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ABSTRACT
We consider the following advertisement problem in social net-
works. Given a fixed advertisement investment (e.g., provide free
samples to small number of users), a company needs to determine
the probability that users of a social network will eventually pur-
chase the product. In this paper, we model social networks asscale-
free graphs (with or without high clustering coefficient). We then
characterize and model various influence mechanisms that govern
the influence spreading in large scale social networks. We use the
local mean field (LMF) technique to analyze these social networks
wherein states of nodes can be changed by various influence mech-
anisms. Extensive simulations are carried out to validate the accu-
racy of our model. These results can provide insight in designing
efficient advertising strategies in social networks.

1. INTRODUCTION
In recent years, advertising has become a major commercial ac-

tivity in the Internet. Traditionally, advertisements areusually broad-
cast oriented, e.g., via TV or radio stations so as to reach asmany
people as possible. With the development of the Internet, new ad-
vertisement models emerge and blossom. For example, Google
provides thetargetedadvertisements: when a user searches for
information, related advertisements are returned together with the
search results. Such targeted advertisement can enhance the suc-
cess rate of selling a product. In recent years, social networks
offer another new venue of performing advertisement. In social
networks, users are logically grouped together by one or more spe-
cific types of interdependency such as friendship, values, interests,
ideas,. . ., etc. Since the dependency is quite strong, if one user
decides to purchase a product, he/she can influence his/her friends,
and thereby increase the possibility of sales. With the success of
online social networks like Facebook and Myspace, advertising in
social networks is receiving more attention.

To advertise on social networks, a company first applies advertis-
ing strategies, either traditional or Internet-based, targeted or non-
targeted, so as to attract a small fraction of the social network users
to purchase the product. Based on this initial fraction of buyers,
a cascade of word-of-mouth influence by users is triggered, and
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eventually large fraction of users in the social networks may decide
to purchase the product.

Predicting the final portion of buyers is important for companies
since they can design efficient advertising strategies so asto max-
imize their revenue. However, this is not an easy task since the
influence depends on various factors that are difficult to character-
ize. The first important factor is the topology of the network. Intu-
itively, a well connected network may allow the influence to spread
to more users. But to what extent the connectivity helps is not
clear. Moreover, how other topological properties of the network,
say, randomness, degree distribution, may affect the spreading of
influence is unknown. The second important factor is the mecha-
nism that determines whether a user will purchase the product. In
general, the better comment his/her friends give to the product, the
more likely the user will purchase the product. But how to char-
acterize such mechanisms and how much they impact the influence
spreading is unknown. Thirdly, realistic social networks are usually
large in size (e.g., with over ten million nodes) and the analysis of
these large graphs is very often complicated.

The contributions of this paper are:

• To be best of our knowledge, we are the first to propose math-
ematical models to predict influence spreading in social net-
works.

• We show how to use thelocal mean field(LMF) technique
to analyze the influence of nodes in large graphs. Using the
local mean field, one can concentrate on the correlation struc-
ture of local neighborhoods only, so that one can easily derive
the statistical properties of the underlying graphs.

• We formally characterize various influence mechanisms and
propose a framework to find the final fraction of buyers un-
der a given mechanism for large random networks. Using
this framework, we analyze several influence mechanisms
and evaluate their performances via simulations.

The outline of our paper is as follows. In Section 2, we present
the model of social networks and the problem statement. Thenwe
introduce the concept of local mean field to analyze the networks.
We also present several influence models to illustrate how users can
affect others in social networks. In section 3, we extend themodels
for scale-free graphs with high clustering coefficient. In Section
4, we validate our analysis in Section 2 and 3 via simulation and
reveal various factors that affect the influence spreading.Related
work is given in Section 5 and Section 6 concludes.

2. BASIC MODEL
In this section, we present the models of advertising in social net-

works. The problem can be informally stated as follows. A com-



pany provides free samples to a small fraction of users in a social
network so as to entice them to purchase the product. In a social
network, users that have bought the product can also influence their
neighbors or friends. The issue is, how does this influence spread,
and at the equilibrium, what is the fraction of users that will pur-
chase the product? It is important to point out that this outcome
depends heavily on how users influence each other. In the follow-
ing subsections, we will present various influence mechanisms on
social networks and derive the expected fraction of users that will
eventually purchase the product.

