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ABSTRACT

We consider the following advertisement problem in socitt n
works. Given a fixed advertisement investment (e.g., prdvic
samples to small number of users), a company needs to datermi
the probability that users of a social network will eventygiur-
chase the product. In this paper, we model social networksale-
free graphs (with or without high clustering coefficient)e en
characterize and model various influence mechanisms thagrgo
the influence spreading in large scale social networks. Veetis
local mean field (LMF) technique to analyze these social ogtsv
wherein states of nodes can be changed by various influende me
anisms. Extensive simulations are carried out to validhteaccu-
racy of our model. These results can provide insight in des
efficient advertising strategies in social networks.

1. INTRODUCTION

In recent years, advertising has become a major commerzial a
tivity in the Internet. Traditionally, advertisements assially broad-
cast oriented, e.g., via TV or radio stations so as to reachaagy
people as possible. With the development of the Internet, at:

vertisement models emerge and blossom. For example, Google

provides thetargeted advertisements: when a user searches for
information, related advertisements are returned togetite the
search results. Such targeted advertisement can enhansedh
cess rate of selling a product. In recent years, social rm&svo
offer another new venue of performing advertisement. Iriadoc
networks, users are logically grouped together by one oerspe-
cific types of interdependency such as friendship, valuereasts,
ideas,. .., etc. Since the dependency is quite strong, if one user
decides to purchase a product, he/she can influence hisitwald,
and thereby increase the possibility of sales. With the esgxof
online social networks like Facebook and Myspace, advegtis
social networks is receiving more attention.

To advertise on social networks, a company first appliesréidve
ing strategies, either traditional or Internet-basedyated or non-
targeted, so as to attract a small fraction of the social oktwsers
to purchase the product. Based on this initial fraction ofevs,

a cascade of word-of-mouth influence by users is triggerad, a
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eventually large fraction of users in the social networky aecide
to purchase the product.

Predicting the final portion of buyers is important for comies
since they can design efficient advertising strategies $0 amx-
imize their revenue. However, this is not an easy task sihee t
influence depends on various factors that are difficult toattar-
ize. The first important factor is the topology of the netwdrku-
itively, a well connected network may allow the influence poesd
to more users. But to what extent the connectivity helps is no
clear. Moreover, how other topological properties of themoek,
say, randomness, degree distribution, may affect the dimgaf
influence is unknown. The second important factor is the mech
nism that determines whether a user will purchase the ptodiuc
general, the better comment his/her friends give to theymipdhe
more likely the user will purchase the product. But how toreha
acterize such mechanisms and how much they impact the iocBuen
spreading is unknown. Thirdly, realistic social networks asually
large in size (e.g., with over ten million nodes) and the ysialof
these large graphs is very often complicated.

The contributions of this paper are:

e To be best of our knowledge, we are the first to propose math-
ematical models to predict influence spreading in social net
works.

e We show how to use thiecal mean fieldLMF) technique
to analyze the influence of nodes in large graphs. Using the
local mean field, one can concentrate on the correlation-stru
ture of local neighborhoods only, so that one can easilyéderi
the statistical properties of the underlying graphs.

e We formally characterize various influence mechanisms and
propose a framework to find the final fraction of buyers un-
der a given mechanism for large random networks. Using
this framework, we analyze several influence mechanisms
and evaluate their performances via simulations.

The outline of our paper is as follows. In Section 2, we presen
the model of social networks and the problem statement. Ween
introduce the concept of local mean field to analyze the ndgsvo
We also present several influence models to illustrate hensicsn
affect others in social networks. In section 3, we extendibdels
for scale-free graphs with high clustering coefficient. kcon
4, we validate our analysis in Section 2 and 3 via simulatiot a
reveal various factors that affect the influence spreadivglated
work is given in Section 5 and Section 6 concludes.

