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Abstract-While overall performance of peer-to-peer systems 

depends strongly on the amount of resource contributions 
made by individual peers, autonomous and rational peers 
make decisions on their cooperation policies (resource 
contributions) according to their individual utilities. To deal 
with the inherent conflict among individual utilities of the 
rational peers to improve overall performance of the system, 
we propose a decision-analytic approach that determines the 
appropriate cooperation policies of the individual peers in a 
distributed manner and coordinates their rational decisions in 
compliance with the social welfare improvement. 
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I.  INTRODUCTION  
The performance of a peer-to-peer system is highly 

dependent on the amount of resource contributions from 
individual participating peers [1-4]; however, it can be 
highly variable and unpredictable as there is no central 
authority to set resource contributions of peers or coordinate 
their cooperation policies. Thus, cooperation policies of 
individual peers (characterized by the amount of their 
resource contributions) should be set and coordinated in a 
distributed manner, such that the overall performance (i.e 
social welfare) of the system improves. However, 
autonomous and rational peers make decisions on their 
cooperation policies according to their own utilities, thus it is 
essential to incentivize participating peers to eliminate the 
inherent tension between individual utility of the peers and 
overall utility of the system. 

Game theory has been used widely by previous works as 
a comprehensive analytical tool for study of incentive 
mechanisms in peer-to-peer systems. However, the 
traditional game-theoretic analysis lacks an explicit handling 
of the dynamics present in interactions among individual 
peers; e.g. it fails to represent the process by which one peer 
as a player, observes his opponent's behavior, learns from 
these observations, and makes the best move in response to 
what he has learned. Therefore, in this paper, we take an 
alternative approach based on decision-theoretic analysis 
[12] to model cooperation policy setting for participating 
peers of a peer-to-peer system. In our approach, each peer 
chooses its strategy according to observable strategies of the 
other peers. While through a swarm-based iterative learning 
process, rational peers set their cooperation policies such that 
maximize their own utility, their decisions are coordinated in 
a distributed manner to improve the social welfare of the 
system as well. 

II. SYSTEM MODEL 
Interacting participants of a peer-to-peer system that use 

simple rules to sequentially adjust their cooperation policies 

exhibit general properties of an individual based Lagrangian 
swarm model [9], as: 

• the system is composed of many individual peers 
with similar and simple functionalities;  

• the interactions among the individual peers are 
based on simple behavioral rules by exploiting only 
local information that they exchange directly or via 
the environment;  

• the overall behavior of the system results from the 
interactions of individuals with each other, that is, 
emergence;  

• the interactions of peers are realized in a distributed 
manner without a centralized coordinator, which is 
self-organization. 

Therefore, cooperation policy setting for constituent 
peers of a peer-to-peer system is modeled as a swarm-based 
decision making process where distributed peers are 
represented by individual particles in the swarm. However, 
to adopt swarm model in the context of a system of 
autonomous peers, two modifications are necessary. The 
traditional model assumes that all particles in the system 
work together cooperatively to achieve a common goal; 
meanwhile, a peer-to-peer system consists of participants 
which are strategic and rational. In other words, they wish to 
maximize their own utility and hence they choose their 
strategies to achieve this goal. Thus, we made two 
modifications to adopt this model:  

• Instead of a single common goal for all particles, 
distributed local objectives (utility functions) are 
defined for individual peers. 

• The interaction of participating peers is represented 
as a non-cooperative game – each particle wants to 
maximize its own utility.  

Representing the interactions of peers as a non-
cooperative game has been used widely in previous works 
such as [4-8]. As opposed to all of them that perform game-
theoretic analysis to study the game, we propose an 
alternative decision-analytic approach to investigate the 
behavior of interacting players (peers) regarding the 
modified swarm-based model. 

If it is assumed that N peers participate in the system, 
then the utility function of the ith peer will be defined as Ui. 
The behavior that a player adopts while interacting with 
other players is known as that player’s policy. In our setting, 
a peer’s policy is its level of cooperation and defined as di. A 
player chooses a strategy, defined as si, with respect to others 
to set its cooperation policy. Thus, the strategy of a peer 
reflects its decision on the change in its cooperation level 
(policy). A peer's utility is determined by its strategy choices 
and depends on several parameters which are discussed as 
follows. 