2.1 Modeling Social Networks as Scale-free Ran-
dom Graphs

For simplicity of presentation, let us first model the underly-
ing social network as aninfinite scale-free[3] sparse “random”
graphG(V, E). In later section, we also extend the models for
graphs with high clustering coefficient. A scale-free graphis a
graph whose node degree follows a power law distribution. That
is, the fraction of nodes that havek neighbors, denoted byP0(k),
is proportional tok−γ for large values ofk, or

P0(k) ∝ k−γ , (1)

whereγ is a positive constant value1. Note that for a realistic social
network (e.g., Facebook), the number of users is in the orderof 106

or larger, thus the infinity assumption is justified.
Each user is represented as a node inG(V, E). Each node can in-

fluence its neighbors. For example, if nodei decides to purchase a
product, it may influence its neighbors to purchase the same prod-
uct. Obviously, one can have different influence models and we
will elaborate on them later. In this paper, we focus on the statisti-
cal properties of social networks. For example, if each nodein this
scale-free graphG has a probabilityρ of receiving a free sample
of a product, then given a particular influence model, we wantto
derive the probability that a randomly chosen node will eventually
purchase the product.

The tight dependency among nodes makes the analysis of the
above system difficult. For example, if nodesa andb have a com-
mon neighbor, say nodec, then the influence betweena andb are
coupled. In general, dependency may occur even if nodes are multi-
ple links away from each other. This type of multi-nodes interaction
is generally difficult to solve exactly because of the combinatorics
generated by the interactions when summing over all possible in-
fluences.

To overcome this problem, we construct a local mean field (LMF)
of anarbitrary node inG. In essence, LMF is a transformation of
G and it allows us to model the correlative structure on local neigh-
borhoods only. More importantly, the LMF provides an asymptotic
behavior as the number of nodes of a sparse random graph goes to
infinity with a given asymptotic degree distributionP0(k) [8].

The construction of LMF ofG can be described as follows. We
randomly choose a node, sayr ∈ V , as the starting point of the lo-
cal mean field. Sincer is randomly chosen, according to the prop-
erty of a scale-free random graph,r hasdeg(r) neighbors, sayv1,
v2, . . ., vdeg(r), wheredeg(r) follows the power law distribution.
When we construct the LMF with the starting noder, we model
this random scale free graph as a tree rooted at noder and follows
the same degree distribution. We refer readers to [2] for similar re-
sults. Given this LMF, we calculate the influence spreading on this
new structure. We have the following proposition.

Proposition 1. LetG be an infinite random graph with asymptotic
degree distribution, then for an arbitrarily chosen noder and the
1The typically value ofγ in the range of2 < γ < 3.

corresponding LMF, the local topology of the graph rooted atr can
be modeled as a tree with high probability.

Remark: The implication of the above proposition is that we can
view the scale-free graph as a tree rooted at noder. Noder can be
influenced by nodes in sub-trees rooted atv1 to vdeg(r), but the in-
fluence to noder is independentbetween any two sub-trees. Since
there exists a recursive tree structure, we can then easily analyze
the overall influence by all nodes to the root noder. Figure 1 illus-
trates the local mean field of a social network as an infinite-depth
random tree with noder being the root. It is important to note that
since any node in a given social networkG can be chosen as the
root of the corresponding tree, the performance measure (e.g., av-
erage influence by all nodes to the root node) that we will derive
can be applied to any node in the original graphG.
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Figure 1: Local topology of noder.

To construct the LMF rooted at noder, we first need to obtain
the degree distributions for the root noder and its children nodes.
Let i ∈ V be a node in the scale-free graphG, deg(i) denote the
number of neighbors ofi . Then for a tree rooted atr, deg(r)
follows the same power law distribution as Equation (1), or:

Prob[deg(r) = k] = P0(k) = Ck−γ ,

whereC is a constant satisfyingC
P∞

k=1 k−γ = 1. For conve-
nience, let us denoteζ(γ) = 1/C. Then we have

Prob[deg(r) = k] = P0(k) =
k−γ

ζ(γ)
, k = 1, 2, . . . (2)

We can also derive the degree distribution of any descendantnodes
of r. The result is summarized in the following lemma.

