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Abstract
Most Autonomous Systems in the Internet need to se-
lect one or more transit providers. The provider selec-
tion process is complex, influenced by dynamic pricing,
contracts, performance, marketing and other factors. We
propose a simple dynamic model that captures the salient
features of the provider selection process. The model
creates a positive feedback effect, where “the bigger a
provider is the bigger it gets”. We then study the result-
ing internetwork formation process, showing that it al-
ways leads to a stable, but not unique, internetwork. We
also use computational experiments to understand how
the convergence delay scales with the size of the network,
the factor(s) that affect the number of distinct equilibria,
and the impact of three key model parameters.

1 Introduction
The Internet consists of thousands of autonomous but in-
terconnected networks of different types and business ob-
jectives. In the Internet ecosystem, traffic flow is coupled
with financial exchanges. Additionally, routing, provider
selection and peering policies are often dictated by eco-
nomic and strategic objectives. Most of the interactions
between Autonomous Systems (ASes), or just networks,
are local in nature, without coordinated control or regu-
lation. They often have global impact, however, affecting
the performance and reliability experienced by users, the
financial viability of network and service providers, and
to some degree the global economy.
In this paper, we study AS internetwork formation by fo-
cusing on transit relations between networks, also known
as customer-provider relations. In a transit relation, one
network (the provider) provides global Internet connec-
tivity to another network (the customer) for a transit fee.
If the provider cannot reach every other network directly,
it has to become the customer of another provider (or to
establish peering links with all other top-level, or Tier-1,
providers).
We propose a simple, yet realistic, provider selection
model in which each network selects a provider based on
geographic and hierarchical constraints, aiming to mini-
mize its transit costs. The model includes a positive feed-
back component, creating a “rich get richer” effect for
transit providers. We study the dynamics of this provider
selection model and show that it always converges to a
stable internetwork. That equilibrium may not be unique,
however. We also study computationally the convergence
delay, the number of distinct equilibria, the topologi-
cal differences between equilibria, the impact of pricing
and of geographic constraints (i.e., locations of each net-
work), x. Finally, we attempt to predict the network that

∗ This material is based upon work supported by the National
Science Foundation under Grant No. 1017139 and by a research award
from Cisco Systems.

will become the wealthiest transit provider before the in-
ternetwork converges to an equilibrium.
Our objective is not to produce an interdomain topology
generator, but to study the dynamics of the internetwork
formation process, the existence of equilibria in that pro-
cess, and the economic and topological characteristics of
such equilibria. Our model should be viewed as a first
step towards more sophisticated models (that will include
peering links, multihoming, geographical expansion, etc)
through which we aim to understand the microdynam-
ics of the AS internetwork formation process and evolu-
tion, quantify the impact of individual parameters, and
ask what-if questions.
In the rest of this section we review the most relevant
related work. Section II describes the model. Section III
presents the stability result (the proof is in the Appendix).
Section IV summarizes our computational results. We
conclude in Section V.
Related work:
Fabrikant et al. [10] present an internetwork growth
model based on the Heuristically Optimized Trade-offs
(HOT) framework. Chang et al. [6] build upon the HOT
model by incorporating a vector of economic factors in
their provider selection scheme. Wang and Loguinov
[15] propose that the number of links established by a
network is directly proportional to its wealth. Holme et
al. [12] consider traffic, economic and geographic con-
straints. Nodes accumulate an income that is propor-
tional to the traffic they carry, while costs are associated
with spatial expansion and capacity increases. Corbo et
al. propose a model with link revisions or “rewiring” [8].
In the previous works, the focus has been on network
growth and on the topological features, such as power-
law degree distributions or strong clustering that have
been observed in the actual AS-level topology [7, 16, 17].
Our work is more relevant to earlier network formation
models, mostly in the theoretical computer science and
economics literature [2, 3, 4, 13]. Those models, how-
ever, do not aim to capture the specifics of Internet transit
relations, and so they differ significantly with our model
in terms of the provider selection process.

