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Abstract
In this paper we present the design and analysis of revenue
sharing schemes for viral marketing over social networks.
The increasing need for monetizing social networks more
effectively is causing social network platforms to look for
alternatives to online behavioral targeting. Specifically, we
turn to cooperative game theory and the Shapley value to de-
sign revenue sharing schemes to incentivize users to help the
social network platform for more effective viral marketing.
Our goal is to identify mechanisms that achieve desirable
objectives in terms of computability, individual rationality,
and potential reach. In particular, we propose multi-level
revenue sharing for referral-based and viral marketing over
online social networks. We show via simulations that users
have more incentive to collaborate with the social network
platform in implementing the campaign when the revenue or
discount is shared across multiple levels rather than the com-
monly used single-level model. For this purpose, we design
the graph-based model, for which we show that computing
the Shapley value is #P-hard. However, we show that in a
variation of that model, which we call the tree-based model,
computing the Shapley value becomes polynomial time. We
also show that the revenue function is supermodular only
in the tree-based model. Supermodularity of the revenue
function entails desirable corollaries.

1. INTRODUCTION
In recent years, the Web has been, among other things, lever-
aged to harness the power of users to carry out tasks that re-
quire collective efforts. Wikipedia, crowdsourcing platforms
such as Amazon’s Mechanical Turk, and Yahoo! Answers
are only a few examples. Users participate with different
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incentives such as monetary compensation, social recogni-
tion, altruism or a combination of these. Some of these
tasks require networked structures to succeed. The recent
tremendous growth in the popularity of online social net-
works suggests leveraging these networks for those types of
tasks. The recent DARPA network challenge is an example
of such a task. The challenge was to locate ten red balloons
spread all over the Unites States on a given date as quickly
as possible for the prize of $40000 [1]. A task that would be
considred impossible using conventional information gather-
ing methods [2]. The winning team implemented a recursive
incentive scheme over a social network of referrals with the
objective to locate the balloons in minimum time [3].

Refer-a-friend marketing (which is a type of viral market-
ing) is another example of such tasks because the network
of trust between the referrer and the potential adopters plays
an important role in the adoption of a product in a viral mar-
keting campaign. In a refer-a-friend advertising campaign,
typically, a current user gets some form of discount for re-
ferring a product to her friend that ends up in the adoption
of the product. Referring a friend might trigger a cascade if
the new adopter recommends the product to her friends as
well (hence the term viral marketing).

Another motivating scenario inspired by the above ideas
can be for advertising over online social networks. The in-
creasing need for monetizing social networks more effectively
is causing social network platforms to look for alternatives
to online behavioral targeting. A specific example for this
model is as follows (illustrated in Figure 1): A social net-
work platform may build the following system to target ads
and coupons more effectively. This system allows users to
opt in and help the platform in exchange for a share in the
revenue. To be more precise, a user who opts in this system
is presented with a number of ads/coupons to assign to a
limited number of her friends according to their interests.
In this example a social network user, named Alice, is pre-
sented with two ads: one about audiobooks and the other
about places to travel with a baby. Alice knows that Bob
has a baby and might be interested in going on a trip, so
she would select Bob for the ad: ”Best places to travel with
a baby”. On the other hand, knowing that Carol enjoys lis-
tening to audio books, Alice would assign the ad for free
audio books to her. This will help the social network route
ads to the right users. Bob sees the ad about traveling with
a baby as he logs into his account. He also thinks that an-
other fellow parent might be interested in this ad, therefore,



he suggests it to be shown to her. The source of the ad can
be transparent to the recipient of the ad. In other words,
this system can be incorporated in the ad network that the
social network platform implements.