2. BASIC MODEL

In this section, we present the models of advertising insdoit-
works. The problem can be informally stated as follows. A eom



pany provides free samples to a small fraction of users ircako
network so as to entice them to purchase the product. In alsoci
network, users that have bought the product can also inftutbredr
neighbors or friends. The issue is, how does this influenceash
and at the equilibrium, what is the fraction of users that pur-
chase the product? It is important to point out that this one
depends heavily on how users influence each other. In thawfoll
ing subsections, we will present various influence meciasisn
social networks and derive the expected fraction of usexswtl
eventually purchase the product.

corresponding LMF, the local topology of the graph rooted aain
be modeled as a tree with high probability.

Remark: The implication of the above proposition is that we can
view the scale-free graph as a tree rooted at nodéoder can be
influenced by nodes in sub-trees roote@ato v4c, (), but the in-
fluence to node is independenbetween any two sub-trees. Since
there exists a recursive tree structure, we can then easlyze
the overall influence by all nodes to the root naed&igure 1 illus-
trates the local mean field of a social network as an infingptil
random tree with node being the root. It is important to note that

2.1 Modeling Social Networks as Scale-free Ran-since any node in a given social netwatkcan be chosen as the

dom Graphs

For simplicity of presentation, let us first model the ungerl
ing social network as ainfinite scale-freg[3] sparse “random”
graphG(V, E). In later section, we also extend the models for
graphs with high clustering coefficient. A scale-free grapla
graph whose node degree follows a power law distributionatTh
is, the fraction of nodes that haveneighbors, denoted b¥s (k),
is proportional tok~"” for large values ok, or

Py(k) < k77, 1)

wherev is a positive constant valtieNote that for a realistic social
network (e.g., Facebook), the number of users is in the @flEi®
or larger, thus the infinity assumption is justified.

Each user is represented as a nodé|#r, E'). Each node can in-
fluence its neighbors. For example, if nadéecides to purchase a
product, it may influence its neighbors to purchase the saot: p
uct. Obviously, one can have different influence models ard w
will elaborate on them later. In this paper, we focus on thaési-
cal properties of social networks. For example, if each rindkis
scale-free grapldz has a probabilityy of receiving a free sample
of a product, then given a particular influence model, we want
derive the probability that a randomly chosen node will ¢valty
purchase the product.

root of the corresponding tree, the performance measuwe &-
erage influence by all nodes to the root node) that we willveeri
can be applied to any node in the original graph

®
@/@/- \

Figure 1: Local topology of node.

To construct the LMF rooted at node we first need to obtain
the degree distributions for the root nodand its children nodes.
Leti € V be a node in the scale-free gragh deg(:) denote the
number of neighbors of . Then for a tree rooted at, deg(r)
follows the same power law distribution as Equation (1), or:

The tight dependency among nodes makes the analysis of the

above system difficult. For example, if nodesndb have a com-
mon neighbor, say node then the influence betweenandb are

coupled In general, dependency may occur even if nodes are multi-

ple links away from each other. This type of multi-nodesriatgion
is generally difficult to solve exactly because of the comatinics
generated by the interactions when summing over all passibl
fluences.

To overcome this problem, we construct a local mean field (.MF
of anarbitrary node inG. In essence, LMF is a transformation of
G and it allows us to model the correlative structure on loeddn-
borhoods only. More importantly, the LMF provides an asywtipt

behavior as the number of nodes of a sparse random graphayoes t

infinity with a given asymptotic degree distributidf (k) [8].

The construction of LMF of5 can be described as follows. We
randomly choose a node, say V, as the starting point of the lo-
cal mean field. Since is randomly chosen, according to the prop-
erty of a scale-free random graphhasdeg(r) neighbors, say,
V2, .. ., Vdeg(r), Wheredeg(r) follows the power law distribution.
When we construct the LMF with the starting nodewe model
this random scale free graph as a tree rooted at n@a® follows
the same degree distribution. We refer readers to [2] foilaime-
sults. Given this LMF, we calculate the influence spreadimghis
new structure. We have the following proposition.