Lemma 1. For an infinite random power law graph, the probabil-
ity that a descendant node has degreek is:

P1(k) =
k1−γ

ζ(γ − 1)
, for k = 1, 2, . . . (3)

Whereζ(x) =
P∞

k=1 k−x is the Riemann zeta function.

Proof: A descendant node with degreek is k times as likely to be
chosen as one with degree 1, so the distribution of the numberof
neighbors of a descendant node is fork ≥ 1

P1(k) =
k · P0(k)

P∞
k=1 k · P0(k)

=
k1−γ

ζ(γ − 1)
, k = 1, 2, . . .

Thus, the degree distribution of the descendants of noder all fol-
low a shifted power-law distributionP1(k) of Equation (3). Now
the local mean field ofG is completely determined. It describes
the distribution of the local topology of a randomly chosen node in



graphG. It is recursive and free of loops, which makes it con-
venient to derive statistical properties of the social network. In
the following subsections, we will use it to study several influence
mechanisms.

2.2 q-Influence Model
Let’s say each user is represented by a node inG(V, E). Suppose

a company provides free samples as advertisement toρ < 1 frac-
tion of users in this social network. Users receiving the free sample
will buy the product by their own will with probabilityp+, while
users who do not receive the free sample may also buy the product
by their own will with probabilityp−. We assumep+ > p−. Users
who buy the product can also influence their friends (e.g., neigh-
bors in the social network) to buy the product with probability q.
Our goal is to derive the fraction of users in the social network that
will eventually purchase the product.

To answer the above question, let us first define the following
random variables. Letφi be the Bernoulli random variable to in-
dicate whether nodei decides to purchase the product by his own
will (e.g., without the influence of other nodes), thenφi has the
parameterµ where

µ = ρp+ + (1 − ρ)p−. (4)

Let θij be the Bernoulli random variable to indicate whether node
i can influence his neighborj to purchase the product. Under the
q−influence model, it is easy to see thatθij has parameterq.

Before we derive the fraction of users that will purchase theprod-
uct in the LMF tree, let us illustrate the intuition on how nodes can
influence other nodes via adeterministicexample. Consider afi-
nite tree with a pre-defined rootr and allφi andθij for all nodes
in the tree are also known, e.g., they are equal to either0 or 1.
Then for nodei, if φi is already 1,i obviously buys the product;
if i has a neighborj such thatφj = θji = 1, i will also buy
the product. If neither of these two conditions hold,i may still
buy the product if there is a pathi − i1 − i2 . . . − ik such that
φik

= θikik−1
= . . . = θi1i = 1. Conversely, if no such path

exists andi decides not to purchase, theni will not buy the prod-
uct. Therefore, to compute the final state of the root noder (e.g.,
whether noder will purchase the product either due to his own will,
or due to the influence of all other nodes in the tree), we can up-
date the states of all other nodes in this tree in a bottom-up manner.
That is, we can determine the stateφi of any leaf nodei. Given the
values ofφi in the leaf nodes, we can determine the state of their
parent nodes based on the influence model.

We can now generalize the above intuition to an infinite-depth
random tree. LetX indicate whether the root noder finally buys
the product, cld(a) be the set of children of nodea, Yi indicate
whether a non-root nodei will buy the product only due to the
influence of the advertisement and its descendants, thenX = Yr.
Based on the definition of theq-influence model, a nodei does not
purchase the product if and only if it does not purchase by itsown
will, and none of its neighbors who have bought the product can
successfully influence it. Thus we have the following relationships:

1 − Yi = (1 − φi)
Y

j∈cld(i)

(1 − θjiYj), (5)

1 − X = (1 − φr)
Y

j∈cld(r)

(1 − θjrYj). (6)

In effect, Yi sums up all the influence of all descendant nodes of
nodei, andX sums up all the influence of the subtrees incld(r).

