens sequentially. In
this paper we consider two frameworks that enhance net-
work congestion games with a notion of time. We propose
temporal network congestion games that use coordination
mechanisms – local policies that allow to sequentialize traf-
fic on the edges. In addition, we consider congestion games
with time-dependent costs, in which travelling times are fixed
but quality of service of transmission varies with load over
time. We study existence and complexity properties of pure
Nash equilibria and best-response strategies in both frame-
works. In some cases our results can be used to characterize
convergence for various distributed dynamics.

1. INTRODUCTION
In this paper, we consider network congestion games, an

intuitive game-theoretic model for competitive resource us-
age, which has attracted a great deal of attention recently [1,
11, 19]. They are central in modelling routing and schedul-
ing tasks with distributed control [20]. Network congestion
games can be described by a routing network and a set of

∗Supported by UMIC Research Centre at RWTH Aachen
University.
†This work has been done while the author was at
Boston University. Supported by a fellowship within the
Postdoc-Program of the German Academic Exchange Ser-
vice (DAAD).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetEcon ’09 Stanford, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

players who each have a source and a target node in the net-
work and choose a path connecting these two nodes. The
quality of a player’s choice is evaluated in terms of the total
delay or latency of the chosen path. For this, every edge
e has a latency function that increases with the number of
players whose paths include edge e. This construction im-
plicitly assumes that players use all edges on their paths
instantaneously and simultaneously.

Depending on the application, it is, however, not always
reasonable to assume that a player instantaneously allocates
all edges on his chosen path. Consider for instance a road
traffic network, in which players route cars to their destina-
tions. Clearly, a traffic jam that delays people at rush hour
might be harmless to a long distance traveller who reaches
the same street hours later. In this case, it is more natural
to assume that edges are allocated consecutively, and play-
ers take some time to pass an edge before they reach the
next edge on their path.

In this paper, we study two different models that extend
the standard model of network congestion games by a tem-
poral component. We incorporate the assumption that on
each edge the traffic over the edge must be sequentialized.
This results in a scheduling problem with release dates on
each edge, and our model uses the idea of coordination mech-
anisms [4, 6, 8, 14] that have been introduced in the context
of machine scheduling and selfish load balancing [22]. In
selfish load balancing each player has a task and has to as-
sign it to one of several machines in order to minimize his
completion time. A coordination mechanism is a scheduling
algorithm run locally on each machine. Given an assignment
of tasks to machines, the coordination mechanism run on a
machine e gets as input the set of tasks assigned to e and
their processing times on e. Based on this information it has
to output a preemptive or non-preemptive schedule of the
tasks on e. The coordination mechanism does not have ac-
cess to any global information, like, e.g., the set of all tasks
and their current allocation.

In temporal congestion games, which are studied in Sec-
tion 3, we assume that each edge in a network congestion
game is a machine equipped with a coordination mechanism,
and each player has a task and chooses a path. Starting from
their source, tasks travel along their path from one edge to
another until they reach the target. They become available
on the next edge of their path only after they have been
processed completely on the previous edges. The player in-

curs as latency the total travel time that his task needs to
reach the target. Each player then strives to pick a path
that minimzes his travel time.

In our second model, which we term congestion games with
time-dependent costs and study in Section 4, we assume that
the travel time along each edge is a constant independent of
the number of players using that edge. This model captures
the property that increased traffic yields decreased quality of
service for transmitting packets. We model this via a time-
dependent cost function. We assume time is discretized into
units (e.g., seconds), and the cost of an edge during a second
depends on the number of players currently travelling on the
edge. Each player now strives to pick a path that minimizes
the total time-dependent costs during the travel time along
the edges.

Our games extend atomic congestion games, which were
intially considered by Rosenthal [19]. They are a vivid re-
search area in (algorithmic) game theory and have attracted
much research interest, espcially over the last decade. A va-
riety of issues have been addressed, most prominently com-
plexity of computing equilibria [1,11,19] and bounding their
inefficiency [3, 7, 21]. For an overview and introduction to
the topic we refer to the recent expositions by Roughgar-
den [20] and Vöcking [22]. Addressing the notion of time in
congestion games has only been started very recently in a
number of papers [2,12,16]. Koch and Skutella [16] present
a general model for flows over time using queueing models.
Similarly, Anshelevich and Ukkusuri [2] derive a number of
related results for similar model of flows over time. In con-
trast to our work both papers address non-atomic congestion
games, in which players are infinitesimally small flow parti-
cles. Farzad et al. [12] consider a priority-based scheme for
both, non-atomic and atomic games. In their model play-
ers have priorities, and a resource yields different latencies
depending on the priority of a players allocating it. This
includes an approach of Harks et al. [13] as a special case.
While there can be different latencies for different players,
this model does not include a more realistic “dynamic” effect
that players delay other players only for a certain period of
time. This is the case in our paper, as well as in [2, 16] for
the non-atomic case.

1.1 Our Contribution
For temporal congestion games, we study four different

(classes of) coordination mechanisms: (1) FIFO, in which
tasks are processed non-preemptively in order of arrival. (2)
Non-preemptive global ranking, in which there is a global
ranking among the tasks that determines in which order
tasks are processed non-preemptively (e.g., Shortest-First
or Longest-First). (3) Preemptive global ranking, in which
there is a global ranking that determines in which order
tasks are processed and higher ranked tasks can preempt
lower ranked tasks. (4) Fair time-sharing, in which all tasks
currently located at an edge get processed simultaneously
and each of them gets the same share of processing time.