Proposition 1. LetG be an infinite random graph with asymptotic
degree distribution, then for an arbitrarily chosen nodand the

The typically value ofy in the range of < ~ < 3.

Prodeg(r) = k] = Po(k) = Ck™7,

whereC is a constant satisfying’'> 7> | k=7 = 1. For conve-
nience, let us denotg(y) = 1/C. Then we have

Proldeg(r) = k] = Po(k) = %7

We can also derive the degree distribution of any descenamtgs
of . The result is summarized in the following lemma.

k=1,2,... (2

Lemma 1. For an infinite random power law graph, the probabil-
ity that a descendant node has degteis:

K1Y
C(y—1)’

v, k¢ is the Riemann zeta function.

Pi(k) = fork=1,2,... ?3)

Where((z) =

Proof: A descendant node with degréas k times as likely to be
chosen as one with degree 1, so the distribution of the nuwiber
neighbors of a descendant node isfop 1

k- Po(k) k=
Pi(k) = == = ,
)= S A® 6D
Thus, the degree distribution of the descendants of nedi€ol-
low a shifted power-law distributior; (k) of Equation (3). Now
the local mean field of7 is completely determined. It describes
the distribution of the local topology of a randomly choseda&in

k=1,2,... 1




graphG. It is recursive and free of loops, which makes it con-
venient to derive statistical properties of the social mekw In
the following subsections, we will use it to study severdllience
mechanisms.

2.2 g-Influence Model

Let's say each user is represented by a nod&(ivi, £'). Suppose
a company provides free samples as advertisememt<ol frac-
tion of users in this social network. Users receiving the Bample
will buy the product by their own will with probability™, while
users who do not receive the free sample may also buy the grodu
by their own will with probabilityp~. We assume™ > p~. Users
who buy the product can also influence their friends (e.gghie
bors in the social network) to buy the product with prob&pilj.
Our goal is to derive the fraction of users in the social nekvibat
will eventually purchase the product.

To answer the above question, let us first define the following
random variables. Lep; be the Bernoulli random variable to in-
dicate whether nodédecides to purchase the product by his own
will (e.g., without the influence of other nodes), thénhas the
parametef where

pw=pp"+(1—pp . 4

Let 0;; be the Bernoulli random variable to indicate whether node
1 can influence his neighbgrto purchase the product. Under the
g—influence model, it is easy to see tifiat has parametey.

Before we derive the fraction of users that will purchaseptioal-
uct in the LMF tree, let us illustrate the intuition on how lesctan
influence other nodes viadeterministicexample. Consider &
nite tree with a pre-defined rootand all¢; andé;; for all nodes
in the tree are also known, e.g., they are equal to either 1.
Then for node;, if ¢; is already 14 obviously buys the product;
if ¢ has a neighboy such thaty; = 6;; = 1, ¢ will also buy
the product. If neither of these two conditions holdnay still
buy the product if there is a path— i1 — i2... — 4% such that
@i, = 0ii,_, = ... = 0;s = 1. Conversely, if no such path
exists and decides not to purchase, thewill not buy the prod-
uct. Therefore, to compute the final state of the root node.g.,
whether node will purchase the product either due to his own will,
or due to the influence of all other nodes in the tree), we can up
date the states of all other nodes in this tree in a bottom-aner.
That is, we can determine the stéteof any leaf node. Given the
values ofg; in the leaf nodes, we can determine the state of their
parent nodes based on the influence model.

We can now generalize the above intuition to an infinite-dept
random tree. LefX indicate whether the root nodefinally buys
the product, clfa) be the set of children of nodeg, Y; indicate
whether a non-root nodé will buy the product only due to the
influence of the advertisement and its descendants, Xhen Y,..
Based on the definition of thginfluence model, a nodiedoes not
purchase the product if and only if it does not purchase bgvits
will, and none of its neighbors who have bought the produat ca
successfully influence it. Thus we have the following relaships:

1=V, = (1-¢) [[ (1—-6uY), ®)
jeclda)

1-X = (1-¢,) [[ (1-6;7). 6)
jeclder)

In effect, Y; sums up all the influence of all descendant nodes of
nodei, andX sums up all the influence of the subtrees!i(r).

