
Market Design & Analysis for a P2P Backup System∗

Sven Seuken
†

School of Engineering & Applied Sciences
Harvard University, Cambridge, MA
seuken@eecs.harvard.edu

Denis Charles, Max Chickering, Sidd Puri
Microsoft

One Microsoft Way, Redmond, WA
{cdx,dmax,siddpuri}@microsoft.com

ABSTRACT
This paper presents the design and theoretical analysis of a
P2P resource exchange market, a novel application of mar-
kets to the domain of P2P backup. While the long-term
goal is an open market using real money, here we consider
a system where monetary transfers are prohibited. We first
describe the design of the market and the user interface we
developed. Second, we prove theorems on equilibrium ex-
istence and uniqueness. Third, we present a price update
algorithm that uses daily supply and demand information
to move prices towards the equilibrium. The market design
described in this paper is already implemented as part of a
Microsoft research project on P2P backup systems and an
internal alpha version of the software has been released. We
will thus complement the theoretical analysis with discus-
sions of implementation challenges that arise in practice.

1. INTRODUCTION
The increasing dependence of our lives on information

technology has resulted in a dependence on the continual ac-
cess to our data. Regularly, users lose valuable data because
their hard drives crash, their laptops are stolen, etc. Already
in 2003, the annual costs of data loss in the US was esti-
mated to be $18.2 Billion1. With internet broadband con-
nections becoming faster and cheaper, online backup systems
are becoming increasingly attractive alternatives to tradi-
tional backup solutions. There are hundreds of companies
offering online backup services, e.g., SkyDrive, Idrive, Ama-
zon S3. Most of these companies offer some backup storage
for free and charge fees when the free quota is exceeded.

All of these services, however, rely on large data centers
and thus incur immense costs. The motivation for P2P
backup systems is that idle resources on the computers of
millions of users can be used and thus these costs for cen-
tralized data centers can be avoided. The main idea is that

∗We are thankful to David Parkes, Kamal Jain, and Alex
White for helpful discussions on this work.
†Most of this work was done while the author was a research
intern at Microsoft Live Labs.
1http://gbr.pepperdine.edu/033/dataloss.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetEcon’09, July 7, 2009, Stanford, California, USA.
Copyright 2009 ACM ...$5.00.

users provide some of their resources (storage space, up-
load and download bandwidth) in exchange for using the
backup service. We use erasure coding to minimize the stor-
age overhead while providing the same reliability guarantees
as centralized servers. The system we propose uses a hybrid
P2P architecture where all backup data is transferred di-
rectly between peers, but a dedicated server coordinates the
operations and maintains meta-data. The role of the server
in this system is so small that standard load-balancing tech-
niques can be used to avoid scaling bottlenecks.

A Brief Macroeconomic View
Just considering a resource costs analysis, there are multiple
reasons to expect the P2P solution to be economically more
efficient than the centralized alternative, even though it re-
quires more storage space and generates more internet traf-
fic. First, the largest cost factor in centralized data centers
are the immense energy costs for cooling the servers. In a
decentralized system, these cooling costs disappear and this
saving significantly outweighs the additional energy costs
for running previously idle hard drives. Second, many users
have hard drives that are much larger than they really need.
Using this unused space on users’ home machines is more ef-
ficient than buying new hard drives for data centers. Third,
internet bandwidth is particularly expensive at the peak us-
age. In the P2P system, the bandwidth load is naturally
more distributed and thus usage peaks on individual wires
can be avoided. Fourth, the maintenance costs for data cen-
ters are also significant and can be saved using the P2P
solution because individual users buy a new machine every
few years, even if they don’t use the P2P backup system.

1.1 The Market Design Problem
Using decentralized peers to store data raises two market

design challenges regarding incentives and efficiency. For
the backup system to be reliable and sustainable, it must
provide proper incentives to its users. Every user must pro-
vide a certain amount of all three resources, even if he cur-
rently only consumes one or two resources. For example, a
user who only contributes storage space and no bandwidth
is useless to the system because no files could ever be sent
or received from that peer. Furthermore, it is natural that
each user has different preferences regarding how much of
each resource he wants to supply. Some users might be very
constrained regarding the free space on their hard drive but
might have a lot of bandwidth. Other users might have large
hard drives but use their bandwidth for many other services
like VOIP, file-sharing, etc. Thus, an accounting system that
enforces the same resource ratios across all users is undesir-
able. The P2P backup market addresses this by associating
each resource with a price such that the relative prices reflect
the relative scarcity of the resources.