2 Model description
We consider a populationN of N Autonomous Systems,
or just “networks”. Each network is present in a given
set of locations. An internetwork traffic matrix gives the
average traffic volume sent from each network to every
other network. The model only captures the intercon-
nections between distinct networks - it does not capture
the “intradomain” connectivity or traffic flow within the
same network. We do not associate a certain business
type with any network; they may act as transit providers,
content providers, access providers, enterprise networks
or any combination of these functions, depending on their
generated/consumed traffic, transit pricing, or geographi-



cal presence. The geographic locations and price of each
network as well as the traffic matrix remain constant dur-
ing the timescales of interest in this model, i.e., we do
not model growth or other long-term changes in the in-
ternetwork characteristics. Instead, we focus on the dy-
namics of the provider selection process: how does the
internetwork change with time as each network attempts
to select the best provider, even if nothing else changes?
Obviously, this is just a starting point: more complex dy-
namics (involving traffic matrix variations, peering links,
dynamic pricing or geographical expansion, for instance)
would take place in larger timescales.
2.1 Locations and geographical presence
Each network is placed in one or more locations. We
may think of a “location” as a distinct Internet Exchange
Point, for instance. The “world” consists of GM loca-
tions. Network x is located at a given set G(x) of lo-
cations. G(x) is an input to this model. Two networks
overlap if they share at least one location. For network
x, let S(x) be the set of networks that overlap with x.
2.2 Traffic matrix and transit traffic
Let Txy be the traffic volume (over a given timescale)
generated by node x and consumed by node y. The N-
by-N matrix T is referred to as the interdomain Traffic
Matrix (TM). If we aggregate across all consumers and
producers of traffic from/to x, respectively, we have that
x generates traffic VG(x) and consumes VC(x). Note
that Txx=0 - we do not capture the local traffic within
a network. The transit traffic VT (x) of x is the traffic
volume that is neither generated nor consumed by x - it
only passes through x enroute towards its destination.
If VO(x) represents the total outbound traffic at x, then
the transit traffic of x can be expressed as

VT (x) = VO(x)− VG(x) (1)

Note that the transit traffic of a network depends on the
underlying internetwork topology as well as on the rout-
ing algorithm. Even if the TM is constant, the transit
traffic of a network may change as networks choose dif-
ferent providers.
2.3 Transit fee and price
A network y charges a transit fee to each network x that
connects to y as customer. In that case we say that y is
the transit provider of x, or that x is a transit customer of
y. For simplicity, we assume that each network can have
at most one provider, i.e., singlehoming. Even though
multihoming is very common in practice, often only one
provider is actively used while the other providers act as
backups. The transit fee depends on the traffic volume
VP (x) that x sends to and receives from its provider y.
The precise formula for computing transit fees does not
matter in our context, and so for simplicity we use a lin-
ear relation: if P (y) is the transit price of y, the transit
fee that x should pay to its provider y is P (y) × VP (x).
The transit prices are exogenous factors to this model and
they are given as inputs.
2.4 Provider selection
Informally, a network x selects a provider y if: a) x over-
laps with y, b) y is “larger” than x for an appropriate met-

ric of network size, and c) x is the least expensive among
all networks that satisfy the previous two constraints. The
first constraint relates to geographical presence which oc-
curs in practice: a network in one country would not se-
lect a provider located on a different continent. The third
objective is also obvious: choose the cheapest provider,
in terms of their transit price, among eligible networks
that satisfy the two other constraints. The second con-
straint is unusual and it requires some explanation.
In practice, a large network such as AT&T or Level3
would not select as transit provider a small regional net-
work. How can we define formally however that a net-
work x is larger than a network y? Several metrics could
be proposed: number of locations, number of customers,
size of customer tree, total traffic, transit traffic, and oth-
ers. Based on extensive discussions with network op-
erators we came to the conclusion that the transit traf-
fic VT (x) is the most realistic indicator for the size of a
transit provider. We do not claim that in practice an AS
would reveal its transit volume to its potential customers.
Instead, we claim that the previous constraint on the rela-
tion between the customer-provider transit volumes acts
as a simple but realistic proxy for what often happens in
practice. In Appendix B, we show experimental evidence
for this assumption, based on traffic data from PeeringDB
and customer-provider relations that have been inferred
from BGP data. Additionally, transit volume is probably
positively correlated with most other plausible metrics.
For instance, if x is present in many locations it would
also have the ability to attract more customers, which
would then increase its customer tree size as well as its
transit traffic. On the other hand, the generated or con-
sumed traffic of a network does not relate necessarily to
that network’s transit capabilities; for instance, content
providers (e.g., Facebook or Akamai) generate large vol-
umes of traffic but they do not operate a backbone net-
work.
Formally, the provider of network x is denoted by R(x)
and it is computed as