A. Measuring the Cost and Benefit 
A peer’s pi cooperation level, di, is defined as a numerical 

assessment of that peer’s contributed resources to the system. 
Contributed resources can be the amount of disk space in 
storage overlays or other metrics such as the amount of 
bandwidth shared by participating peers in streaming 
overlays. The definition of di is acceptable as long as its 
fluctuation can be quantified and treated as a decision 
variable (which is pi's strategy si).  

For each unit of cooperation level, the peer incurs a cost 
ci. So the total cost for participating in the system for a pi 
with cooperation level of di will be cidi (linear cost is 
commonly used in the literature [8,15-17]). On the other 
hand, cooperation of each peer potentially benefits other 
participating peers in the system. This benefit is represented 
by a matrix B, where bij denotes how much the cooperation 
of pj is worth to pi; e.g. it can be measured as the inverse of 
latency between them. For instance, if pi is not interested in 
pj’s cooperation because of the long physical distance 
between them, then bij = 0. In general, 0≥ijb , and 0: =∀ iibi . 

B. Modeling the Incentive 
Among different forms of incentives, the one which 

promotes fairness of cooperation by prioritizing peers 
according to their cooperation level (policy) has been used 
widely in previous works [3-8]. We are primarily interested 
in the effect of such an incentive form rather than 
implementing a possible mechanism; as the benefit a peer 
can draw from the system is proportional to its cooperation 
level in this form of incentive, any reasonable function that is 
a monotonically increasing function of the cooperation 
policy of a peer can be considered to model it.  
C. Defining the Utility Function 

At this point, why should we expect that such a simple 
quantitative model can give a reasonable description of 
peers' behavior? The fundamental results of decision theory 
directly address this question, by showing that any decision 
maker who is rational should always behave so as to 
maximize the mathematical expected value of some utility 
function, with respect to some subjective probability 
distribution [12]. That is, any rational strategic peer's 
behavior should be describable by a utility function, which 
gives a quantitative characterization of its preferences for 
outcomes, and a subjective probability distribution, which 
characterizes its beliefs about other peers' behavior. 
According to the defined cost and benefit parameters, the 
total utility Ui that pi will derive by setting cooperation 
policy di in the system is: 
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where bci is the function that is defined to model individual 
incentives and can be considered as the benefit coefficient in 
utility function. Ui is a nonnegative real-valued function, 
which is developed corresponding to the total expected 
benefit (the first term) and the cost (the second term) of 
participants in the system. How can we deal with subjective 
probability distribution, will be discussed in the next section. 

III. THE DECISION-ANALYTIC APPROACH 
In traditional game-theoretic analysis that has been used 

widely in previous works, the usual approach is to analyze 
and solve the decision problems of all participating peers 
together, as a system of simultaneous equations in several 
unknowns. In contrast, the decision-analytic approach to 
player i's decision problem is to first access some subjective 
probability distribution to summarize i's beliefs about what 
strategies will be used by the other players and then to select 
a strategy for i that maximizes its expected utility with 
respect to these beliefs [11].  

A. Declaration 
The decision-analytic approach to i's decision problem is 

to try to predict the behavior of the others first and then to 
solve i's decision problem last. However, there might be a 
fundamental difficulty in implementing the decision-analytic 
approach; to access its subjective probability distribution 
over the other players' strategies, player i may realize that the 
optimal strategies of the other players cannot be determined 
until their subjective probability distributions over i's 
possible strategies have been accessed. Thus, player i cannot 
predict the other players' behavior until it understands what 
they expect it rationally to do, which is of course, the 
problem it started with [10]. To overcome this difficulty we 
propose an iterative learning process modeled on swarm 
intelligence to implement the decision-analytic approach. In 
this process, objective probability distribution over the other 
players' strategies is taken by each peer as an estimation of 
the subjective probability distribution. Thus, observable 
strategies of other peers are monitored by each peer in a 
sequence of iterations. Based on this empirical evidence, 
each peer can decide rationally on a strategy in every 
iteration. Through this chain of decisions that are made based 
on a method inspired by particle swarm optimization [14], 
each participating peer concludes its final cooperation policy 
with respect to the other peers' behavior. 