1.2 Research Goals & Overview of Results
The motivation for this work is to develop a market de-

sign for a P2P backup service that can ultimately be used
by millions of users. Thus, it was our goal to hide as many
aspects of the market from the user as possible, including
prices, account balances, etc. Our first contribution is the
design of a P2P resource exchange system that works with
minimal user interaction. Second, we introduce a new equi-
librium concept that we term “buffer equilibrium”. We ex-
plain why a traditional Walrasian equilibrium is not suit-
able for our domain and why the buffer equilibrium is desir-
able. Third, we provide theoretical proofs that under mild
conditions, a buffer equilibrium exists in our market and is
unique. Fourth, we then present a novel price update algo-
rithm that takes system-wide supply and demand informa-
tion to update prices such that the market is driven towards
a buffer equilibrium over time. Our analytical and experi-
mental analysis has shown that the price update algorithm
converges reasonable quickly if the initial price vector is cho-
sen close enough to the equilibrium. Whenever possible we
complement the theoretical analysis with challenges that we
encountered in practice.

1.3 Related Work
In recent years there has been much research on P2P stor-

age systems, electronic markets, distributed accounting, re-
source exchange systems, etc. Almost 10 years ago, the re-
search projects OceanStore [7] and FarSite [3] already inves-
tigated the potential of distributed file systems using P2P.
Both projects, however, did not do any kind of market de-
sign. More recently, researchers have looked at the incentive
problem, often with the primary goal to enforce fairness (i.e.,
you get as much as you give). Samsara [5], for example, is
an accounting scheme that allows for fairness enforcement.
In contrast to our design, however, their scheme is fully dis-
tributed. While such a design has some advantages, it pre-
vents the use of sophisticated pricing and payment mecha-
nisms.

The idea to use electronic markets for the efficient alloca-
tion of resources is even older than ideas regarding P2P stor-
age systems. Already in 1996, Ygge et al. [14] proposed the
use of computational markets for efficient power load man-
agement. More recently, grid networks and their efficient
utilization have gotten more attention [8]. Fundamental to
these designs is that participants are sophisticated users able
to specify bids in an auction-like framework. While this as-
sumption seems reasonable in energy markets or computa-
tional grid networks, we are targeting millions of users with
our backup service and thus we cannot assume that users
are able to directly act as traders on an exchange market.

The two papers most similar to our work are by Aperjis
et al. [2] and Freedman et al. [6]. They analyze the po-
tential of exchange economies for improving the efficiency of
file-sharing networks. While the domain is similar to ours,
the particular challenges they face are quite different. They
use a market to balance supply and demand with respect to
popular or unpopular files. However, in their domain there
is only one scarce resource, namely upload bandwidth, while
we must design an exchange market for three different re-
sources (space, upload and download bandwidth).

To the best of our knowledge, there are currently only
two companies offering a P2P backup service: Wuala and
AllMyData. However, both companies do not have a market-
based system, they do not elicit the users’ preferences and
they do not allow different users to provide different resource
ratios. Thus, these systems exhibit large economic inefficien-
cies compared to our exchange market.

2. A P2P RESOURCE MARKET

2.1 Suppliers & Consumers
Each user in the P2P backup system is simultaneously a

supplier and a consumer of resources. For every backup,
there are multiple peers on the supplier side offering their
resources and a single peer on the consumer side, needing
these resources. A peer on the consumer side cannot sim-
ply use one supplier because unreliable storage is useless.
Instead, the production process of the server (bundling mul-
tiple peers and coordinating them) in the middle is essential.
Effectively, the server turns unreliable storage into reliable
storage. Note that each peer on the supplier side offers a
different bundle of resources (i.e., different storage space,
availability, and bandwidth limits) while each peer on the
consumer side gets the same product, i.e., a backup service
with the same reliability. Each resource has a price at which
it can be traded and in each transaction, the suppliers are
paid for their resources and the consumers are charged for
consuming services. Prices are updated regularly according
to current aggregate supply and demand in the system, to
bring prices into equilibrium.