We can now consider an infinite tree with the root node and
apply LMF analysis on Eq. (5)-(6). That is, now considérY; as

Bernoulli random variables with mea[X], E[Y;], then we can
prove that Equation (5)-(6) have a unique solution, &hd | is the
fraction of buyers in the social network.

Theorem 1. For the infinite local mean field tree, aif;, i # r are
identically distributed. If; andY; are at the same depth, then they
are also independent of each other. Moreover, Eq. (5)-(6eha
unique solution.

Proof: we refer readers to [1]. [ |

By Theorem 1, we can lét; ~ Y for all j # r. To solve Eq.
(5)-(6), we take expectation on both sides of the equatiorces;,
0;; andY; that share the same parent are all independent of each
other, we have:

1-ElY;] = Q-wE[ [[ -0y,
jecldg)

1-EB[X] = A-pwe[ ] -0,
jecldr)

To derive the expectation term on the right hand side, naé th
the influence from children is independent with the paremter®
degree, we can condition on the node degree:

23

El I] (1—6:Y))] > Pik+1) [ BN - 655

jecldg) k=0 Jj=i

8

Pi(k+1)(1—qE[Y])", (7)

NgE

ES
Il

0

iPO(k) ﬁ E[l - 0;,Yj]

J=r1

El [ —-6,v9)
jeclder)

> Py(k)(1 - qE[YD".  (8)
k=1

Herei; is the;*" child of nodei and we use theorem 1 in equation
(7) and (8).P1 (k) is the probability that a descendant node has de-
greek and Py (k) is the probability that the root node has degkee
We finally obtain we called theecursive distributional equation
(RDE) for the g-influence model:

(1= Pi(k+1)(1-qEY]D", (9

k=0

(1—n) Y Polk)(1 —qE[Y])". (10
k=1

1- E[Y]

1 - E[X]

The performance measurE|X], is the fraction of users that will
eventually purchase the product. Lastly, the above ecustian be
easily solved using standard numeric methods.

2.3 m-threshold Influence Model

In the m—threshold influence model, a user will buy the prod-
uct either by his own will, or when at least of his friends (or
neighbors) have purchased the product. To illustrate,idena de-
terministic example on a finite tree in Figure 2. As beforette
random variables; = 1 if node i decides to purchase by its own
will and ¢; = 0 otherwise. In this deterministic example, the value
of ¢; is shown and labeled in the figure. Suppose we set the thresh-
old m = 2, then nodev; will buy the product under the influence
of nodevs anduvs. Also, the root node will buy the product under
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Figure 2: Deterministic example fen—threshold modekn = 2.

the influence of node; andwv». In general, to compute the state
of the root node under then—threshold influence model, we can
apply the same bottom-up updating algorithm as before.

As before, letX indicate whether the root noddinally buys the
product, clda) be the set of children of nodg Y; indicate whether
a non-root nodeé will buy the product only due to the influence of
the advertisement and its descendants, Bneb Y for all i # r.
By the definition of then-threshold influence model, a node does
not purchase the product if and only if it does not purchasésy
own will and the total number of its neighbors that have badlgé
product is less tham. Therefore we have the following relation-
ships:

1=Yi=(1=¢)-1[ > Y;<m], (11)
jecld@)

=X =(1-¢)-1[ 3 Yi<ml. (12
]ECld(r)

Here the Bernoulli random variab[b[zjedd(i) Y; < m]in-
dicates whether less than friends of node have contributed in-

fluence toi. Local mean field method can also be applied to Eq.