R(x) = arg min
y∈S(x)

{P (y) : VT (y) > VT (x)} (2)

Ties between networks with the same price are broken
deterministically, based on unique network identifier.
Note that it is possible that R(x) = ∅. This can hap-
pen when x cannot find a network in its set of loca-
tions that has larger transit volume than itself. In that
case, x is referred to as a Tier-1 network and it does not
have a provider. To ensure that the internetwork remains
connected however, a Tier-1 network is connected us-
ing peering links (as opposed to customer-provider links)
with every other Tier-1 network. This is also true for the
Internet: Tier-1 networks are interconnected in a clique
using peering links to ensure global connectivity. Note
that these peering links are formed even between net-
works that do not overlap in a region.

2.5 Routing
Given that each network can have at most one provider,
and Tier-1 networks are interconnected in a clique, there
is a unique shortest path between any two networks.



2.6 Network formation process
The network formation process proceeds in discrete time
units called rounds. We start in round t0 with an arbitrary
initial topology (described later). We route the traffic
between every pair of networks, and compute the tran-
sit volume of each network. Then, all networks select
a provider based on (2) in a synchronous manner. Any
resulting Tier-1 networks are interconnected in a clique
using peering links. This completes the first round.
The previous steps are repeated in each successive round.
If at some point we reach a round in which the resulting
internetwork topology is identical to that of the previous
round, each network has selected the same provider as
in the previous round (or it remained a Tier-1 network).
From that point on the internetwork will not change, in
terms of topology, provider selection or traffic flow, and
we say that it has converged to an equilibrium. Whether
an equilibrium always exists is the subject of the next
section.

Algorithm 1 Network formation process
1. Route each traffic flow along its shortest path.
2. For each network x ∈ N , compute transit volume

VT (x).
3. For each network x ∈ N , perform provider selec-

tion based on Equation 2.
4. Interconnect all networks that have no provider

(Tier-1 networks) with a clique of peering links.
5. If the internetwork topology has not changed rela-

tive to the previous round, stop. Else, proceed to the
next round and jump to Step-1.

2.7 External inputs and initial topology
The following parameters are exogenous to this model
and they are provided as inputs initially: the set of lo-
cations for each network G, the price vector P , and the
TM.
The initial topology is constructed as follows. We first
select a random number of networks to be Tier-1 nodes
and interconnect them with peering links in a clique.
We order the rest of the networks randomly and exam-
ine each network sequentially. For network x, we assign
a provider randomly among the set of networks that a)
overlap with x, and b) are not in the customer tree of x.
At the end of the process, if a network does not have a
provider it joins the clique of Tier-1 networks.

3 Convergence to equilibria
In Appendix A, we prove the following result for the pre-
vious network formation model.
Theorem-1: Given a set of networks N , a set of loca-
tions G(x) and a transit price P (x) for each network
x ∈ N , and an internetwork traffic matrix TM , the
provider selection process given by (2) converges to an
equilibrium in a finite number of rounds.
This result implies that the provider selection process
performed independently by each network cannot go on
forever, trapped in an phase space limit cycle. Sooner or
later, it will converge to a stable point in which no net-