2.2 Minimizing Replication: Erasure Coding
One natural concern about P2P backup systems is that

individual P2P users have a much lower average availability
than dedicated backup servers. Thus, a P2P system must
maintain a higher file redundancy to guarantee the same file
availability as server-based systems. Simply replicating the
file multiple times would be very inefficient. Fortunately,
we can significantly reduce the replication factor by using
erasure coding (see [9] for an application of erasure coding
to P2P storage). The erasure code splits up a file into k
fragments, i.e., F = (F1, ..., Fk), and produces n > k new
fragments, i.e., transforms F into G = (G1, ..., Gn). The re-
sulting ratio n

k
is called the replication factor. In contrast to

simple replication, erasure coding ensures that any k of the n
fragments are enough to reconstruct the file F which results
in significant savings. For example, using simple file replica-
tion and assuming an average user availability of 12h/day,
we would need approx. 17 replications to guarantee a file
availability of 99.999%. In contrast, using erasure coding
we can achieve the same availability with a replication fac-
tor of approx. 3. The use of erasure coding is reflected in
the market prices for consuming and supplying space. For
example, a consumer with an online time of 12h/day would
have to pay approx. 3 times as much for consuming 1 GB
of space than he would earn for supplying 1GB of space.

2.3 Operations in the Backup System
We consider the following five high-level operations:

1. Backup: When a user performs a backup, file frag-
ments are sent from the consumer to the suppliers.

2. Storage: The suppliers persistently store the frag-
ments they receive (until they are asked to erase them).

3. Retrieval: When a user retrieves a backup, file frag-
ments are sent from the suppliers to the consumer.

4. Repair: When the server determines a backed up file
to be unhealthy, the backup is repaired.

5. Testing: When sufficient availability information about
a peer is missing, another peer backs up a file to the
peer in question or retrieves a file from that peer.

Each of these operations requires a particular set of resources
from the suppliers (see Table 1).

Operation Resources Required from Suppliers

1. Backup Download Bandwidth
2. Storage Space
3. Retrieval Upload Bandwidth
4. Repair Download and Upload Bandwidth
5. Testing Download and Upload Bandwidth

Table 1: Operations and their Required Resources.

2.4 Currency, Trading & Work Allocation
All trades in the market are done using“virtual currency”,

thus no real money is required. Trading is enabled via a
centralized accounting system, where the server plays the
role of a bank. The server maintains an account balance
for each user starting with a balance of zero and allowing
each user to take on a certain maximal deficit. In every
trade, consumers pay credits to the server and the server
pays credits to the suppliers. The primary purpose of the
virtual currency is to allow users to do work at different
points in time. Users have a steady inflow (from supplying
resources) and outflow (from consuming services) of money
which can vary over time. In steady state, when a user has
been online sufficiently long, his flow consumption of backup
services must be balanced by his flow provision of resources.
However, when a users goes offline for a few days, he cannot
earn money during that period but he still has to pay for his
backed up files. Thus, his account balance will continuously
decrease during that time period. Once the user reaches
the maximum deficit level, he will not be allowed to make
further backups before his balance increases again.

The server is involved in every operation and stores all rel-
evant meta data for each file. For the backup, retrieval, test-
ing and repair operations, the server either directly chooses
which peers act as suppliers or sends a list of potential sup-
pliers. Thus, the server has significant influence on how the
work is allocated in the system. In the current implemen-
tation, the server chooses suppliers based on their account
balance. In particular, the server allocates work to those
users with the lowest account balance to drive all accounts
(back) to zero over time. This is possible because the user’s
steady-state income must equal his expenditure. Thus, when
a user has been online for a sufficiently long time, his account
should be close to zero. One important implication for the
user interface is that it is not necessary to show the user his
account balance because it will usually be close to zero.

2.5 Resources, Services & Prices
It is important to understand the distinction between the

three resources that must be supplied (storage space, upload
and download bandwidth) and the three services that can be
consumed (backup operation, storage, retrieval operation).
Table 2 provides an overview and denotes the abbreviations:

Supplied Resources
1. Storage Space (S)
2. Upload Bandwidth (U)
3. Download Bandwidth (D)

Consumed Services
1. Backup (B)
2. Persistent Storage (S)
3. Retrieval (R)

Table 2: Resources vs. Services.