We can now consider an infinite tree with the root node atr and
apply LMF analysis on Eq. (5)-(6). That is, now considerX, Yi as

Bernoulli random variables with meanE[X], E[Yi], then we can
prove that Equation (5)-(6) have a unique solution, andE[X] is the
fraction of buyers in the social network.

Theorem 1. For the infinite local mean field tree, allYi, i 6= r are
identically distributed. IfYi andYj are at the same depth, then they
are also independent of each other. Moreover, Eq. (5)-(6) have a
unique solution.

Proof: we refer readers to [1].

By Theorem 1, we can letYj ∼ Y for all j 6= r. To solve Eq.
(5)-(6), we take expectation on both sides of the equation. Sinceφi,
θij andYj that share the same parent are all independent of each
other, we have:

1 − E[Yi] = (1 − µ)E[
Y

j∈cld(i)

(1 − θjiYj)],

1 − E[X] = (1 − µ)E[
Y

j∈cld(r)

(1 − θjrYj)].

To derive the expectation term on the right hand side, note that
the influence from children is independent with the parent node’s
degree, we can condition on the node degree:

E[
Y

j∈cld(i)

(1 − θjiYj)] =
∞
X

k=0

P1(k + 1)

ik
Y

j=i1

E[1 − θjiYj ]

=
∞
X

k=0

P1(k + 1)(1 − qE[Y ])k, (7)

E[
Y

j∈cld(r)

(1 − θjrYj)] =
∞
X

k=1

P0(k)

rk
Y

j=r1

E[1 − θjrYj ]

=
∞
X

k=1

P0(k)(1 − qE[Y ])k. (8)

Hereij is thejth child of nodei and we use theorem 1 in equation
(7) and (8).P1(k) is the probability that a descendant node has de-
greek andP0(k) is the probability that the root node has degreek.
We finally obtain we called therecursive distributional equation
(RDE) for theq-influence model:

1 − E[Y ] = (1 − µ)

∞
X

k=0

P1(k + 1)(1 − qE[Y ])k, (9)

1 − E[X] = (1 − µ)

∞
X

k=1

P0(k)(1 − qE[Y ])k. (10)

The performance measure,E[X], is the fraction of users that will
eventually purchase the product. Lastly, the above equations can be
easily solved using standard numeric methods.

2.3 m-threshold Influence Model
In them−threshold influence model, a user will buy the prod-

uct either by his own will, or when at leastm of his friends (or
neighbors) have purchased the product. To illustrate, consider a de-
terministic example on a finite tree in Figure 2. As before, let the
random variableφi = 1 if node i decides to purchase by its own
will and φi = 0 otherwise. In this deterministic example, the value
of φi is shown and labeled in the figure. Suppose we set the thresh-
old m = 2, then nodev1 will buy the product under the influence
of nodev4 andv5. Also, the root noder will buy the product under
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Figure 2: Deterministic example form−threshold model,m = 2.

the influence of nodev1 andv2. In general, to compute the state
of the root node under them−threshold influence model, we can
apply the same bottom-up updating algorithm as before.

As before, letX indicate whether the root noder finally buys the
product, cld(a) be the set of children of nodea, Yi indicate whether
a non-root nodei will buy the product only due to the influence of
the advertisement and its descendants, andYi ∼ Y for all i 6= r.
By the definition of them-threshold influence model, a node does
not purchase the product if and only if it does not purchase byits
own will and the total number of its neighbors that have bought the
product is less thanm. Therefore we have the following relation-
ships:

1 − Yi = (1 − φi) ·1[
X

j∈cld(i)

Yj < m], (11)

1 − X = (1 − φr) · 1[
X

j∈cld(r)

Yj < m]. (12)

Here the Bernoulli random variable1[
P

j∈cld(i)
Yj < m] in-

dicates whether less thanm friends of nodei have contributed in-
fluence toi. Local mean field method can also be applied to Eq.
(11)-(12) so as to compute the state distribution of the randomly
chosen root node. Taking expectation on both sides of Eq. (11)-
(12), we have:

1 − E[Yi] = (1 − µ)Prob[
X

j∈cld(i)

Yj < m],

1 − E[X] = (1 − µ)Prob[
X

j∈cld(r)

Yj < m].