A significant challenge for this model to work is to give
the users the proper motivation to earnestly contribute to
the system in finding the most relevant match. To incen-
tivize users, the social network platform shares the added
revenue with the users that opt in and have impact. In
this paper, we introduce various revenue sharing models
and discuss fairness and individual rationality of such in-
centive schemes, and design efficient algorithms to compute
and implement such schemes. In particular, we propose
models in which referrals (both for products and ads) are
rewarded either for one level or multiple levels, and dis-
cuss Shapley value revenue sharing. In other words, we
discuss single-level and multi-level propagation models, and
identify tree-based multi-level propagation as a special case
of the graph-based propagation model. We compare these
models in terms of the polynomial-time computability of
Shapley revenue shares, individual rationality of the rev-
enue shares, and potential reach or expected effectiveness of
these models. First, we prove that finding Shapley value rev-
enue shares is #P -hard for general graph-based multi-level
models, but it is polynomial-time solvable for single-level
and tree-based multi-level propagation models. Further, by
showing supermodularity of revenue function for tree-based
propagation models, we show that for the tree-based prop-
agation model, (i) Shapley value revenue shares lie in the
core and thus satisfy certain individual rationality condi-
tions, (ii) the nucleolus of these games is polynomial-time
computable, and (iii) one can implement budget-balanced
group-strategyproof mechanisms, extracting people’s will-
ingness to participate in the process. Finally, via simulations
on real-world datasets, we conclude that with a fixed amount
of revenue share, multi-level tree-based propagation will re-
sult in larger expected reach. Overall, we conclude that the
tree-based multi-level propagation model for revenue shar-
ing is more effective and more efficient than single-level or
graph-based multi-level propagation models.
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Figure 1: Users select most relevant friends.
2. RELATED WORK
Viral marketing over social networks has been studied for
the purpose of influence maximization [12, 13], or revenue
maximization [14, 15]. In the influence maximization mod-
els [12, 13], a person’s decision to buy a product is influenced
by the set of other people who own the product. In the rev-
enue maximization model[14, 15], people don’t simply adopt
products, but rather must pay money to buy them. A per-
son’s decision to buy a product is influenced by the set of

other people that own the product as well as the price at
which the item is offered. On the subject of propagation of
information and influence on social networks, various work
has been done. In a recent paper [16], the authors argue
that viral marketing would be more effective if a large num-
ber of ordinary users are picked as influencers. None of the
above work however studies the effect of revenue sharing in
incentivizing users of the social networks in maximizing the
reach and effectiveness of online ads.

Recently, a social ad model considering user influence, called
AdHeat, has been explored [4]. In this model, the advertis-
ing platform may diffuse hint words of influential users to
others and then matches ads for each user with aggregated
hints. They perform experiments on a real-world data set,
and show that AdHeat outperforms the traditional relevance
models by a large factor. Although this study shows the ef-
fectiveness of using social network information in online ad-
vertising, however they do not consider active propagation
of ads by users of the social network.

The applications of the Shapley value to network and in par-
ticular Internet economics is also been of interest recently:
from applications to peer-assisted services [17] to the settle-
ment issue between Content, Eyeball, and Transit ISPs [18,
19, 20]. In a less recent work [21], authors propose that cer-
tain private information should only be disclosed by users if
they get compensated fairly. The paper determines the value
of private information in the context of online surveys, col-
laborative filtering and in general recommender systems by
the Shapley value.

A related but different problem is the cost sharing of Steiner
tree or multicast network design problem in cooperative
game theory[22, 23]. It is not hard to see that cost func-
tion of a multicast tree for a subset of nodes is a submodu-
lar function, and this implies the existence of budget-balance
cross-monotone cost sharing methods for this problem. This
might seem related to our proof of supermodularity of the
revenue function in the tree-based propagation model. How-
ever, in the multicast cost sharing context, the submodular-
ity of the cost function holds for any general cost function
on the edges while, it is not hard to show that supermodu-
larity of the revenue function does not hold in the general
case and we show that it holds in the case that the revenue
share of each node in the graph is the same (Section 5).

3. MODEL
Let U be the set of users of a social network platform (SNP)
P. The SNP P implements a viral marketing program help-
ing an ad campaign or an online retailer, by giving incentives
to its users to participate in marketing for the advertiser.
To be more specific, the SNP suggests coupons, products or
ads to a subset of its users, and asks them to refer a limited
number of their friends for each. If their friends buy the
coupon or product or click on the ad (or simply do anything
through which the SNP gains revenue), the revenue gained
would be shared with the referrers. If the friend also refers
some of her friends a cascade of referrals would be initiated.
In this paper, if a user adopts a product, buys a coupon or
clicks on an ad or takes any action through which revenue is
earned by the SNP (directly or through a cascade), we say
that the node has become active. The nodes that had a role



in activating a node are called the activators of that node.