At first sight, it might be confusing that we did not list the
user’s online time, i.e., his availability ai, as a separate re-
source. Note that suppliers are paid for their bandwidth per
fragment they send or receive independent of how often they

are online. However, their availability matters a lot for the
payments they receive for the supplied storage space. Obvi-
ously, the higher a user’s online time, the more useful is his
supplied space, and the more will he get paid per fragment
stored. In practice, the relationship between availability and
payments is complex and not necessarily linear, however, the
general idea is that a user gets paid for his “effective space
supply” which is the product of the space he supplies, his
availability, and an overhead factor (of approx. 2/3 in prac-
tice). For example, a user who supplies 30GB of space and
is online 50% of the time has an effective storage supply of
approximately 30GB ·0.5 · 2/3 = 10GB and that’s what he
gets paid for. To simplify notation we will let siS denote
user i’s effective storage supply. Together with the sup-
plied upload bandwidth siU and the download bandwidth
siD this defines a user’s supply vector si = (siS , siU , siD).
Using analogous notation we let di = (diB , diS , diR) denote
the service consumption vector of user i. We use linear
prices for the resources and services in the system. We
let p = (pS , pU , pD) denote the price vector for supplied
resources and q = (qB , qS , qR) denote the price vector for
consumed services. Remember that in steady state (when
the user is online and his account balance is close to zero),
a user must be able to pay for his consumption with his
supply. We can now express this income/expenditure flow
constraint more formally using prices and the user’s supply
and demand. In steady state we require that: si · p = di · q.

3. THE USER

3.1 User Interface
The user interface is an essential aspect of the market

design: it defines how the user sees the current market prices
and how the server learns about the user’s preferences. The
resulting UI is novel, however, still in beta testing and needs
to be examined in more detail. A more detailed description
of the UI design can be found in [11]. Here, we only provide
a brief description as necessary to motivate our user model.

The challenge regarding the UI design for this application
is that the majority of the users of a P2P backup system will
be non-experts without an understanding of the underlying
market. We adopt as our goal that of hidden markets: the
concept of prices and account balances must be hidden from
the users as much as possible. This is in contrast to much of
the previous work on electronic market design, where users
are generally asked to specify bid/ask prices to interact with
an auction protocol. Figure 1 displays our current imple-
mentation of the UI, a “settings window” where a user can
control his resources and look at his resource balance.

Figure 1: Screenshot of Current User Interface.

This window has two distinct areas: on the left side, the
user can control his resources (his supply vector) and on the
right side, the user sees his “resource balance”via a pie chart
(an aggregate view of his current and maximally possible

consumption/demand vector). For each of his resources, the
user can set a maximum cap for that resource by moving
the sliders to specify how much of that resource the system
should maximally use. The software will never use more of
each resource than the user specifies via the sliders.2

When the user moves the sliders, his resource balance on
the right changes simultaneously. The resource balance is
determined by two numbers: 1) the user’s current usage of
online backup storage and 2) the additional backup stor-
age space available to that user. The second value is ef-
fectively a prediction regarding how much more data the
user could backup before hitting his resource caps. Here, we
make use of the income/expenditure flow constraint again.
Thus, by looking at the ratio of his current supply vector s
and his maximum supply vector S, we can determine how
much more he could consume. Note that this UI allows users
to express their preferences. If a user wants to have a total
available backup space of 100GB, there are different settings
that will allow this. Some users might specify to give more
space and less bandwidth, others might specify it the other
way around, depending on the resources they have available
and their individual preferences.

One highlight of this UI is that it allows the user to inter-
act with the market, and see/experience the current market
prices simply by moving the sliders and looking at the pie
chart. If the user moves the slider a little and the resource
balance only moves a little, this means that the current price
for that resource is relatively low (because there already is
a lot of supply for that resource). If the user moves a slider
a little and the pie chart moves a lot, this implies that the
current market price for that resource is relatively high (be-
cause this is a scarce resource).

Enforcing Resource Ratios
A challenge that we have ignored so far is the fact that we
need all three resources from each individual user. The re-
sources prices are automatically updated to bring demand
and supply into balance, but only on an aggregate level.
Given any price vector, a particular user might still want
to choose to supply very little of one particular resource
and very much of another. Thus, we also have to enforce
that each user stays within certain resource ratios. In gen-
eral, the available online space increases when the user in-
creases one of his sliders. However, this is only true for a
subset of possible slider positions. In particular, if a user
keeps increasing one slider towards the maximum while the
other two sliders are relatively low, at some point the online
backup space stops increasing. For example, if a user limits
his upload bandwidth to 5KB/s, increasing his space from
50GB to 100GB should not increase his online backup space.
The reason is that we would never store 100GB on this user
because 5KB/s would not be enough to have a reasonable
retrieval rate. In the UI, we display the area where the
slider has an effect on the resource balance as a thick line.
Once the user moves one slider beyond the point where the
line is thick, the resource balance on the right stops increas-
ing. Moreover, when the user moves one slider the “effective
slider regions” for the other resources (i.e., the thick lines)
change accordingly. When one slider is moved up, the effec-
tive slider regions for the other two resources increase; when
one slider is is moved down, the effective slider regions for
the other two resources decrease. At which point the slid-
ers must lose their effect and how the interaction between