For the FIFO policy (with unweighted and symmetric
players) and the Shortest-First policy (with weighted but
symmetric players) we show an interesting contrast of posi-
tive and negative results: even though computing a best re-
sponse is NP-hard, there always exists an equilibrium, which
can be computed in polynomial time. Moreover, the equilib-
rium is not only efficiently computable, but we present natu-
ral dynamics in which uncoordinated agents are able to find

an equilibrium quickly even without solving computation-
ally hard problems. We then show that Shortest-First is the
only global ranking that guarantees the existence of Nash
equilibria in the non-preemptive setting. That is, for any
other global ranking (e.g., Longest-First) there exist tempo-
ral congestion games without equilibria. In contrast to this,
we show that preemptive games are potential games for ev-
ery global ranking and that uncoordinated agents reach an
equilibrium quickly. Finally, we show that even though fair
time-sharing sounds like an appealing coordination mecha-
nism it does not guarantee the existence of equilibria, not
even for unweighted and symmetric players.

For the second model, congestion games with time-depen-
dent costs, we prove that these games can be reduced to
standard congestion games. Hence, they are potential games
and also the known results on the price of anarchy carry over.
We prove that computing a best response in these games
in NP-hard in general and that already for a very restriced
class with polynomially bounded delays and acyclic networks
computing an equilibrium is PLS-complete.

All missing proofs are presented in the Appendix.

2. NOTATION
A network congestion game is described by a directed

graph G = (V, E), a set N = {1, . . . , n} of players with
source nodes s1, . . . , sn ∈ V and target nodes t1, . . . , tn ∈ V ,
and a non-decreasing latency function `e : [n] → R≥0 for
each edge e. We will only consider linear latency functions
of the form `e(x) = aex in this paper. For such functions, we
call ae the speed of edge e. The strategy space Σi of a player
i ∈ N is the set of all simple paths in G from si to ti. Given
a state P = (P1, . . . , Pn) ∈ Σ = Σ1 × · · · × Σn of a network
congestion game, we denote by ne(P) = |{i ∈ N | e ∈ Pi}|
the congestion of edge e ∈ E. The individual latency that
a player i incurs is `i(P) =

∑
e∈Pi

`e(ne(P)), and every
player is interested in chooosing a path of minimum individ-
ual latency. We call a network congestion game weighted if
additionally every player i has a weight wi ≥ 1. Then the
congestion on a edge e is defined as ne(P) =

∑
i:e∈Pi

wi and
the domain of the latency functions is extended appropri-
ately. We call a congestion game symmetric if every player
has the same source node and every player has the same tar-
get node. If not explicitly mentioned otherwise, we consider
unweighted and asymmetric congestion games.

We incorporate time into the standard model in two dif-
ferent ways. The introduction of time alters the individual
latency functions `i. The specific definition will be given in
the sections below. For our altered games we are interested
in stable states, which are pure strategy Nash equilibria of
the games. Such an equilibrium is given by the condition
that each player plays a best response and has no unilateral
incentive to deviate, i.e., P is a pure Nash equilibrium if for
ever player i and every state Q that is obtained from P by re-
placing i’s path by some other path, it holds `i(P) ≤ `i(Q),
where `i denotes the (altered) latency function of player i.
We will not consider mixed Nash equilibria in this paper,
and the term Nash equilibrium refers to the pure version
throughout.

3. COORDINATION MECHANISMS
In this section we consider temporal network congestion

games. These games are described by the same parameters

as standard weighted network congestion games with lin-
ear latency functions. However, instead of assuming that a
player allocates all edges on his chosen path instantaneously,
we consider a scenario in which players consecutively allo-
cate the edges on their paths. We assume that each player
has a weighted task that needs to be processed by the edges
on his chosen path.

Formally, at each point in time τ ∈ R≥0, every task i is
located at one edge ei(τ) of its chosen path, and a certain
fraction fi(τ) ∈ [0, 1] of it is yet unprocessed on that edge.
The coordination mechanism run on edge e has to decide in
each moment of time which task to process. If it decides to
work on transmitting task i for ∆τ time units starting at
time τ , then the unprocessed fraction fi(τ + ∆t) of task i
at time τ + ∆t is max(0, fi(t) − ∆τ/(aewi)). In total, task
i needs aewi time units to finish on edge e. Once fi(τ) = 0,
task i arrives at the next edge on its path and becomes
available for processing. The coordination mechanism can
base the decision on which task to process next for how long
only on local information available at the edge — such as the
weights and arrival times of those tasks that have already
arrived at the edge. The individual latency `i(P) of player i
in state P is the time at which task i is completely finished
on the last edge of Pi.

In the following we examine several natural scheduling
policies for the edges with respect to the existence and com-
plexity of Nash equilibria.

3.1 The FIFO Policy
One of the most natural coordination mechanisms is the

FIFO policy. If several tasks are currently located at the
same edge, then the one that has arrived first is executed
non-preemptively until it finishes. In the case of ties, there
may be an arbitrary tie-breaking that is consistent among
the edges. First we consider symmetric games with un-
weighted players and prove among other results that these
games always posses Nash equilibria. After that we show
that for the generalizations to either asymmetric games or
games with weighted players, the existence of equilibria is
not guaranteed anymore.

At first we treat symmetric temporal network congestion
games with unweighted players. For these games we ob-
tain an interesting contrast of positive and negative results:
even though computing a best response is NP-hard, there
always exists a Nash equilibrium, which can be computed
in polynomial time. Moreover, the equilibrium is not only
efficiently computable, but uncoordinated agents are able to
find it quickly even without solving computationally hard
problems.

Theorem 3.1. For symmetric temporal network conges-
tion games with unweighted players, Nash equilibria always
exist if tasks are forwarded according to the FIFO policy.
Moreover, a Nash equilibrium can be computed efficiently.