To give a rigorous declaration of our decision-analytic 
approach, let us consider the modified Lagrangian swarm 
model (discussed in section II) to investigate a system of N 
peers },,1:|{ Nipi K . In this system, any particular peer pi 
interacts only with a limited set of all possible peers, the ones 
that are included in its neighborhood Ni; each peer pi's 
optimal policy should maximize its expected utility Ui with 
respect to the objective probability distribution over the 
possible policies of the other peers. To achieve this goal, 
each peer pi sets its final cooperation policy through an 
iterative decision making process: in every iteration, each 
peer pi monitors the strategies of the other peers in its 
neighborhood Ni locally, evaluates their strategies and 
choose its strategy in the next iteration next

is with respect to 
the evaluation result and to its own experience (what it has 
learned up to the current iteration) as follows: 
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where r1 and r2 are two distinct random values in [0,1], c1 and c2 are the control parameters, dp is the best previous 



cooperation policy of the peer itself and dn denotes the best 
cooperation policy of all other peers in its neighborhood Ni. 
It should be noted that the cooperation policies are evaluated 
by each peer pi according to the local utility function Ui 
defined for it. Then the cooperation policy di of peer pi is 
revised as follows: 

next
i

current
i

next
i sdd +=  (3) 

If and when local utilities, Uis, which are defined for 
individual peers in the modified swarm model (equation 1), 
converge to the same value through this iterative learning 
process, the resulting cooperation policies will constitute the 
final set of decisions that maximize rational peers' utility in 
line with the overall utility of the system. In the following 
section, the analysis of the approach and the optimality of the 
final policies will be discussed in more details. 

B. Analysis 
After proposing a feasible decision-analytic approach for 

players, we employ Nash equilibrium analysis to investigate 
whether the predicted strategies for the participating peers by 
the decision-analytic approach form a Nash equilibrium of 
the game. To this end, as demonstrated in [8] for a similar 
quantitative model of the system, a game-theoretic approach 
can be deployed as follows. The following form has been 
chosen to define the function that models incentive: 
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The choice of the exponent α determines how step-
function-like the incentive function is. 

First a simplified setting should be considered in which it 
is assumed that jibbij ≠∀= ; ; in other words in this system 
all peers derive equal benefit from everybody else. 
Therefore, by symmetry, the problem can be reduced to a 2-
person game, which is analyzed by a similar methodology to 
the one used in Cournot duopoly model [13]. To find the set 
of fixed points that constitute Nash equilibrium, it is assumed 
that ddi i =∀ : that means all participating peers set the same 
cooperation policy simultaneously. In this case, the solution 
is: 
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The results for the two peer system then applied to the N 
player system as well and therefore (for more details please 
refer to [8]): 
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In contrast with the game-theoretic approach, no limiting 
assumption is made in decision-analytic approach and hence 
the system is investigated in a more realistic setting. As we 
will numerically show, the above equilibrium is not formed 
when the cooperation policies are set based on the proposed 
decision-analytic approach. This is because the expected 
Nash equilibrium of the game is not the Pareto-optimal one, 
as the outcome derived from the decision-analytic approach 

based on modified swarm model would make all players 
better off. 

To demonstrate that the tendency toward Pareto 
efficiency can be derived from our proposed approach, we 
perform numerical experiments in both homogeneous and 
heterogeneous settings. We choose the initial values of di 
from a standard Gaussian distribution. While in the game-
theoretic approach it is assumed that all the participating 
peers set their cooperation level simultaneously to achieve 
Nash equilibrium, in the proposed approach the distribution 
di evolves every iteration and eventually converges to a 
Pareto efficient equilibrium. We choose the number of 
participating peers N to be from 500-1000. Since a peer pi 
interacts only with a small subset of other peers, bij is non-
zero only for a few values of j. The peers for which bij is 
non-zero are randomly selected. The size of the set for which 

0≠ijb is chosen to be 2 percent of N. In general, for smaller 
value of this fraction, the approach takes longer to converge. 