2While the user has full control over his supply of space,
upload and download bandwidth, a user’s availability cannot
be set explicitly but will be determined over time depending
on how long the user is online. In our implementation, a
complex algorithm estimates a user’s availability over time.

sliders and effective slider regions should be is a non-trivial
question. In our implementation, we use system-wide infor-
mation regarding the demand for each of the three resources
in combination with a“slack factor” that tells us how flexible
we can be in using a particular user’s resources.

Handling Low Account Balances
The maximum deficit (in terms of credits) a user can take
on is bounded. This implies that if a user has backed up
some files, the user can only go offline for a limited period
of time before his account will be frozen. If a user’s account
is low, the system alerts the user by sending him an email
informing him of actions he could take.

3.2 The User Model
Naturally, each user has an endowment of the resources

space, upload and download bandwidth. User i’s endow-
ment vector is denoted ωi = (ωiS , ωiU , ωiD). The UI gives
the user the option to specify the maximum supply he is
willing to give up. We let Si = (SiS , SiU , SiD) denote the
maximum supply vector chosen by user i and we let Di =
(DiB , DiS , DiR) denote the maximum consumption vector
of user i. Given Si, the flow-constraint Si · p = Di · q au-
tomatically determines Di. We assume that when the user
sets the maximum supply vector Si, he is forward-looking,
i.e., he is planning for demand Di in the future. In practice
this means the user sets his supply such that he can continue
using the backup software for a certain time period without
running out of online backup space and thus without having
to adjust the supply settings again. For every target amount
of services Di there are many different combinations of sup-
plied resources that will allow the user to consume Di, and
different users might choose different trade-offs according to
their preferences. To make the preferences monotone, we de-
fine the vector of resources that user i keeps as Ki = ωi−Si.
Now, we define each user i’s preference relation as ºi over
the six-tuple (KiS , KiU , KiD, DiB , DiS , DiR) and we make
the following standard assumptions:

Assumption 1. Each user’s preferences are (i) continuous,
(ii) convex, and (iii) monotone.

Furthermore, we make a few well-known (cf. [10]) obser-
vations that will be useful later:

Observation 1. (Continuous, Quasi-Concave Utility Func-
tion and Homogeneity of Degree Zero)

(i) Given that the user’s preferences are continuous, there
exists a utility function ui(KiS , KiU , KiD, DiB , DiS , DiR)
that represents the preference relation and this utility
function is continuous.

(ii) Given that the user’s preferences are convex, we know
that ui is quasi-concave.

(iii) Given that we are in a closed economy, the supply and
demand function of the individual users are homoge-
neous of degree zero, i.e., only relative prices matter.
This implies that the aggregate supply and demand
functions are also homogeneous of degree zero.

3.3 The Utility Maximization Problem
Definition 1. (Utility Maximization Problem) Given the

endowment ωi, the demand di, the current price vectors p
and q, we model user i’s UMP as follows. Let Ki be the re-
sources he keeps, and let Di be his expected future demand.

Maximize ui(Ki, Di) under the following constraints:

Si = (ωi −Ki) (1)

Di · q = Si · p (2)

di · q ≤ Si · p (3)

SiX ≤ SiY · rXY , where X 6= Y ∈ {S, U, D} (4)

Si, Ki, Di ≥ 0 (5)

Explanation: Line (1) defines the supply vector. Line
(2) expresses the constraint that the amount a user supplies
defines how much he can maximally consume. The UI will
show the user how much he can consume, i.e. Di, given his
current supply choice Si. Line (3) makes sure that the user
chooses to supply enough such that he can at least afford
his current demand (otherwise he would quickly run into a
deficit). Line (4) denotes the ratio constraints, i.e., a user’s
supply of each resource has to be within a certain ratio of
the supply of both other resources. The coefficients rXY

are calculated based on the aggregate demand ratios and a
slack factor that depends on how flexible the system’s work
allocation method is. Finally, line (5) makes sure that all
choice variables are ≥ 0.