To derive the probability term on the right side of the above equa-
tions, we can condition on the number of children nodes:

Prob[
X

j∈cld(i)

Yj <m] =
∞
X

k=0

P1(k+1)

min{m−1,k}
X

j=0

Cj
kE[Y ]j(1 − E[Y ])k−j ,

Prob[
X

j∈cld(r)

Yj <m] =

∞
X

k=1

P0(k)

min{m−1,k}
X

j=0

Cj
kE[Y ]j(1 − E[Y ])k−j .

So the finalrecursive distributional equation(RDE) for them−threshold
mechanism is:

1−E[Y ]=(1−µ)

∞
X

k=0

min{m−1,k}
X

j=0

P1(k+1)Cj
kE[Y ]j(1−E[Y ])k−j , (13)

1−E[X] = (1−µ)
∞
X

k=1

min{m−1,k}
X

j=0

P0(k)Cj
kE[Y ]j(1−E[Y ])k−j . (14)

In other words,E[X] is the fraction of users in the social network
that will eventually purchase the product. Again, the aboveequa-
tions can be easily solved using standard numeric methods.

2.4 Majority Rule Influence Model
In the majority rule influence model, a user will buy the prod-

uct either by his own will, or if overη fraction of his friends have
bought the product. Figure 3 shows a deterministic example of a
finite tree under the majority rule model. As before,φi indicates
whether nodei decides to purchase by its own will. In this deter-
ministic example, the values ofφi are all known and labeled in the
figure. If we define the majority as 50%, according to the initial
condition,v1 will be influenced to purchase the product since half
of his friends,v4 andv5, have bought the product. Also, the root
node will be influenced to purchase the product as half of its friends
(e.g.,v1) have purchased the product.��� ���� �� �� ��� �� � �
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Figure 3: Deterministic example for majority rule model.

According to the definition of the majority rule influence model,
a node will not buy the product if and only if it does not purchase
by its own will, and the fraction of its neighbors that have bought
the product is less than the fractionη. Using the same notation as
before, the following equations hold for the majority rule influence
model:

1 − Yi = (1 − φi) ·1[
X

j∈cld(i)

Yj < η deg(i)], (15)

1 − X = (1 − φr) ·1[
X

j∈cld(r)

Yj < η deg(r)]. (16)

Here the Bernoulli random variable1[
P

j∈cld(i)
Yj < η deg(i)]

indicates whether the fraction ofi’s friends that have purchased the
product is less than the majority lineη. In the example of Figure
3, if we raise the majority valueη from 50% to 60%, thenv1 and
r will not be influenced anymore. To solveX, we take expectation
on both sides of Eq. (15)-(16):

1 − E[Yi] = (1 − µ)Prob[
X

j∈cld(i)

Yj < η deg(i)],

1 − E[X] = (1 − µ)Prob[
X

j∈cld(r)

Yj < η deg(r)].

To derive the probability term on the right side, we condition on the
number of children:

Prob[
X

j∈cld(i)

Yj <η deg(i)]=

∞
X

k=0

P1(k+1)

⌈η(k+1)⌉−1
X

j=0

Cj
kE[Y ]j(1−E[Y ])k−j ,



Prob[
X

j∈cld(r)

Yj <η deg(r)]=
∞
X

k=1

P0(k)

⌈ηk⌉−1
X

j=0

Cj
kE[Y ]j(1 − E[Y ])k−j .

The finalrecursive distributional equation(RDE) for the major-
ity rule influence model is:

1−E[Y ] =(1−µ)
∞
X

k=0

⌈η(k+1)⌉−1
X

j=0

P1(k+1)Cj
kE[Y ]j(1−E[Y ])k−j , (17)

1−E[X] = (1−µ)
∞
X

k=1

⌈ηk⌉−1
X

j=0

P0(k)Cj
kE[Y ]j(1−E[Y ])k−j . (18)

Again, E[X] is the fraction of users that will eventually purchase
the product.