work has the incentive to change its provider unilaterally,
i.e., to a Nash equilibrium. On the other hand, it is easy
to show with a simple example of 3-4 networks that we
can get different equilibria depending on the initial inter-
network topology. Assuming that all other parameters of
the model are constant (locations, prices and TM), it is
the randomness of the initial topology that can result in
different internetworks at the end.
Why is existence of equilibria important in our context?
It is well-known that the Internet is in a persistent state
of flux. We should notice however that the observed
“rewiring” of the Internet topology is accompanied by
changes in several factors, such as prices or network geo-
graphical presence. If those exogenous factors were con-
stant over a sufficiently long time period, it is reasonable
to expect that each network would converge to the best
possible provider selection, according to its objective and
constraints, instead of switching between providers in-
finitely. Thus, the model can also be used to study the
evolution of an internetwork, computing a new equilib-
rium every time an exogenous factor changes, as long as
the convergence delay is less than the time between suc-
cessive changes in those factors. It is for this reason that
we also study, in the next section, the convergence de-
lay of this provider selection model. If the convergence
delay is sufficiently short, we can assume that the exoge-
nous parameters of the model (set of existing networks,
prices, geographic locations, TM, etc) remain constant
while the internetwork moves from one equilibrium to
another.

4 Computational results
In this section we investigate several questions about the
model: How large is the convergence delay in practice,
and how does it scale with the number of networks?
What determines the number of distinct equilibria that we
can get from different initial topologies and similar ques-
tions.It is unlikely that these questions can be answered
analytically. Further, we are not interested in worst-case
bounds but in the more pragmatic average-case behav-
ior (with appropriate confidence intervals). It is for this
reason that we prefer to rely on computational than ana-
lytical tools in the following.
First, we describe how we compute the model param-
eters. Unless if noted otherwise, we simulate N=500
networks in a world of GM=25 locations. The number
of locations that a network is present at follows a Zipf
distribution with exponent 0.8. Even though we do not
have data to support the selection of this Zipf distribu-
tion, it appears plausible qualitatively that most networks
are present in only 1-3 locations, but few networks are
present in almost all locations. We refer to |G(x)| as the
expanse of network x. Unless if noted otherwise, the as-
signment of a network to |G(x)| locations (i.e., the selec-
tion of the elements of G(x)) is done randomly without
replacement. In some experiments, however, we control
the maximum number of networks in a location - this is
done as follows. The density of a location is the num-
ber of networks in that location normalized by N . The
Maximum Density parameter DM is the maximum den-
sity across all locations. To enforce this parameter, we
first place DM ∗ N randomly selected distinct networks



in a random location. Then, we place each network ran-
domly in the remaining GM − 1 locations, based on its
expanse, so that no location has more than DM ∗N net-
works.
The traffic matrix is computed as follows. The traffic
VG(x) that a network x generates also follows a Zipf
distribution with exponent 0.8 (see Appendix C). This
is consistent with the fact that some networks in the In-
ternet are much larger content producers (e.g., Google,
YouTube) than most others. We assume that the traffic
flow Txy that network x sends to network y is propor-
tional to the number of locations of y, i.e.,

Txy = VG(x) ∗ |G(y)|
N∑
i=1

|G(i)|

(3)

The rationale is that a network with large geographic
scope would have more access customers (e.g., DSL or
cable users), and it is those users that consume most In-
ternet content. Finally, the consumed traffic VC(x) from
a network x is simply

VC(x) =

N∑
i=1,i6=x

Tix (4)

Note that G(x) and VG(x) are independent, while VC(x)
is related to |G(x)| and thus traffic consumption is also
long-tailed (few networks are much larger consumers).
Regarding transit prices, unless noted otherwise, P (x) is
random (the absolute value of the prices does not matter).
Convergence Delay: Convergence delay is the number
of rounds it takes for the internetwork to reach equilib-
rium. The proof of Theorem-1 gives the impression that
convergence would take a large number of rounds. In
practice, however, we observe that the convergence pro-
cess takes only few rounds, always less than 5 rounds
for up to 1000 networks. Figure 1 shows the mean con-
vergence delay as function of N (with 95th confidence
intervals for 100 runs with different initial topologies).
Note both the low delay as well as the small variability
across different runs.
Why does convergence occur so rapidly, despite the
fact that networks act without coordination? Figure 2
shows the mean number of networks that have customers
(i.e., providers) and the mean highest price among those
providers, during convergence. As each node selects
the cheapest eligible provider, the number of providers
drops significantly in the first couple of rounds. Most
networks become “stubs” (i.e., they have no customers),
and as shown in the Appendix, a stub does not change
its provider selection. The few remaining providers ac-
cumulate large transit volumes, and so they attract even
more customers - some of them previous providers that
now become stubs. This effect further decreases the num-
ber of providers, enhancing stability in the internetwork.
After investigating systematically all model parameters
we found that the geographic overlap between networks,
i.e., their placement in locations, has a clear effect on
the convergence delay. Figure 3 shows how the conver-
gence delay varies with the maximum density factor DM .