It turns out that, if we know the overhead resulting from
the erasure coding and the amount of repair and testing op-
erations the system needs to perform, then the supply price
vector p automatically determines the service price vector q.
Thus, to simplify notation we will only use p for the remain-
der of this paper. Furthermore, for the equilibrium analy-
sis, we will consider the aggregate demand of all resources
d = (dS , dU , dD) which can be calculated analogously from
the aggregate demand of all services. In the remainder of
the paper we will often just refer to supply or demand and
it will be clear from the context whether we mean the cur-
rently used aggregate supply and demand s and d, or the
maximum aggregate supply and demand S and D.

4. EQUILIBRIUM ANALYSIS
A standard equilibrium concept in General Equilibrium

Theory is the Walrasian equilibrium where demand equals
supply. While this equilibrium is reasonable for one-time
market models, it is not suitable for an ongoing market like
ours where users only slowly react to price changes. In par-
ticular, we do not want to balance the market. We must
guarantee that the backup system can always satisfy new
requests (demand) which implies that we must always have
some excess supply of all resources. Thus, a Walrasian equi-
librium is certainly not the correct concept for this system.

4.1 The Buffer Equilibrium
To guarantee that the backup system always has enough

supply for each individual resource to satisfy new incom-
ing requests, we must always aim for a large enough buffer
between the aggregate demand and the aggregate supply.
Remember that the idea of market prices is that the prices
reflect the scarcity of the resources in the system. For ex-
ample, if all users value upload bandwidth highly and would
rather supply storage space or download bandwidth instead,
then upload bandwidth should have a high price such that
the users are incentivized to supply more upload bandwidth.
When we are updating prices, we are effectively increasing
the buffer for some resources and decreasing it for others.
Given that we cannot predict which resource demand will
increase the most in the future, we assume a uniform dis-
tribution. Thus, to minimize the risk of ever not having
enough supply for any resource we maximize the minimum
buffer between supply and demand over all resources. This
naturally leads to the following new equilibrium concept:

Definition 2. (Buffer Equilibrium) A buffer equilibrium is
a price vector p = (pS , pU , pD), an aggregate supply vector
S(p) = (SS(p), SU (p), SD(p)) and aggregate demand vector
d(p) = (dS(p), dU (p), dD(p)) such that

SS(p)

dS(p)
=

SU (p)

dU (p)
=

SD(p)

dD(p)

i.e., the buffer between aggregate demand and aggregate
supply is the same for each resource.

It is straightforward to show that in a buffer equilibrium,
for every resource, the aggregate supply is at least as high as
the aggregate demand. How much higher the supply is de-
pends on how much extra supply the users are provisioning
on average (beyond what’s necessary to afford their current
consumption). See [12] for more details.

4.2 Existence of the Equilibrium
We don’t want to assume that the user’s preferences are

strongly monotone and strongly convex w.r.t. to all re-
sources because we believe that this is not the case for the
service products. Instead, we will work with the following,
more restrictive assumption:

Assumption 2. (Service Products are Perfect Complements)
We assume that the user considers backup, storage and

retrieval to be service products that are perfect comple-
ments. A utility function that induces the perfect comple-
ments property is given by

ui(Di) = min{βi1DiB , βi2DiS , βi3DiR}.

Discussion: Note that this assumption does not mean that
every user consumes the services in the same fixed ratios.
What it means is that each user has a certain fixed usage
pattern that defines the ratio of the three services for this
individual user. If prices or the user’s endowment change,
the demand for the three service products changes, but the
ratios remain the same.

Theorem 1. A buffer equilibrium exists in the P2P ex-
change economy, given that users’ preferences are continu-
ous and convex, given that they are monotone w.r.t. service
products, strongly monotone w.r.t. to supply resources, and
given that service products are perfect complements.

Due to space constraints we could not include the proof
in this paper. Please see our working paper [12] for the full
proof.3

4.3 Uniqueness of the Equilibrium
For the uniqueness theorem, we need the following as-

sumption:

Assumption 3. (Supply Resources are Gross Substitutes)
We assume that the aggregate supply function S(p) satisfies
the gross substitutes condition [1], i.e., whenever p′ and p
are such that, for some l, p′l > pl and p′k = pk for k 6= l, we
have Sk(p′) > Sk(p) for k 6= l.

Theorem 2. The buffer equilibrium is unique, given that
users’ preferences are continuous, convex, and monotone,
that services are perfect complements (Assumption 2) and
that supply resources are gross substitutes (Assumption 3).