Proof. Let us assume without loss of generality that
players are numbered according to their rank in tie-breaking,
i.e. 1 is the highest ranked player, and n is the lowest ranked
player. Assume that we start in an arbitrary state of the
game in which the players have chosen arbitrary paths. Be-
low we define a subclass of best responses, which we call
greedy best responses. We claim that we obtain an equilib-
rium if we let the players 1, 2, . . . , n play each one greedy
best response in this order. To prove this, assume that the

players 1, . . . , i are already playing greedy best responses,
and now let player i+1 also change his strategy to a greedy
best response. We show that after this strategy change the
players 1, . . . , i are still playing greedy best responses, which
proves by induction that a Nash equilibrium is reached once
every player has played a greedy best response. We prove
the following invariant: if the players 1, . . . , i play greedy
best responses, then none of them can be delayed at any
node by a lower ranked player j > i. Furthermore, the cur-
rent paths of the players 1, . . . , i are (greedy) best responses
no matter which paths the other players j > i choose. For
the first player, every best response is defined to be a greedy
best response. Given this definition, we argue that the afore-
mentioned claim is true for i = 1: We consider the network
G = (V, E) as a weighted graph in which every edge e ∈ E
has weight ae. Let P1 denote a shortest path in this weighted
graph from the source s to the target t and let a∗ denote
its length. If the highest ranked player chooses path P1,
then it cannot be delayed at any node v by any other player
j, as otherwise, j would have found a shorter path from s
to v, contradicting the choice of P1 as shortest path from
s to t. Hence, when player 1 chooses path P1 its total la-
tency is a∗ no matter which paths the other players choose.
Clearly, the length a∗ is also a lower bound on the time it
takes any player to reach the target, and hence, choosing
P1 is a (greedy) best response for player 1. Moreover, any
(greedy) best response of player 1 corresponds to a shortest
path P1 in the aforementioned weighted graph. Now let us
recursively define what a greedy best response is for player
i + 1 > 1. For this, assume that the players 1, . . . , i play al-
ready greedy best responses. Based on the paths chosen by
these players, we construct a distance function d : V → R≥0

for the network G = (V, E), which eventually tells us for
every node how long it takes player i + 1 to get there. The
construction of this distance function follows roughly Dijk-
stra’s algorithm: Let I ⊆ V denote the set of nodes that
have already an assigned distance. We start with I = {s}
and d(s) = 0. For extending the set I, we crucially use the
fact that the players 1, . . . , i cannot be delayed by other play-
ers, which means that every edge e ∈ E has a fixed schedule
saying when it is used by the players 1, . . . , i and when it
is available for player i + 1. These fixed schedules imply in
particular that for every node v ∈ V there exists a shortest
path s, v1, . . . , vk = v for player i + 1 from s to v such that
every subpath s, v1, . . . , vk′ is a shortest path from s to vk′ .
Hence, taking into account the fixed schedules and the possi-
ble delays that they induce on player i+1, we can extend the
set I as in Dijkstra’s algorithm, that is, we insert the node
v ∈ V \ I into I that minimizes minu∈I d(u)+ `(u, v), where
`(u, v) denotes the time it takes player i + 1 to get from u
to v if he arrives at node u at time d(u). The distance d(v)
assigned to node v is minu∈I d(u) + `(u, v). This algorithm
constructs implicitly a path from s to any other node. Any
path from s to t that can be constructed by this algorithm
(the degree of freedom is the tie-breaking) is called a greedy
best response of player i + 1.

It is easy to see that any such greedy best response is
really a best response for player i + 1 if only the players
1, . . . , i + 1 are present as there is no quicker way to reach
the target t from the source s given the current paths of
the players 1, . . . , i. To complete the proof we need to argue
that player i + 1 cannot be delayed by players j > i + 1.
Assume there is a node v and a player j > i + 1 such that

j arrives earlier at node v than i + 1. This contradicts the
construction of the path as it implies that there is a faster
way to get from the source s to the node v. Again this uses
crucially that the players 1, . . . , i cannot be delayed by lower
ranked players.

In the proof we define the notion of greedy best responses.
Basically, a path s, v1, . . . , vk, t is a greedy best response for
player i if any subpath s, v1, . . . , vk′ is a shortest path from
s to vk′ . Note that this is not the case in arbitrary best
responses: it could, for example, be the case that player
i has to wait at some node vk′ because it is blocked by
a player with a higher rank. Then, the subpath from s
to vk′ is not necessarily the shortest possible path in every
best response. However, we believe that the restriction to
greedy best responses is a natural assumption on the players’
behavior.

The proof of the previous result implies not only that a
Nash equilibrium always exists, but it also shows that play-
ers reach it in a distributed fashion using different forms of
dynamics. Consider the following Nash dynamics among the
players. At each point in time, one player is picked and al-
lowed to change his strategy. We show below that in general
it is NP-hard for this player to decide whether it can decrease
his latency by changing his path. In that case, the player
might stick to his current path or make an arbitrary strategy
change, following some heuristic. However, at each point in
time there is one player who can easily find a (greedy) best
response, namely the highest ranked player i + 1 that does
not play a greedy best response, but the players 1, . . . , i do.
We assume that this player changes to a greedy best re-
sponse when he becomes activated. We also assume that a
player who is already playing a greedy best response does
not change his strategy when he becomes actived. A round
is a sequence of activations in which every player gets at
least once the chance to change his strategy. From the proof
of Theorem 3.1 it follows easily that a Nash equilbrium is
reached after at most n rounds. We are interested in partic-
ular in the random greedy best response dynamics, in which
in each iteration the activated player is picked uniformly
at random, and the concurrent best response dynamics, in
which in each iteration all players are simultaneously al-
lowed to change their strategy, each one with some constant
probability 0 < pi ≤ 1. In both these dynamics, rounds are
polynomially long with high probability. Summarizing, we
obtain the following corollary.