3. SCALE-FREE GRAPH WITH HIGH CLUS-
TERING COEFFICIENT

In social networks, two common friends of an user are usually
friends of each other. This implies that graphs of social network
usually exhibit highclustering coefficient. In this paper, we use the
definition which was first proposed by Watts and Strogatz in [12]
to characterize the clustering coefficientc.

Definition 1. c = 1
|V |

P

v∈V
tv

kv(kv−1)/2
.

wherekv is the degree of nodev, andtv is the number of edges in
the neighborhood of nodev.

Obviously, the scale-free graph with high clustering coefficient
cannot be modeled as a tree. But we can still employ the LMF
model to analyze the influence spreading in the graph. The only
thing we need to do is to modify the degree distribution of thede-
scendant nodes in Eq. (3). In essence, for scale-free graphswith
high clustering coefficient, the degree distribution of thedescen-
dant nodes does not follow shifted power law any more, and we
can compute it as following. Consider a descendant nodeb whose
parent is nodea, we have:

P (deg(b) = k|cld(a) = m)

=
m−1
X

j=0

p(b
j
∼ a) · p(deg(b) = k|cld(a) = m, b

j
∼ a)

=
m−1
X

j=0

 

m − 1

j

!

cj(1 − c)(m−1−j) ·
p0(k)

`

k
j+1

´

P∞
k=1 p0(k)

`

k
j+1

´

=

m−1
X

j=0

 

m−1

j

!

cj(1−c)(m−1−j)·
k(k−1)...(k−j)k−γ

P∞
k=1 k(k−1)...(k−j)k−γ

whereb
j
∼ a meansb connectsj edges with the children of nodea.

Now we can derive the degree distribution of any descendant
node. The result is summarized in the following lemma.

Lemma 2. For an infinite random scale free graph with clustering
coefficientc, the probability that a descendant node has degreek
is:

P1(k) =
∞
X

m=1

(m + 1)−γ

ζ(γ)

m−1
X

j=0

 

m − 1

j

!

cj(1 − c)(m−1−j) ·

k(k − 1) · · · (k − j)k−γ

P∞
k=1 k(k − 1) · · · (k − j)k−γ

k = 1, 2, . . . (19)

Now the local mean field of scale-free graph with high cluster-
ing coefficient is completely determined. One can use the LMF
model defined in subsection 2.2, 2.3 and 2.4 to analyze the influ-
ence spreading in scale-free infinite, high clustering graph by using
equation (19) to substituteP1(k) .

4. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of the ex-

tended models presented in Section 3. The local mean field model
assumes an infinite scale-free random graph without self-loops and
duplicate edges. To evaluate its effectiveness, we first generate a
graph with sufficiently large number of nodes and high clustering
coefficient by using the GLP model presented in [4]. In our simula-
tion, we generate two types of random scale free graphs both with
clustering coefficientc of around 0.5. The first type has a mini-
mum degree of 3 and the second type has a minimum degree of 5.
We apply influence models on both of these two graphs. Sinceρ,
the probability of randomly chosen node will receive the free sam-
ple from a company, is usually small, therefore, in our study, we
assume thatµ is chosen from 0 to 0.1.

4.1 q-Influence Model
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Figure 4: Impact of theq−influence model

Recall that in theq-influence model, a user that has bought the
product will influence its neighbors with probabilityq. Figure 4
shows the simulation as well as theoretical results by the recursive
distributional equation (RDE) Eq. (9)-(10). The horizontal axis µ
(see Eq. (4)) is the initial fraction of users that purchase the prod-
uct, and the vertical axisE[X] is the final fraction of users that will
eventually buy the product. In each figure, there are three simula-
tion curves and three theoretical curves corresponding to different
q values from 0.1 to 0.5. First of all, we can see that the theoretic
results fit well with the simulation results. We also observethat
E[X] is much higher in Figure 4b because the underlying graph
has a higher average degree. This indicates that high degreenet-
works, which are more connected, are easier for the influenceto
diffuse. Moreover, we can see that even an infinitesimal advertise-
ment (µ = 0.01) can still lead to highE[X].