Fig. 1: Mean convergence delay (95% C.I.) versus number of
networks N .

Fig. 2: Number of providers and the highest price among
providers during convergence.

Fig. 3: Mean convergence delay (95% C.I.) versus maximum
density.

Although the delay remains below 4 rounds, there is a
roughly linear decreasing trend as DM increases. An in-
crease in DM causes more networks to overlap, which
results in a reduction in the number of providers because
more networks can find a cheaper provider in their lo-
cation(s). The lower the number of providers in the in-
ternetwork, the lower the flux in the provider selection
process (because more networks become stubs and stubs
do not change their provider selection).

Heterogeneity across distinct equilibria: We say that
two equilibria are different if there is any topological dif-
ference in the corresponding internetworks. We already
saw that different initial topologies can result in differ-
ent equilibria. How common is that however? And how



Fig. 4: Number of distinct equilibria (in 100 runs) versus max-
imum density.

topologically different are the distinct equilibria?
Figure 4 shows the number of distinct equilibria, after
100 runs with different initial topology, as function of
DM . The maximum for any value of DM is the total
number of runs (100). Notice two trends: an increase as
DM increases up to about 0.25, and then a slow decrease
as DM approaches 1. For the extreme value DM=1,
the number of equilibria drops suddenly to 5 equilibria.
For very low values of DM , the number of networks in
each location is quite low. This decreases the number
of provider choices that a small-expanse network would
have (and the majority of networks have small expanse).
This creates oligopoly in most locations, decreasing the
number of distinct topologies that can result from differ-
ent initial conditions.
For very large values of DM (close to one), almost all
networks are present in a certain location. This means
that the cheapest provider is available to (almost) every-
one, which creates an effective monopoly. This decreases
the number of distinct equilibria as it is that cheapest
provider that attracts almost all customers. For interme-
diate values of DM there are several locations with mul-
tiple providers, increasing the sensitivity of the conver-
gence process to the initial conditions.
Historically, the Internet started with low values of DM

(typically a national telecom provider in each country)
and it has been moving towards larger values of DM

through the geographic expansion of international tran-
sit providers and the establishment of large Internet Ex-
change Points in few cities (Miami, London, Hong Kong
etc) where 1000s of networks are present. If this trend
continues, we may see in the future the appearance of
effective monopolies in many parts of the world.

We now explore how topologically different these dis-
tinct equilibria are. We carry out two types of experi-
ments. First, we use the same population of networks
(with identical G, P and T ) but with 100 different ini-
tial topologies. Second, we create 100 different popula-
tion of networks (varying the parameters G, P and T ).
Figure 5 shows the results for four topological character-
istics of the resulting internetwork: number of trees (or
number of Tier-1 networks), maximum depth of any tree,
average path length between any pair of networks, and
number of providers at equilibrium. It is interesting that
there is very little variability in all metrics in both types
of experiments. In other words, even though we can get

Fig. 5: Four topological characteristics (mean values with 95%
C.I.) across distinct equilibria.

Fig. 6: Topological characteristics and convergence delay
(mean values with 95%C.I.) for three exponent values in the
expanse distribution.

different equilibria, and we cannot predict who will be
the provider of each network, certain macroscopic topo-
logical characteristics of the resulting internetworks are
practically identical in all equilibria and thus they are pre-
dictable.

Impact of heterogeneity in expanse distribution:
What is the role of the heterogeneity in the number of
locations that networks are placed at? We vary the ex-
ponent of the corresponding Zipf distribution: a larger
exponent increases the skewness of the expanse distri-
bution. Figure 6 shows the results for three exponents.
With a more skewed distribution, the number of networks
with large geographic expanse is reduced. This increases
the likelihood that networks with mid-sized expanse are
chosen as providers. Thus, the number of providers in-
creases, and the same happens with the maximum depth
and the average path length.