Corollary 3.2. In every symmetric temporal network
congestion game with unweighted players and FIFO policy,
it takes at most n rounds to reach a Nash equilibrium. In
particular, the random and concurrent greedy best response
dynamics reach a Nash equilibrium in expected polynomial
time.

Finally, we turn to the hardness result.

Theorem 3.3. Computing best responses is NP-hard in
symmetric temporal network congestion games with unweighted
players if tasks are forwarded according to the FIFO policy.

Any relaxation of the restrictions to unweighted players or
asymmetric games leads to possible non-existence of Nash
equilibria.

Theorem 3.4. There exist temporal congestion games us-
ing the FIFO policy that do not possess Nash equilibria and
(1) are symmetric with weighted players, or (2) are asym-
metric with unweighted players.

3.2 Non-preemptive Global Ranking
Another natural appproach is to assume that there is a

global ranking π : [n] → [n] on the set of tasks with π(1) be-
ing the task with the highest priority and so on. In this case,
tasks are scheduled non-preemptively according to this rank-
ing. When an edge e becomes available, the highest ranked
task i that is currently located at the edge is processed non-
preemptively. That means it exclusively uses e for aewi time
units. After that, task i moves to the next edge on its path,
and e selects the next task if possible. In this section, we
consider mainly weighted games and assume without loss of
generality that w1 ≤ w2 ≤ · · · ≤ wn.

We first show that all results that we obtained for the
FIFO policy can be transferred to the Shortest-First pol-
icy. Then we show that this is the only global ranking that
guarantees the existence of equilibria.

At first we consider the identity ranking π(i) = i, which
corresponds to the Shortest-First policy. It is easy to see that
Theorem 3.1 and Corollary 3.2 carry over to this case. The
proof for FIFO was essentially based on the observation that
once all players 1, . . . , i play a (greedy) best response, they
cannot be affected by the lower ranked players. This is even
more true for the Shortest-First policy as the lower ranked
players have now the additional disadvantage of having a
longer processing time.

Theorem 3.5. For symmetric weighted temporal network
congestion games with Shortest-First policy Nash equilibria
always exist. Moreover, a Nash equilibrium can be computed
efficiently. In such games it takes at most n rounds to reach
a Nash equilibrium. In particular, the random and concur-
rent greedy best response dynamics reach a Nash equilibrium
in expected polynomial time.

Also the hardness result in Theorem 3.3 carries over easily.
We just need to set all weights to 1 and embed the same tie-
breaking as in the proof of Theorem 3.3 in the ranking π.
In that construction only the tie-breaking is important; the
FIFO policy is never used, that is, it never happens that at
a busy edge two players arrive one after another.

Theorem 3.6. In (unweighted) symmetric temporal net-
work congestion games with Shortest-First policy computing
a best response is NP-hard.

Although the previous arguments guarantee existence and
convergence to a Nash equilibrium for the Shortest-First pol-
icy, such games are not necessarily potential games.

Proposition 3.7. There is a symmetric temporal net-
work congestion game with Shortest-First policy that is no
potential game.

In the case of more general rankings we show that for any
global ranking other than Shortest-First, a symmetric tem-
poral network congestion game without Nash equilibrium
exists.

Theorem 3.8. For any given set of player task weights
w1 ≤ · · · ≤ wn and any ranking π other than the identity,

s v t

1

1

1

1

1

30

30

30

Figure 1: A game without a Nash equilibrium for

5 tasks. The ranking is (1, 2, 4, 3, 5), and we assume

w3 < w4 < 31w3. Task 4 always strives to join task

3 on an edge in the first layer. Then it can be pro-

cessed first on one of the edges in the second layer.

Task 3 always strives to move away from any edge

shared with task 4 in the first layer.

there exists a graph with latency functions such that the re-
sulting symmetric temporal congestion game does not possess
a Nash equilibrium.

Proof. Let j denote the index with the property that
for player i ∈ [j − 1] task wi has the i-th highest priority,
but task wj does not have the j-th highest priority. Let wk

with k > j be the task with the j-th highest priority. The
network we construct consists of two layers of parallel links.
On the first layer there are n edges with speed 1. On the
second level there are k − 1 slow edges with speed a, where
a is sufficiently large.

Now consider an arbitrary state of this game and assume
that the players w1, . . . , wj−1 have chosen disjoint paths,
which must be true in every Nash equilibrium. If one of
the players wj , . . . , wk−1 has to share its edge on the first
level with another player with a higher priority, then it will
change to an unused edge on the first level. This edge is
guaranteed to exist because there are n parallel links. On
the other hand, if none of the players wj , . . . , wk−1 shares
its edge with another task of higher priority, then the tasks
w1, . . . , wk−1 are the first ones that arrive at the intermedi-
ate node. Hence, for a sufficiently large, wk has to wait for
a long time until it can pass the second level. Hence, wk has
an incentive to change to an edge on the first level that is
used by a task wl with l ∈ {j, . . . , k − 1}. Since wk has a
higher priority, it will be able to arrive before wl and it does
not have to wait at the intermediate node.

The previous proof yields the same result for asymmetric
games with the Shortest-First policy.

Corollary 3.9. For any given set of player task weights
w1, . . . , wn and the Shortest-First policy, there exist a graph
and latency functions such that the resulting asymmetric
temporal congestion game does not have a Nash equilibrium.