3The working paper is available online at
http://www.eecs.harvard.edu/~seuken/P2PBackup.pdf.

Proof. From the definition of the equilibrium it is clear
that we only care about supply relative to demand. We
want to find prices such that the supply vector is a mul-
tiple of the demand vector, i.e., S(p) = λd(p) for λ ∈
R+. Thus, to find equilibrium prices, we can also look
at projective space for the aggregate supply and demand
vectors where the supply vector must equal the demand
vector. To derive this directly, we start in affine space
where we need: ∃λ ∈ R+ : (SS , SU , SD) = λ (dS , dU , dD) . If
we normalize supply and demand of storage space to 1 we

get: ∃λ′ ∈ R+ :
(
1, SU

SS
, SD

SD

)
= λ′

(
1, dU

dS
, dD

dS

)
. This equa-

tion can only hold for λ′ = 1. And thus, in RP2 we get:(
SU
SS

, SD
SS

)
−

(
dU
dS

, dD
dS

)
= 0. We define a new vector-valued

function g(p) =
(
g1(p), g2(p)

)
where gU (p) =

(
SU (p)
SS(p)

− dU (p)
dS(p)

)

and gD(p) =
(

SD(p)
SS(p)

− dD(p)
dS(p)

)
. Now, we can re-write the

definition of the buffer equilibrium as follows:

Definition 3. (Buffer Equilibrium [2. Alternative]) A buffer
equilibrium is a price vector p and g(p) such that

g(p) = (0, 0) .

We have simplified the problem of finding equilibrium
prices to finding the root of g(p). The uniqueness of the
buffer equilibrium is equivalent to saying that g(p) = 0 has
at most one (normalized) solution. The remainder of the
proof is given in [12].

5. THE PRICE UPDATE ALGORITHM
In this section we devise a price update algorithm that is

invoked regularly on the server (e.g., once a day), with the
goal to move prices towards the buffer equilibrium over time.
Remember that the users’ utility functions are homogeneous
of degree zero. Thus, only relative prices matter and w.l.o.g.,
we can fix the price for storage space at 1 and only update
the prices for upload and download bandwidth.

5.1 The Algorithm
Our price update algorithm is oriented at the tâtonnement

process as defined by Walras about 200 years ago [13]. How-
ever, with Walras’ algorithm, trades were only allowed at
equilibrium prices. In our system, however, we must allow
trades at all times, even out of equilibrium.

In Section 4.3, we have reduced the problem of finding the
buffer equilibrium to finding the root of the function g(·).
This is a well-understood mathematical problem. Newton’s
method is probably the best-known root-finding algorithm,
which also converges very quickly in practice. However, it
requires the evaluation of the function’s derivative at each
step. However, we don’t know the function g(·)and thus
cannot compute its derivative. Instead, we only get to know
individual points in each iteration and can use these points
to estimate the derivative. This is exactly what the Secant
method does for a one-dimensional function.

The problem is that g(p) is 2-dimensional, and thus the
secant method is not directly applicable. The appropriate
multi-dimensional generalization is Broyden’s method [4], a
quasi-Newton method. Unfortunately, that method requires
knowledge of the Jacobian, which we don’t know and also
cannot even measure approximately. However, we show that
one can use an approximation to the diagonal sub-matrix
of the Jacobian instead of the full Jacobian matrix. The
diagonal sub-matrix of the Jacobian can be approximated
by studying changes in the functions gX(p). This leads to
the following quasi-Newton method for multiple dimensions:

Definition 4. (The Price Update Algorithm)

pt+1
X =

{
1 for X = S

pt
X − pt

X−pt−1
X

gX (pt)−gX (pt−1)
· gX(pt) for X = U, D

For a real-world implementation of the price update algo-
rithm we have to take care of some special cases. We discuss
a modified price update algorithm for these cases in [12].

5.2 Convergence Analysis
We have performed an analytical and experimental anal-

ysis of the convergence properties of the price update al-
gorithm. However, due to space constraints we can only
briefly discuss some of our main findings. Please see [12] for
a detailed discussion and proofs.

To prove any formal guarantees regarding the convergence
of the price update algorithm, we needed a series of techni-
cal assumptions, including that the function g(p) defined in
Section 4.3 is a continuously differentiable function. How-
ever, the more relevant assumption for practical purposes is
that the initial price vector p0 that is used to start the price
update algorithm needs to be closes enough to the root of
g(p). This is a property that all quasi-Newton methods have
in common. If such a starting point can be found then our
price update algorithm converges at least Q-superlinearly to
the root. Unfortunately, if a price vector too far away from
the root is chosen, no formal guarantees can be given.