Impact of internetwork traffic matrix: We investi-
gated the role of the traffic matrix by varying the expo-
nent in the Zipf distribution for the generated traffic VG.
Perhaps surprisingly, that parameter has minimal effect
in the four topological characteristics we focus on here.
The corresponding graph is not shown due to space con-
straints.

Impact of price-expanse correlation: It used to be
the case that that global transit providers were more ex-
pensive than regional providers. Even though this may
still be true in certain parts of the world, transit prices
have dropped dramatically in the last few years in North



Fig. 7: Topological characteristics and convergence delay
(mean values with 95% C.I.) for two transit pricing schemes.

America and Europe, and the price variation across dif-
ferent providers (at those regions) is also quickly dimin-
ishing.
What if the transit price vector P was positively corre-
lated with the expanse vector |G|? Would the topological
characteristics of the resulting internetwork be different
compared to a random assignment of prices? Figure 7
shows that the correlated price assignment scheme results
in a significantly larger number of providers, as well as
in an increase in the number of Tier-1 networks, max-
imum depth, average path length, and convergence de-
lay. The reason is not hard to see: in the correlated pric-
ing scheme large-expanse networks are more expensive
and so stubs would select cheaper networks as providers.
Those lower-expanse providers however cannot reach ev-
ery other location and so they need to connect to larger-
expanse providers. This results in more providers and
a deeper provider hierarchy. The recent trend towards
smaller price differences across providers implies that the
Internet is moving towards a lower number of providers
and potentially a shallower hierarchy.

Characteristics of wealthiest network in equilibrium:
Who is the wealthiest network, in terms of transit rev-
enues, in the resulting internetwork? Can we predict who
that transit provider will be before the convergence pro-
cess takes place?
The wealth of a network x can be defined as the total
transit revenue from all customers of x minus the transit
expense of x (paid to its provider R(x))

W (x) =
∑

y∈N :R(y)=x

P (x)VP (y)− P (R(x))VP (x)

(5)
Recall that VP (i) is the traffic volume that a network i
sends to and receives from its provider.
We measured the percentage of 100 runs in which the
wealthiest network (at equilibrium) had certain charac-
teristics. We distinguish between characteristics that we
can observe before the convergence process (a priori
characteristics, such as expanse or price) and character-
istics that we can only measure at the equilibrium (a pos-
teriori) characteristics, such as whether that network is
Tier-1). Figures 8 and 9 show all these characteristics.
Note that in 100% of the runs, the wealthiest network x̂
is the provider that managed to attract as customer the
network with the largest generated traffic volume (the
largest “content provider”). With the largest content

Fig. 8: A priori characteristics of wealthiest network.

Fig. 9: A posteriori characteristics of wealthiest network.

provider as customer, and because VG follows a skewed
Zipf distribution, x̂ has enough transit traffic to force
other providers to become its customers. It is important
to note that x̂ is often not the cheapest provider, nor the
network with the largest number of customers, and cer-
tainly not the network with the largest expanse. On the
other hand, it always ends up being a Tier-1 network and
it has the largest transit volume at the end.
This result has a significant practical implication: an
ambitious transit provider should try to first increase its
transit volume by attracting as customers (perhaps using
special discounts and favorable contracts) the few major
content providers. The transit provider does not need to
have the lowest price or the largest expanse (even though
its competitive advantage would improve by lowering its
price or increasing its expanse).

5 Conclusions and future work
We proposed a simple model that captures the essence
of provider selection in the Internet. The model captures
the fact that most networks today select a provider based
on price, rather than performance or other criteria. Ad-
ditionally, the model captures two important and realistic
constraints: a) colocation between a provider and its cus-
tomers, and b) a provider should be larger, in terms of
transit volume, than any of its customers. This second
constraint adds positive feedback in the dynamics of the
model. We proved that this provider selection process
converges to a stable equilibrium and we investigated the
characteristics of the resulting internetworks. In ongo-
ing work, we are extending this model with multihoming
and peering. Further, we are investigating the dynam-
ics of network formation when networks can adjust their
transit price and expand to new locations.
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A Proof of Theorem-1
The proof consists of two parts. First, we prove that after
a finite number of rounds the population of networks N
is partitioned in a set of stubs, each of them making a
stable provider selection, and a set of providers. Second,
we prove that after the convergence of stubs, providers