3.3 Preemptive Global Ranking
When we assume a global ranking and allow preemptive

execution, it is possible to adapt the arguments of Theo-
rem 3.1 to asymmetric weighted games. Indeed, all argu-
ments in this section work for a very general class of pre-
emptive games with unrelated edges. That is, every player i
has its own processing time pie for every edge e. These pro-
cessing times may even depend on the time at which player
i reaches edge e. The only assumption we need to make is

1 1100 1

100 5 + ε

100 4 − ε

2.2

1

s t

Figure 2: Symmetric game with unweighted players

and without Nash equilibrium for Time-Sharing.

that the processing times are monotone in the sense that if
task i reaches edge e at time t, then it does not finish later
than when it reaches edge e at time t′ > t.

Theorem 3.10. Every asymmetric temporal congestion
game with preemptive policy π is a potential game. A Nash
equilibrium exists and can be computed in polynomial time.
For any state and any player, a best response can be com-
puted in polynomial time.

Similarly we can adapt the previous observations in Corol-
lary 3.2 and show that various improvement dynamics con-
verge in polynomial time.

Corollary 3.11. In every asymmetric temporal network
congestion game with any preemptive policy π, it takes at
most n rounds to reach a Nash equilibrium. The expected
number of iterations to reach a Nash equilibrium for ran-
dom and concurrent best response dynamics is bounded by a
polynomial.

3.4 Fair Time-Sharing
In this section we consider fair time-sharing, a natural

coodination mechanism based on the classical idea of fair
queueing [17] and uniform processor sharing [15]. When
multiple tasks are present at an edge e, they are all processed
simultaneously, and each one of them gets the same share
of bandwidth or processing time. As in generalized proces-
sor sharing [18] we assume round-robin processing with in-
finitesimal time slots. Even though such a fairness property
is desirable, the following theorem shows that Nash equilib-
ria are not even guaranteed to exist for symmetric games
with unweighted players. This obviously remains true for
extensions, where bandwidth is allocated using player prior-
ity weights (that might be different from the task weights),
which are used e.g. in weighted fair queueing [9].

Theorem 3.12. For unweighted players and symmetric
networks, Nash equilibria do not necessarily exist if tasks
are forwarded according to the time-sharing policy.

Proof. The instance shown in Figure 2 has three play-
ers. As the three edges leaving the source s are very slow,
in any Nash equilibrium all three players will use different
edges leaving the source. We assume without loss of gener-
ality that the first player chooses the upper edge, the second
player chooses the middle edge, and the third player chooses
the lower edge. Then players 1 and 3 have still two alterna-
tives how to continue, whereas the path of player 2 is already
determined. The speeds of the edges are chosen such that

player 1 wants to use the edge with speed 5 + ε if and only
if player 3 does not use the edge with speed 4 − ε. On the
other hand, player 3 wants to use the edge with speed 4− ε
if and only if player 1 uses the edge with speed 5 + ε, which
completes the proof.

In contrast to this negative result, Dürr and Nguyen [10]
show that time-sharing on parallel links is always a poten-
tial game, even for unrelated machines (edges). That is,
for parallel links Nash equilibria always exist. The poten-
tial function used in Dürr and Nguyen can be rewritten as
the sum of the completion times (individual latencies) of the
player. It is known [5] that a schedule minimizing this sum
can be computed in polynomial time. Such a global min-
imum of the potential function must obviously be a pure
Nash equilibrium for the time-sharing policy, yielding the
following corollary.

Corollary 3.13. For parallel links and unrelated tasks,
a Nash equilibrium can be computed efficiently for the time-
sharing policy.

4. CONSTANT TRAVEL TIMES AND QUAL-
ITY OF SERVICE

In this section we consider network congestion games with
time-dependent costs. Again, players consecutively allocate
the edges on their paths. This time, however, the travel time
along an edge e in the network is fixed to a constant delay de.
If a player chooses a path along the edges e1, e2, . . ., then he
arrives at e2 at time d1 and at e3 at time d1 +d2, and so on.
This travel time through the network is independent of how
many other players allocate any of the edges. In this section,
we only consider asymmetric games. For the strategic part
we assume that each edge generates a separate usage cost ce

per time unit. This could, for instance, measure the quality
of service that is enjoyed by the players during transmission.
The cost depends on the number of players allocating the
edge at a given point in time. In particular, edge e has a cost
function ce : [n] → N that describes the cost for allocating
it for one second in terms of the current number of payers.
If for a state P an edge e is shared at time τ by ne(τ, P)
players, all these players get charged cost ce(ne(τ, P)). The
cost incurred by player i on a path Pi = (e1, . . . , el) is then

`i(P) =
l∑

j=1

τj+dej
−1∑

τ=τj

cej
(nej

(τ, P)) ,

where τ1 = 0 and τj =
∑j−1

k=1 dej
.

It turns out that this model is equivalent to a regular con-
gestion game. For each edge and each time unit we introduce
a resource re,τ and modify the strategy spaces as follows:
For a path P = (e1, . . . , el) the new strategy includes all
resources rej ,τ for τ = τj , . . . , τj + dej

− 1 and j = 1, . . . , l.
This is a regular congestion game with latencies given by
the time costs. Results on the existence of Nash equilibria
and the price of anarchy carry over.

Corollary 4.1. Network congestion games with time-
dependent costs are equivalent to a class of regular conges-
tion games. In particular, there is a pure Nash equilibrium
in every game, and any better-response dynamics converges.

However, as the standard congestion game obtained by
this reduction might have a large number of resources. It

is not necessarily a network congestion game, so complexity
results do not carry over. In particular, computing a best
response is NP-hard. Computing a Nash equilibrium is PLS-
complete, even in a very restricted special case.

Theorem 4.2. Computing a best response in network con-
gestion games with time-dependent costs is NP-hard. For
polynomially bounded delays and acyclic networks, best re-
sponses can be computed efficiently, but computing a Nash
equilibrium is PLS-complete.