We also performed an experimental convergence analysis
of the price update algorithm, using a simulated market with
100 agents. We used the well-known CES utility functions to
make sure that we satisfy the assumptions of our theorems.
With the help of an NLP-solver we were able to solve each
agent’s utility maximization problem after each round of
prices updates. Similarly to the analytical analysis, we found
that when a price vector somewhat close to the root was
chosen, the update algorithm indeed converged very quickly.
However, sometimes, when a price vector far away from the
root was chosen, the algorithm never converged. Further
experiments are necessary, in particular we will study how
the price update algorithm reacts to periodic demand and
supply shocks, what happens if individual users drop out of
the market, and what happens if the users’ demand changes
exogenously. However, in practice, finding reasonably good
starting prices might be the biggest challenge.

6. CONCLUSION
In this paper, we presented the market design for a novel

P2P backup application in which monetary transfers are pro-
hibited. One of the design goals was to allow the users to
interact with the market without specifying bid or ask prices.
In this setting, we proved the existence and uniqueness of
a buffer equilibrium. We defined a price update algorithm
and we have shown that it converges to the buffer equilib-
rium, given that the initial starting prices were chosen close
enough to the equilibrium. In ongoing work we are augment-
ing the market design with a payment mechanism, defined
in terms of market prices, that will provide for robustness
against strategic deviations from users that manipulate the
protocol, e.g., by reprogramming their software client. In
future work we will extend our current design and allow for
monetary payments. Thus, on the one side, users will then
be able to pay for their consumption of services by either
providing their own resources or by paying with real money,
and on the other side, users will then also be able to earn
real money by supplying their resources.

7. REFERENCES
[1] J. Alexander S. Kelso and V. P. Crawford. Job

matching, coalition formation, and gross substitutes.
Econometrica, 50(6):1483–1504, 1982.

[2] C. Aperjis and R. Johari. A peer-to-peer system as an
exchange economy. In Proceedings from the Workshop
on Game Theory for Communications and Networks
(GameNets), Pisa, Italy, October 2006.

[3] W. J. Bolosky, J. R. Douceur, and J. Howell. The
farsite project: A retrospective. SIGOPS Operating
Systems Review, 41(2):17–26, 2007.

[4] C. G. Broyden, J. E. Dennis Jr., and J. J.Moré. On
the local and superlinear convergence of quasi-newton
methods. J. Inst. Math. Appl., 12:223–245, 1973.

[5] L. P. Cox and B. D. Noble. Samsara: Honor among
thieves in peer-to-peer storage. In Proceedings of the
nineteenth ACM symposium on Operating systems
principles (SOSP), pages 120–132, Bolton Landing,
NY, 2003.

[6] M. J. Freedman, C. Aperjis, and R. Johari. Prices are
right: Managing resources and incentives in
peer-assisted content distribution. In Proceedings of
the 7th International Workshop on Peer-to-Peer
Systems, Tampa Bay, FL, February 2008.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent
storage. In Proceedings of the Ninth international
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[8] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A.
Huberman. Tycoon: An implementation of a
distributed, market-based resource allocation system.
Multiagent Grid Systems, 1(3):169–182, 2005.

[9] J. Li and C. Zhang. Distributed hosting of web content
with erasure coding and unequal weight assignment.
In Proceedings of the IEEE International Conference
on Multimedia Expo, pages 27–30, Taipei, June 2004.

[10] A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, 1995.

[11] S. Seuken, D. Charles, M. Chickering, and S. Puri.
Designing user interfaces for hidden markets. In
Proceedings of the IJCAI Workshop on Interaction
and Intelligence, Pasadena, CA, July 2009.

[12] S. Seuken, D. Charles, M. Chickering, and S. Puri.
Market design & analysis for a p2p backup system.
Working Paper, 2009.

[13] L. Walras. Eléments d’économie politique pure; ou,
théorie de la richesse sociale (Elements of pure
economics; or, the theory of social wealth). Corbaz,
Lausanne, 1874.

[14] F. Ygge and H. Akkermans. Power load management
as a computational market. In Proceedings of the 2nd
International Conference on Multi-Agent Systems
(ICMAS), pages 393–400, Kyoto, Japan, 1996.