also converge to a stable provider selection in a certain
sequence within a finite number of rounds.
It is useful to split the transit volume VT (x) (at a given
round) of a network to two parts: the transit volume
V s
T (x) contributed by customers of x that are stubs, and

the transit volume V p
T (x) contributed by customers of x

that are providers. Obviously VT (x) = V s
T (x) + V p

T (x).
To treat Tier-1 networks as any other network, we define
that each Tier-1 network has a (virtual) provider Φ that
does not belong in N . No other network can select Φ as
its provider. So, if x is a Tier-1 network, the statement “x
does not change provider” is equivalent to “x remains a
Tier-1 network”. This convention simplifies the presenta-
tion of the proof also because we do not need to consider
the peering links between Tier-1 networks; all links are
of the customer-provider type.
A.1 Convergence of stub population
By definition, a stub has no customers and so its transit
volume is zero. So, based on (2), a stub cannot attract any
customers. Once a network becomes a stub it will remain
a stub. Thus, if x is a stub at some round tk, VT (x) = 0
at any round tm with m ≥ k.
If a network x is a stub at round tk (tk may be the ini-
tial round), it selects at tk as provider the (unique) least-
expensive network y that overlaps with x and that has
VT (y) > 0 at tk. This provider selection, R(x) = y, will
not change after round tk, because VT (x) remains zero
and there is no other provider than y that overlaps with x
and has a lower price. Thus, the provider selection of a
stub converges when a network first becomes a stub.
Further, because N is finite and given that a stub cannot
become a provider, after a finite number of rounds the
set of stubs converges to a set S, while the rest of the
networks N − S remain providers.
Corollary-1: After the set of stubs has converged to S,
the vector V s

T remains constant.
A.2 Convergence of provider population
Suppose that the set of stubs converges to S at some
round tk, and that the set of providers after that point
consists of p networks. In the rest of the proof we only
consider events after tk. We order the p providers based
on their transit volume in a sequence O:

O = {Oi ∈ N : VT (Oi) > 0, VT (O1) > .....VT (Op)}
(6)

Ties are broken deterministically based on a unique node
identifier. So, O1 represents the provider with the highest
transit volume at any given round, and Op is the provider
with the lowest transit volume at any given round (if
we need to clarify that we refer to round tm we write
Oi(tm)).
Suppose that x = Oi(tm) and that x moves to another
position at round tm+1, i.e., x = Oj(tm+1) with i 6=
j. An oscillation will occur at position Oi if x returns
to that position at any round after tm+1. We next prove
that oscillations cannot occur at any position of O. If
this is true, then every provider will converge to a stable
provider selection within a finite number of rounds, given
that N (and thus p) is finite.
Base case: An oscillation cannot occur at Op

At any round after the convergence of stubs the provider



Op has the following properties:

• V e
T (Op) = 0: Since the provider Op has the mini-

mum transit volume among providers, no provider
will ever become its customer.

• Its transit volume does not change (follows from last
property and from Corollary-1).

• It does not change provider (follows from last prop-
erty, and because Op has already selected the least
expensive overlapping provider, or Φ).

Suppose now that x = Op(tm) at some round tm. x can
move to Oj 6= Op at the next round tm+1 with j < p if
one of the following is true:

1. VT (x) increases at tm+1 so that VT (Op) > VT (Oj)
with j < p. This is impossible because we showed
that VT (Op) remains constant.

2. VT (y), with y = Oj(tm) (j < p), decreases at tm+1

so that VT (y) < VT (x).
So, we only need to consider the second case. At round
tm+1 we have that

VT (y) = V s
T (y) + V e

T (y)

< VT (x)

= V s
T (x) + V e

T (x)

= V s
T (x) (7)

and thus V s
T (y) < V s

T (x). Thus, a provider at Op can
only be replaced by another provider that has lower tran-
sit volume due to stubs.
Now, for network x to return to Op and replace y at a sub-
sequent round, we must have that V s

T (x) < V s
T (y). This

is impossible however because the vector V s
T remains

constant after the convergence of stubs. Thus, no oscil-
lation can occur at Op. Within a finite number of rounds
a certain provider will converge to that position, remain-
ing the provider with the lowest transit volume from that
point on.
Inductive step: An oscillation cannot occur at Oi i < p
Suppose that the providers Oi+1, Oi+2, ...., Op have al-
ready converged at a round tl for any i with 1 ≤ i < p.
We now show that there can be no oscillation at Oi. In
the rest of the proof we only consider events after tl.
At any round after tl the provider Oi has the following
properties:

• Its transit volume does not change (any provider Oj

with j < i will not select Oi, and any provider Oj

with j > i, as well as the stubs, have already con-
verged to a provider).