Proof. The NP-hardness of computing a best response
follows easily with a reduction from the PARTITION prob-
lem. The input to this problem consists of n integers w1 to
wn. One has to decide if there exists a subset of these num-
bers that add up to exactly W/2, where W =

∑n

i=1 wi. We
construct a graph with vertices s = v0, v1, . . . , vn, t and con-
sider the best response of a player whose source node is s and
whose target node is t. Between each pair of nodes (vi, vi+1)
there are two parallel edges with delays wi+1 and 0, respec-
tively, and costs 0. In addition to this, there is one edge e
from vn to t with delay 1 and cost function ce(ne) = ne. We
assume that the other players have chosen paths such that in
the time interval from 0 to W +1 always one player is using
edge e, except for the interval from W/2 to W/2 + 1. That
is, only if the player manages to arrive at node vn exactly at
time W/2, then his costs will be 1. Otherwise, they will be
at least 2. Any path from s to vn corresponds to a subset
of the weights wi, and hence, the player has a strategy with
costs 1 if and only if the partition instance is solvable. This
proves the NP-hardness.

Let us now turn to acyclic networks with polynomially
bounded delays. For this restricted case best responses can
be computed efficiently by standard dynamic programming:
we store for each of the polynomially many points in time
τ and every node v the least expensive path that arrives
at v exactly at time τ . First, we fill this table, taking into
account only paths of length at most 1. From this, we can
easily compute another table taking into account paths of
length at most 2, and so on. This approach uses the fact
that the network is acyclic, and it proves that the problem
of computing a Nash equilibrium belongs to PLS.

For the completeness, we use the reduction in [1] for asym-
metric network congestion games. This reduction has the
property that it generates only acyclic networks. We will
argue that there is a generic way to transform a standard
network congestion game with acyclic network G into an
acyclic network congestion game with time-dependent costs
and polynomially bounded delays. For this, we take the
network G and compute a topological ordering of the nodes.
Let us assume without loss of generality that this ordering
is v1, v2, . . . , vk, where v1 has no incoming and vk has no
outgoing edges. If the source node of a player is vi, then
we introduce a new source node si for that player, which
is connected by an edge with delay i and costs 0 to node
vi. This allows us to choose polynomially bounded delays
for all edges such that every player whose path includes a
node vi arrives at this node at exactly time i. Hence, if we
can keep the cost functions, this congestion game with time-
dependent costs behaves exactly as the standard congestion
games as players are now synchronized.

5. REFERENCES
[1] Heiner Ackermann, Heiko Röglin, and Berthold

Vöcking. On the impact of combinatorial structure on
congestion games. Journal of the ACM, 55(6), 2008.

[2] Elliot Anshelevich and Satish Ukkusuri. Equilibria in
dynamic selfish routing. Unpublished Manuscript,
2009.

[3] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The
price of routing unsplittable flow. In Proceedings of the
37th Annual ACM Symposium on Theory of
Computing (STOC), pages 57–66, 2005.

[4] Yossi Azar, Kamal Jain, and Vahab S. Mirrokni.
(Almost) optimal coordination mechanisms for
unrelated machine scheduling. In Proceedings of the
19th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 323–332, 2008.

[5] J. Bruno, Jr. E. G. Coffman, and R. Sethi. Scheduling
independent tasks to reduce mean finishing-time
(extended abstract). SIGOPS Oper. Syst. Rev.,
7(4):102–103, 1973.

[6] Ioannis Caragiannis. Efficient coordination
mechanisms for unrelated machine scheduling. In
Proceedings of the 20th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 815–824, 2009.

[7] George Christodoulou and Elias Koutsoupias. The
price of anarchy of finite congestion games. In
Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC), pages 67–73, 2005.

[8] George Christodoulou, Elias Koutsoupias, and Akash
Nanavati. Coordination mechanisms. In Proceedings of
the 31st International Colloquium on Automata,
Languages and Programming (ICALP), pages 345–357,
2004.

[9] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queueing algorithm.
In Proceedings of the ACM Symposium on
Communications Architectures and Protocols
(SIGCOMM), pages 1–12, 1989.

[10] Christoph Dürr and Nguyen Kim Thang.
Non-clairvoyant scheduling games. In Proceedings of
the 2nd International Symposium on Algorithmic
Game Theory (SAGT), 2009.

[11] Alex Fabrikant, Christos H. Papadimitriou, and Kunal
Talwar. The complexity of pure Nash equilibria. In
Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC), pages 604–612, 2004.

[12] Babak Farzad, Neil Olver, and Adrian Vetta. A
priority-based model of routing. Chicago Journal of
Theoretical Computer Science, 2008. Article no. 1.

[13] Tobias Harks, Stefan Heinz, and Marc Pfetsch.
Competitive online multicommodity routing. In
Proceedings of the 4th International Workshop on
Approximation and Online Algorithms (WAOA),
pages 240–252, 2006.

[14] Nicole Immorlica, Li Li, Vahab S. Mirrokni, and
Andreas S. Schulz. Coordination mechanisms for
selfish scheduling. Theoretical Computer Science,
410(17):1589–1598, 2009.

[15] Leonard Kleinrock. Queueing Systems Vol. 2:
Compurer Applications. Wiley, 1976.

[16] Ronald Koch and Martin Skutella. Nash equilibria
and the price of anarchy for flows over time. Matheon

Preprint 524, 2008.

[17] John Nagle. On packet switches with infinite storage.
IEEE Transactions on Communications,
35(4):435–438, 1987.