4.2 m-threshold Influence Model
In them-threshold influence model, a user will be influenced by

his neighbors if at leastm of them have bought the product. Figure
5 shows the simulation as well as theoretical results by the recur-
sive distributional equation (RDE) Eq. (13)-(14). The horizontal
axisµ (or from Eq. (4)) is the initial fraction of users that purchase
the product, and the vertical axisE[X] is the final fraction of users
that will eventually buy the product. In each figure, there are three
simulation curves and three theoretical curves corresponding to dif-
ferentm values from 3 to 7. We can see that the theoretic results fit



well with the simulation results. For fixedm, the curve is higher in
Figure 5b where the power law graph has a higher average degree.
Similar with theq influence model, we also observe that smallµ
can lead to highE[X]. Lastly, to compare them-threshold and the
q-influence models in the power law graph with minimum degree
five, m = 7 curve is closest to theq = 0.1 curve.
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Figure 5: Impact of them−threshold influence model

4.3 Majority Rule Influence Model
In the majority rule influence model, a user will be influenced

by its neighbors if overη fraction of them have bought the prod-
uct. Figure 6 shows the simulation as well as theoretical results
by the recursive distributional equation (RDE) Eq. (17)-(18). The
horizontal axisµ (or from Eq. (4)) is the initial fraction of users
that purchase the product, and the vertical axisE[X] is the final
fraction of users that will eventually buy the product. In each fig-
ure, there are three simulation curves and three theoretical curves
corresponding to majority factorη of 30%, 50%, 90%. We can see
that the theoretic results fit well with the simulation results. In both
graphs, whenη = 0.9, E[X] almost equalsµ, which means that
the mutual influence among users is very weak. Again, we observe
low µ can lead to highE[X] whenη = 0.3.
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Figure 6: Impact of the majority rule influence model

In summary, the recursive distributional equation (RDE) frame-
work is a good approximation to analyze influence spreading in so-
cial networks. In general, high degree networks are more sensitive
to the parameter change of the underlying influence mechanisms.

5. RELATED WORK
Several papers are related to the problem we discuss here. Much

work focuses on the epidemic spreading [6,10] via the Susceptible-
Infective-Susceptible (SIS) or the Susceptible-Infective-Removed
(SIR) model. The underlying graph models are mostly infinite
scale-free graphs [3,5] or Erdös-Rényi graph. Results on the speed
the epidemic spreads and dies out are obtained. In this work,we

consider more general influence models and focus on the final frac-
tion of users that are influenced. Some researchers discuss spe-
cific influence models via algorithmic perspective and design ap-
proximation algorithms [9], heuristic algorithms [11] forrestricted
graphs, or prove NP-hardness results of choosing the most influen-
tial nodes [7] in social networks. There are a body of literatures on
topology generation; see, e.g. [4]. Lastly, in the motivating work
of [8], the authors provide local mean field analysis on infinite ran-
dom graphs and applied this theory for security investment games.

6. CONCLUSION
We propose a general analytical framework to model various in-

fluence mechanisms on large scale random networks. We first dis-
cuss the probabilistic model (q-influence model), then we present
the deterministic threshold models such as them−threshold influ-
ence model and the majority rule influence model. Based on these
influence models, we compute the expected fraction of users who
will eventually purchase the product by applying the local mean
field analysis. This fraction is very important for product adver-
tisement because it reveals the maximum number of users who will
buy the product or the maximum profit that the company can ob-
tain. It also gives us the insights on how to control or cascade the
effect of word-of-mouth so as to maximize the revenue of the com-
pany. We validate our theoretic analysis by carrying out extensive
simulations on random scale free graphs with power law degree
distribution and high clustering coefficient. We show that our mod-
els are very accurate when compare with simulations. We observe
that even with a small initial investment of free samples (e.g., small
value ofρ), one can still include large number of users to purchase
the product. Lastly, our framework provides an important building
block to design and analyze different product advertisement strate-
gies in social networks.
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