• It does not change provider (follows from last prop-
erty, and because Oi has already selected the least
expensive overlapping provider, or Φ).

• Suppose that the provider Oi at a round tm is a net-
work x and let VT (x, tm) be its current transit vol-
ume. At any subsequent round, even if x becomes
Oj with j < i, the transit volume of x can only be
larger or equal than VT (x, tm) as every network in

its customer tree has converged - it can only have
more customers in the future, not less. We refer to
that transit volume as the minimum transit volume
of x, denoted by V min

T (x).

Suppose now that x = Oi(tm). x can move to Oj 6= Oi

at the next round tm+1 with j < i if one of the following
is true:

1. VT (x) increases at tm+1 so that VT (Oi) > VT (Oj)
with j < i. This is impossible because we showed
that VT (Oi) remains constant. Thus VT (x) remains
at V min

T (x).
2. VT (y), with y = Oj(tm) (j < i), decreases at tm+1

so that VT (y) < VT (x).
So, we only need to consider the second case. At round
tm+1 we have that

VT (y) = V min
T (y) < VT (x) = V min

T (x) (8)

Thus, a provider at Oi can only be replaced by another
provider that has a lower minimum transit volume.
Now, for network x to return to Oi and replace y at a sub-
sequent round, we must have that V min

T (x) < V min
T (y).

This is impossible however because the vector of mini-
mum transit volumes remains constant after tl. Thus, no
oscillation can occur at Oi. Within a finite number of
rounds a certain provider will converge to that position.
We have proved that within a finite number of rounds
both stubs and the providers have converged to a provider
selection (potentially Φ), and thus the topology of the in-
ternetwork has also converged.

B Customer-Provider traffic volume com-
parison

This section focuses on the question: is it realistic to
assume that the transit volume of a provider is larger
than the transit volume of its customers? We rely on two
sources of data to examine this question. First, traffic vol-
umes reported by few thousands of ASes at PeeringDB
[1]. Unfortunately these traffic volumes represent total
traffic volume (VT +VG+VC), not only transit traffic vol-
ume (VT ), and they are often reported as (wide) ranges
- we use the upper bound of each range. Second, we
rely on the reported customer-provider relations that have
been inferred by Dhamdhere from BGP routing tables
[9]. With this information, we identify 2500 customer-
provider pairs that have reported their traffic volumes to
PeeringDB. In 90% of these pairs, the customer’s traffic
volume is significantly less (typically less than half) of its
provider’s traffic volume. In 9.5% of these pairs, the cus-
tomer’s traffic volume is larger than the provider’s but by
less than 20%. Finally, in the remaining 0.05% the cus-
tomer traffic volume is much higher than the provider’s.
In such exceptional cases we suspect a large difference
between total traffic volume and transit traffic volume.
For instance, the China Cache Network reports its traf-
fic as 300-500Gbps while its provider TransitRail reports
100Gbps. It is likely that most of the traffic in the former
network is locally generated or consumed, not transit. We
should also note that multihoming can further decrease
the effective traffic volume of a customer relative to its
provider.



C Traffic matrix parameterization
Our computational experiments use the Zipf distribution
(with exponent 0.8) to model the traffic volume gener-
ated by each AS. With this distribution, 0.1% of the ASes
generate nearly 28% of the total traffic. This behavior is
consistent with the findings of [5] and [11] which report
that traffic produced by high-ranking ISPs and content
providers follows a Zipf distribution. Additionally, it has
been recently reported that the top-30 ASes (out of nearly
30,000, approximately 0.1%) produce 30% of the Inter-
net traffic [14].