[18] Abhay Parekh and Robert Gallager. A generalized
processor sharing approach to flow control in
integrated services networks: The single-node case.
IEEE/ACM Transactions on Networking,
1(3):344–357, 1993.

[19] Robert W. Rosenthal. A class of games possessing
pure-strategy Nash equilibria. International Journal of
Game Theory, 2:65–67, 1973.

[20] Tim Roughgarden. Algorithmic Game Theory, chapter
Routing Games, pages 461–486. Cambridge University
Press, 2007.

[21] Tim Roughgarden. Intrinsic robustness of the price of
anarchy. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing (STOC), 2009.

[22] Berthold Vöcking. Algorithmic Game Theory, chapter
Selfish Load Balancing, pages 517–542. Cambridge
University Press, 2007.

APPENDIX

A. PROOF OF THEOREM 3.3
We show how to reduce instances of 3-SAT to symmetric

temporal congestion games with unweighted players. Let
an arbitrary instance for 3-SAT with variables x1, . . . , xn

and clauses C1, . . . , Cm be given, and assume that Cj =
lj1 ∨ lj2 ∨ lj3, where every literal ljk is either xi or xi for
one i. We assume that the literals are ordered such that
lj1 belongs to a variable xi and lj2 belongs to a variable
xi′ with i < i′. We assume the same monotonicity for lj2
and lj3. The temporal congestion game that we construct
has 1 + m + 4nm players, one player pD, who we call the
decider and who is supposed to play a best response, one
player pC

j for every clause Cj , and four players p0
ij , p1

ij , p̃0
ij ,

p̃1
ij for every i ∈ [n] and j ∈ [m]. For the construction it is

only important that all players have higher priorities than
the decider pD, and that the players p0

ij and p1
ij have higher

priorities than the clause players.
Figure 3 depicts the network that we construct: there

are two rows of nodes. Both rows are subdivided into n
blocks of m + 1 nodes each. At the end of a block, there
is the possibility to switch from the upper to the lower row
or vice versa. Intuitively, each block corresponds to one
variable xi and the decider either uses the upper row in the
block, corresponding to xi = 0, or he uses the lower row,
corresponding to xi = 1. Both rows lead to a vertex t′ from
which there is a direct edge to the target t. In addition
to these edges, there is a direct edge from the source s to
each node in the two rows, except for the nodes from which
switching the rows is possible. All edges in the two rows
(including the edges from s to the first nodes in the rows)
have a speed of 1. The speed of the edges from the last
nodes in the rows to t′ is 5nm. The speed of the edge from
t′ to t is 1. The speeds of the direct edges from s to the
nodes in the two rows are 1+ ε, 2+ ε, and so on, for a small
ε > 0. That is, taking the direct edges is slightly slower than
following a path along the rows (assuming no delays occur).
Also all nodes in the two rows, except for the first nodes of
every block, have an outgoing edge with speed 1, which we

s t

1 + ε

t
′

2 + ε

1 + ε

2 + ε

. . .

. . .

e
C
j0 e

C
j1 e

C
j2 e

C
j3 e

C
j4 e

C
j5 e

C
j6

4 + ε

5nm

5nm

Figure 3: Construction in the proof of Theorem 3.6.

Gray labels indicate speeds, black labels are the

names of the edges. In this example, n = 3, m = 2,
and the shown clause Cj has x2 as second literal lj2.

describe later in detail.
The current strategies of the players p0

ij and p1
ij are chosen

as follows: player p1
ij uses the direct edge from the source

node s to the j-th node in the i-th block of the upper row,
then he follows the edge in this row to the j+1-th node in the
i-th block from which he leaves the component. Player p0

ij

does exactly the same but in the lower row. For each variable
xi, the decider can choose whether to delay all players p1

ij

or all players p0
ij by choosing the upper or the lower row,

respectively. In any case, the decider will reach node t′ at
time 6nm.

In addition to the players described so far, we have the
clause players pC

j . Each of these players uses its own path

with seven edges eC
j0, . . . , e

C
j6 from the source node s to the

node t′. If a clause player is not delayed by any other player,
then he reaches node t′ at time 6nm. As the clause players
have a higher priority than the decider pD, an undelayed
clause player will delay the decider on its way from t′ to
t. If the decider reaches t′ before all clause players he will
have a total latency of 6nm + 1 for reaching t, otherwise his
latency is at least 6nm + 2 as he has to wait at t′.

The decider can delay clause players by making the right
choices between the upper and lower row. For this to work,
we have to further specify the currents paths of the players
p0

ij and p1
ij . As we have described above, they use a direct

edge to one node in the two rows, follow one edge in the row,
and leave the row afterwards. The edges leaving the rows
connect to the paths of the clause players as follows: Let us
consider a clause player pC

j for the clause Cj = lj1∨ lj2∨ lj3.

If lj1 = xi for one i, then we choose one player p1
ik that was

not used in other clauses yet, and connect the outgoing edge
by which he leaves the upper row to the starting point of the
edge eC

j1. The current path of player p1
ik follows the edge eC

j1.

We assume that the endpoint of eC
j1 is connected by a very

slow edge to the target t. The path of p1
ik is terminated

by using this edge. If lj1 = xi, then we analogously pick
a player p0

ik and finish his path in the same way. We do
analogous constructions for the literals lj2 and lj3 and the

edges eC
j3 and eC

j5. The speeds of the edges eC
j1, eC

j3, and eC
j5

are 1. The speeds of the other edges on pC
j ’s path are chosen

such that the clause player pC
j , if not delayed, reaches the

starting nodes of eC
j1, eC

j3, and eC
j5 exactly at the same time

as the corresponding players p0
ik or p1

ik and such that he
reaches t′ exactly at time 5nm. Such speeds exist as every
player p0

ik or p1
ik reaches the path of the clause player at

time nm at the latest and the literals in every clause satisfy
the aforementioned monotonicity condition. As we have m
players p0

ik and p1
ik for every i, we can find a unique such

player for every clause in which the literal xi or xi occurs.
For players p0

ik and p1
ik that are not needed, we assume that

the corresponding outgoing edge leaving the rows is a very
slow connection to the target t.