We first consider a homogeneous setting in order to 
compare the experimental results of the proposed approach 
with the analytic results of the game-theoretic approach. If it 
is assumed that the system is completely homogeneous, the 
distribution of bij consists of a single peak at b= bave /(N-1). 
As an instance, for bave= 5, based on the game-theoretic 
approach, the corresponding value of d* from equation 6 
would be 2.62; and thus the utility function value of peers 
would be 6.86, in Nash equilibrium (from equation 1). While 
in the same circumstance, the decision-analytic approach 
makes all peers better off and achieve a much higher U* with 
the value of 15.61 (higher more than 50%).  

We next consider a heterogeneous setting to investigate 
whether or not the results verify the results of homogeneous 
setting. In this setting, we choose the values of bij from a 
Gamma distribution such that bave= 5. The result of 
experiment shows that the values Ui

*s converge to the same 
value of 15.6 with a high confidence level. The value of α  
for all of the results is 1.0. 

It is important to note that, in both homogeneous and 
heterogeneous settings, the mean of cooperation level of 
peers is much higher than their cooperation level in the 
game-theoretic approach (dave

* is around 40% higher than the 
value of d* from equation 6). It demonstrates that the 
proposed approach improves the overall performance of the 
system in comparison with the game-theoretic approach. 
Maybe it seems that the final cooperation policy di that pi 
sets, is not globally optimal as it is determined based on 
monitoring locally a limited set of peers Ni. But in fact, after 
pi has set its cooperation policy, its strategy will be 
monitored by the peers it interacts with and those peers will 
adjust their own cooperation policy respectively. Therefore, 
the actions of any peer pi will eventually reach all possible 
peers and the reactions of other peers to pi’s cooperation 
policy will affect pi itself in the same way. Strictly speaking, 
through the proposed approach, globally optimal cooperation 
policies of peers emerge as a result of their local interactions. 

 In Figure 1, we show the average cooperation level of 
the peers as a function of average benefit. The lower trace, 
indicated by “�”, is the solution from the analytic results of 



the game-theoretic approach. As expected, the cooperation 
level increases monotonically with increasing benefit while 
in comparison, it is improved significantly by the decision-
analytic approach. Note that in this approach, the two sets of 
results for homogeneous and heterogeneous settings almost 
coincide with each other, which was expected for the average 
performance.  In the x axis, the average benefit is scaled as 
(bave/bc)-1 in which bc is the critical value of benefit below 
which it is not profitable for a peer to join the system by the 
game-theoretic approach.  

 

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 C
oo
p
er
at
io
n
 L
ev
el

Scaled Benefit

Hetero

Homo

NE

 
Figure 1. The comparison of the average cooperation level 
 
In Figure 2 we show the convergence of the decision-

analytic approach. The three data sets correspond to different 
values of average bave. As depicted, the convergence is fast 
and independent of the average value of bave. Similar to the 
game-theoretic approach, below a critical value of bave the 
iterations converge to zero that means the system collapses. 
It is interesting to note that the critical value of benefit 
obtained experimentally in this approach is less than 5% 
away from the calculated value of bc by the game-theoretic 
approach. We have observed that for a wide set of initial 
conditions for di, after a sequence of iterations, the process 
tend to create a system in which most individual participants 
set the Pareto efficient cooperation policy.  
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Figure 2. Average contribution level against number of iterations 

required to reach a set of Pareto efficient strategy 
 

To conclude our work, it is demonstrated that by taking a 
decision-analytic approach based on the modified swarm 
model, rational decisions of the individual participating peers 
on their cooperation policies are adequately coordinated in a 
distributed manner and improve the overall performance of 
the system in both homogeneous and heterogeneous settings. 
Our approach quickly approximates a Pareto-optimal 
operating point of the system. 
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