(11)-(12) so as to compute the state distribution of the oarid
chosen root node. Taking expectation on both sides of Eq)- (11
(12), we have:

1—E[Y] = (1—pProf > Y; <mj,
jeclde)

1-E[X] = (1—pProd > Y;<ml.
jeclder)

To derive the probability term on the right side of the abogaz
tions, we can condition on the number of children nodes:

min{m—1,k}

Prol{» " V;<m] = Z.Pl k+1)> " C{E[Y E[Y)F,
jeclde) k=0 J=0
oo min{m—1,k}
Prolf » " Y;<m] = ZPO D CLEYY (1 - E[Y])*~
jeclder) = J=0

So the finatecursive distributional equatio(RDE) for them —threshold

mechanism is:

comin{m—1,k}

LE[Y]=(1-p)) Y Pik+1)CIEN (1-E[Y])*™7, (13)
k=0 j=0
comin{m—1,k}
1-E[X] = (1-p) > > Po(k)CLEYF 1-E[Y])*. (14)

k=1 j=0

In other words E[X] is the fraction of users in the social network
that will eventually purchase the product. Again, the abegea-
tions can be easily solved using standard numeric methods.

2.4 Majority Rule Influence Model

In the majority rule influence model, a user will buy the prod-
uct either by his own will, or if over, fraction of his friends have
bought the product. Figure 3 shows a deterministic exampée o
finite tree under the majority rule model. As beforg,indicates
whether node decides to purchase by its own will. In this deter-
ministic example, the values gf are all known and labeled in the
figure. If we define the majority as 50%, according to the ahiti
condition,v; will be influenced to purchase the product since half
of his friends,vs andwvs, have bought the product. Also, the root
node will be influenced to purchase the product as half ofigafls
(e.g.,v1) have purchased the product.

0—0 (n=0.6)
0—1(n=0.5)

0—0(n=0.6)

01 (n=05) / \

() @
N
() () () () @

Figure 3: Deterministic example for majority rule model.

According to the definition of the majority rule influence nebd
a node will not buy the product if and only if it does not pursba
by its own will, and the fraction of its neighbors that haveugbt
the product is less than the fractign Using the same notation as
before, the following equations hold for the majority rubfliience
model:

1=Yi=(1—¢)-1[ Y V;<ndeg(i)], (15)
jecldg)

1-X=(1—-¢)-1[ > Y;<ndeg(r)]. (16)
jeclder)

Here the Bernoulli random variab[b[zjedd(i) Y; < ndeg(i)]
indicates whether the fraction é§ friends that have purchased the
product is less than the majority ling In the example of Figure
3, if we raise the majority valug from 50% to 60%, them; and

r will not be influenced anymore. To solve, we take expectation
on both sides of Eq. (15)-(16):

1-E[Y] = (1-pProi 3 Y, < ndeg(i)]
jeclde)

1-BX] = (1—pPro 3 ;< rdeg(r)].
jecld)

To derive the probability term on the right side, we conditom the
number of children:

so  [mlk+1)]-1
Prol» " Y; <ndeg(i)]=» Pi(k+1)_ CLE[YY (1-E[Y])* ",
jeclde) k=0 J=0



[nk]—1
Prolf ) " Y; <ndeg(r ]—EDO D CIEYY(1-E[Y])*

jecld) J=0

The finalrecursive distributional equatio(RDE) for the major-
ity rule influence model is:

oo [n(k+1)]—1

I-E[Y] =(1—p)y Y Pi(k+1)CLE[YY (1-E[Y])*™7, (17)
k=04=0
oo [nk]—1
1-E[X] = (1-p) Y > Po(k)CLEYT (1-E[Y])*. (18)
k=17=0

Again, E[X] is the fraction of users that will eventually purchase
the product.