As the players p0
ik and p1

ik have higher priorities than the
clause players, they will delay the clause players if they are
not delayed by the decider. For each variable the decider can
choose whether to delay all players p0

ik, which corresponds to
setting xi = 0, or to delay all players p1

ik, which corresponds
to xi = 1. The goal of the decider is to choose a path such
that for every clause Cj at least one of the corresponding
players p0

ik or p1
ik is not delayed. If the SAT formula is

satisfiable, then he can achieve this and reach the target t
in time 6nm + 1.

To complete the reduction we show that the decider can-
not reach the target in time 6nm + 1 if the formula is not
satisfiable. If the decider sticks to the edges in the rows,
then he cannot achieve this goal as he will be delayed at
node t′ by at least one clause player. He also cannot use
the direct edges from the source s to the nodes in the rows
as this will slow him down by ε (actually by more than ε
as those edges are used by players with higher priority). So
the only possibility left for the decider is to follow the edges
in the rows up to some node and to use the edge to one of
the clause players’ paths from there. This might indeed be
beneficial as the decider reaches a node on the path before
the clause player. To prevent this from happening, we intro-
duce the players p̃0

ij and p̃1
ij . These players use paths that

are completely disjoint from the paths of the other players,
except for a single edge. Each player p̃0

ij uses the edge that

connects p0
ij ’s path from the rows to the path of the clause

player. The path of p̃0
ij is chosen such that it finishes on

this edge exactly when player p0
ij arrives. Hence, p0

ij is not
affected by these new players. We do the same construction
for the players p̃1

ij . But if the decider uses this edge, he has
to wait ε time units there, and reaches the node on the path
of the clause player at exactly the same time as the clause
player. As the decider has the lowest priority he will thus
be delayed. Hence, the players p̃0

ij and p̃1
ij ensure that the

decider sticks to the edges in the two rows, which concludes
the proof.

B. PROOF OF THEOREM 3.4
The example for the first case is simple; it consists of three

edges: there are three nodes s, v, and t and two parallel
edges from s to v (if multi edges are not allowed, they can
be split up into two edges each by inserting intermediate
nodes) and one edge from v to t. All edges have speed 1.
Assume that there are two players with weights 2 and 3, and
assume that the player with weight 3 has higher priority. If
both players use the same edge from s to v, then the player
with weight 2 has an incentive to switch to the free edge.

s1

t1

s2

t2

s3

t3

0.2 − ε

0.6

0.2

0.2 − 2ε

1 − ε

1 + 2ε

2.2 + 3ε

Figure 4: Asymmetric temporal network congestion

game without Nash equilibrium. Edge labels indi-

cate the speeds ae. For all unlabelled edges e, we

have ae = 1.

Figure 5: For two players with weights w1 = 1 and

w2 = 2, this temporal network congestion game with

Shortest-First policy is not a potential game.

If they use different edges, the player with weight 3 has an
incentive to use the same edge as the other player.

Now let us turn to the second case. We consider the in-
stance shown in Figure 4. In this game there are three un-
weighted players, and each player i has two possible strate-
gies: the vertical three edges (denoted by Ai) and another
path (denoted by Bi). The following sequence of moves con-
stitutes a cycle in the best response dynamics:

(A1, A2, A3) → (B1, A2, A3) → (B1, B2, A3)

→ (B1, B2, B3) → (A1, B2, B3) → (A1, A2, B3)

→ (A1, A2, A3) .

It is easy to verify that the remaining configurations (A1, B2, A3)
and (B1, A2, B3) are no Nash equilibria either.

C. PROOF OF PROPOSITION 3.7
The game is depicted in Figure 5. For w1 = 1 and w2 = 2

the following is a cycle in the better-response dynamics:

((s, u, t), (s, v, u, t)) → ((s, v, t), (s, v, u, t)) → ((s, v, t), (s, t))

→ ((s, u, t), (s, t)) → ((s, u, t), (s, v, u, t)) .

D. PROOF OF THEOREM 3.10
The main observation here is that no task π(i) can influ-

ence the travel time of any task π(j) with j < i, because it
will be preempted whenever it is scheduled simultaneously

with any of these tasks on an edge. This means that the vec-
tor (`π(1)(P), . . . , `π(n)(P)) decreases strictly lexicographi-
cally whenever a player changes his path and decreases his
individual latency. This proves that any such game is a po-
tential game, which contrasts e.g. Proposition 3.7.

For efficient computation of a Nash equilibrium, we con-
sider iterative entry dynamics according to the ranking with
best-response computation of players. By the previous argu-
ment this process outputs a Nash equilibrium. For efficient
computation of a best response strategy, we use the same
variant of Dijkstra’s algorithm that we have already used
in the proof of Theorem 3.1. This time, however, a lower
ranked task π(i) can arrive at a node before a higher ranked
task j < i if it has a different source node. Then as soon as
π(j) arrives, π(i) is preempted and blocked until it becomes
the unfinished task of highest rank at the edge. Hence, the
correctness of the algorithm is not affected by this. Finally,
note that the previous algorithm does not rely on the fact
that higher ranked players play a best response. The differ-
ence to Theorem 3.1 is that higher ranked player can never
be delayed by lower ranked players even if they do not play
best responses. Hence, the algorithm can be used in general
to compute a best response for any player and any state.