3. SCALE-FREE GRAPHWITHHIGH CLUS-
TERING COEFFICIENT

In social networks, two common friends of an user are usually
friends of each other. This implies that graphs of socialvoekt
usually exhibit higrclustering coefficientin this paper, we use the
definition which was first proposed by Watts and Strogatz #j [1
to characterize the clustering coefficient
Deﬁnition 1. ¢c= ﬁ Z'L}EV m
wherek, is the degree of node, andt, is the number of edges in
the neighborhood of node

Obviously, the scale-free graph with high clustering coefit
cannot be modeled as a tree. But we can still employ the LMF
model to analyze the influence spreading in the graph. The onl
thing we need to do is to modify the degree distribution ofdbe
scendant nodes in Eg. (3). In essence, for scale-free graipins
high clustering coefficient, the degree distribution of tescen-
dant nodes does not follow shifted power law any more, and we
can compute it as following. Consider a descendant bogkose
parent is node, we have:

P(deg(b) = k|cld(a) = m)
=" p(b 4 a) - p(deg(b) = klecld(a) = m,b < a)
j=0
= po(k) (;11)

m—1) ; (m—1—j)

. c(l—c < 5
< J > ( ) Zk 1 po(k (J+1)
gy m—1 Cj _c(mflfj) ( ) (k )
O N S R

whereb £ o means connectg edges with the children of node
Now we can derive the degree distribution of any descendant
node. The result is summarized in the following lemma.

—

Lemma 2. For an infinite random scale free graph with clustering
coefficientc, the probability that a descendant node has degtee

is:
i m+ 1 — mf( ) (1 —c)mmD
k(k — 1) ( —])kf” B

Now the local mean field of scale-free graph with high cluster
ing coefficient is completely determined. One can use the LMF
model defined in subsection 2.2, 2.3 and 2.4 to analyze the infl
ence spreading in scale-free infinite, high clustering lgtapusing
equation (19) to substitut®, (k) .

4. PERFORMANCE EVALUATION

In this section, we present the performance evaluationeoéih
tended models presented in Section 3. The local mean fieléimod
assumes an infinite scale-free random graph without seffid@and
duplicate edges. To evaluate its effectiveness, we firstigea a
graph with sufficiently large number of nodes and high cluste
coefficient by using the GLP model presented in [4]. In oundan
tion, we generate two types of random scale free graphs bibtth w
clustering coefficient of around 0.5. The first type has a mini-
mum degree of 3 and the second type has a minimum degree of 5.
We apply influence models on both of these two graphs. Since
the probability of randomly chosen node will receive theefsam-
ple from a company, is usually small, therefore, in our study
assume that is chosen from 0 to 0.1.

4.1 g-Influence Model

0.1 0 0.1

(a) minimum degree 3 (b) minimum degree 5

Figure 4: Impact of thg—influence model

Recall that in the-influence model, a user that has bought the
product will influence its neighbors with probability Figure 4
shows the simulation as well as theoretical results by thersive
distributional equation (RDE) Eq. (9)-(10). The horizdraais p
(see Eq. (4)) is the initial fraction of users that purchdeegrod-
uct, and the vertical axi&'[ X] is the final fraction of users that will
eventually buy the product. In each figure, there are thmeels-
tion curves and three theoretical curves correspondingfferent
q values from 0.1 to 0.5. First of all, we can see that the theore
results fit well with the simulation results. We also obsettvat
E[X] is much higher in Figure 4b because the underlying graph
has a higher average degree. This indicates that high degtee
works, which are more connected, are easier for the influemce
diffuse. Moreover, we can see that even an infinitesimal rtidee
ment (. = 0.01) can still lead to highE[X].

4.2 m-threshold Influence Model

In them-threshold influence model, a user will be influenced by
his neighbors if at least: of them have bought the product. Figure
5 shows the simulation as well as theoretical results by ¢oarr
sive distributional equation (RDE) Eq. (13)-(14). The Bkorital
axisp (or from Eqg. (4)) is the initial fraction of users that pureka
the product, and the vertical axig{ X | is the final fraction of users
that will eventually buy the product. In each figure, there three
simulation curves and three theoretical curves correspgnd dif-
ferentm values from 3 to 7. We can see that the theoretic results fit



well with the simulation results. For fixed, the curve is higher in
Figure 5b where the power law graph has a higher averageealegre
Similar with theq influence model, we also observe that small
can lead to highE[X]. Lastly, to compare the:-threshold and the
g-influence models in the power law graph with minimum degree
five, m = 7 curve is closest to the = 0.1 curve.

m=3

m=5

W&Wﬁw

m=7

EX]
E[X]

-e-sim
—+RDE

0.08

—e-sim
——RDE

0.08

0 0.02 0.04 0.06

N

(a) minimum degree 3

0.1 0 002 004 006 0.1
n

(b) minimum degree 5

Figure 5: Impact of then—threshold influence model

4.3 Majority Rule Influence Model

In the majority rule influence model, a user will be influenced
by its neighbors if over; fraction of them have bought the prod-
uct. Figure 6 shows the simulation as well as theoreticalltes
by the recursive distributional equation (RDE) Eq. (173)(1The
horizontal axisy. (or from Eq. (4)) is the initial fraction of users
that purchase the product, and the vertical &[] is the final
fraction of users that will eventually buy the product. Ircledig-
ure, there are three simulation curves and three theoreticees
corresponding to majority factar of 30%, 50%, 90%. We can see
that the theoretic results fit well with the simulation résuln both
graphs, whem = 0.9, E[X] almost equalg:, which means that
the mutual influence among users is very weak. Again, we gbser
low p can lead to high[X] whenn = 0.3.

(a) minimum degree 3

(b) minimum degree 5
Figure 6: Impact of the majority rule influence model

In summary, the recursive distributional equation (RDE)rfe-
work is a good approximation to analyze influence spreadirsp+
cial networks. In general, high degree networks are morsithen
to the parameter change of the underlying influence meamanis

5. RELATED WORK

Several papers are related to the problem we discuss heh Mu
work focuses on the epidemic spreading [6,10] via the Suixdep
Infective-Susceptible (SIS) or the Susceptible-InfextRemoved
(SIR) model. The underlying graph models are mostly infinite
scale-free graphs [3, 5] or Erdés-Rényi graph. Results espeed
the epidemic spreads and dies out are obtained. In this wazk,

consider more general influence models and focus on the fal f
tion of users that are influenced. Some researchers dispass s
cific influence models via algorithmic perspective and desig-
proximation algorithms [9], heuristic algorithms [11] fastricted
graphs, or prove NP-hardness results of choosing the nfbstin
tial nodes [7] in social networks. There are a body of literas on
topology generation; see, e.g. [4]. Lastly, in the motivgtivork

of [8], the authors provide local mean field analysis on inginan-
dom graphs and applied this theory for security investmantes.

6. CONCLUSION

We propose a general analytical framework to model various i
fluence mechanisms on large scale random networks. We st di
cuss the probabilistic model (g-influence model), then wes@nt
the deterministic threshold models such asrthethreshold influ-
ence model and the majority rule influence model. Based asethe
influence models, we compute the expected fraction of ushos w
will eventually purchase the product by applying the localam
field analysis. This fraction is very important for producivar-
tisement because it reveals the maximum number of users Who w
buy the product or the maximum profit that the company can ob-
tain. It also gives us the insights on how to control or casdhe
effect of word-of-mouth so as to maximize the revenue of thre
pany. We validate our theoretic analysis by carrying outesive
simulations on random scale free graphs with power law @egre
distribution and high clustering coefficient. We show that mod-
els are very accurate when compare with simulations. Werebse
that even with a small initial investment of free sampleg.(esmall
value ofp), one can still include large number of users to purchase
the product. Lastly, our framework provides an importariidiog
block to design and analyze different product advertiserstate-
gies in social networks.
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