Looking at this model as a cooperative game, the set of play-
ers are denoted by U , where N = |U |. We call any nonempty
subset S ⊆ U a coalition of players. For each coalition S,
we denote by f(S) the worth function (f : 2U∪{P} → R),
which measures the total revenue from an advertiser pro-
duced by the system when all players of this coalition S
are active. Clearly the revenue from a subset S of users
without P is zero as any coalition needs the SNP to imple-
ment the marketing/advertising strategy. Let fu(S) denote
the revenue of player u in the coalition S, we then have:
f(S) =

P
u∈S fu(S).

We suggest two models for revenue sharing if a node becomes
active. In the first model, which is very similar to what hap-
pens commonly in referral-based marketing, the SNP shares
the added revenue only with direct activators of that node.
The other model suggests that the revenue be shared with
the whole set of users who contributed in activating a node.

Before we get into specifics of our proposed models we define
the Shapley value [5]:

Definition 1 (Shapley Value). Shapley value of player
u in coalition S is denoted as φu(S, f) and is computed as:
∀u ∈ U, φu(S, f) = 1

|S|!
P

π∈Π Δu(f, S(π, u))

where Π is the set of all |S|! orderings of S and S(π, u)
is the set of players preceding u in the ordering π. The
Shapley value of player u can thus be interpreted as the
expected marginal contribution Δu(f, S′), where S′ is the
set of players in S preceding u in a uniformly distributed
random ordering of S.

Shapley value of each player u in coalition S satisfies the
three following axioms:
Axiom 1: Efficiency

P
u∈S φu(S, f) = f(S) This axiom

means that the total revenue share of each user should be
equal to the total revenue gained in the coalition.
Axiom 2: Symmetry If for all S′ ⊆ S\{u, v}, f(S′ ∪
{u}) = f(S′ ∪ {v}) then φu(S, f) = φv(S, f) This axiom
states that players contributing equal amounts to a coalition
should receive same amount of the revenue.
Axiom 3: Fairness For any u, v ∈ S, v’s contribution to
u equals u’s contribution to v, or in other words φu(S, f) −
φu(S\{v}, f) = φv(S, f) − φv(S\{u}, f)

We formulate the network of referrals by constructing a di-
rected graph representing users influencing their friends in
becoming active. More specifically, nodes in this graph are
users of the SNP and there is an edge from user w to user
u if w activates u. We also add a root node for the SNP
and connect this root to all original users who become ac-
tive. Given this graph, users who are on paths from the root
to each node u share the revenue from the activity of this
node. In fact, since there might be several users contribut-
ing in activation of a specific node, there are different ways
to construct this graph. We will describe our models below.

Note that similar to other advertising and revenue sharing
systems, such revenue sharing schemes should also be ac-
companied with a reasonable fraud detection and reputation
system that can control for malicious user behavior. Also,
It is important to note that in this model, a user is only
allowed to refer an ad/product to a limited number of her

friends, therefore, increasing her incentive to pick the most
relevant ones.

3.1 Single-level Propagation Model.
In the single-level propagation model the amount paid by
the advertiser for a node becoming active is shared among
the SNP and the set of its direct activators. Considering this
model as a cooperative game, the players of this game are
the SNP and the users who influence other nodes to become
active. If k users refer a product/ad to user u and she be-
comes active resulting in revenue gain, the coalition would
consist of these k users and the social network platform. The
worth function is described in the following.

To be more precise, assume that the advertiser is willing to
pay Qu for each action, and the probability of an action by
user u is pu, i.e., the expected revenue of referring a product
to u is puQu. In this setting, the revenue fu(S) from a
user u given a subset S ⊆ U ∪ {P} of users is computed
as follows: if P ∈ S and there exists a user u′ ∈ S who is
connected to user u and activates u, then fu(S) = puQu,
otherwise fu(S) = 0 We should note that it is possible that
k of u’s friends play role in activating u, therefore fair ways
to share the revenue among the contributing users should be
explored. We will discuss such fair methods in Section 4.

3.2 Multi-level Propagation Model.
The multi-level model generalizes the single-level model by
sharing the revenue with all the users collaborating in a cas-
cade of referrals. In other words, the multi-level model keeps
track of the path of users activating their friends in the net-
work and shares revenue with all of them. This way, users
get credit from their friends’ friends activation. This propa-
gation can grow for multiple levels, which gives more incen-
tive to users to make referrals because they will earn money
not only from direct activations but also from all the chains
they are part of. Note that in this model, the assumption is
that users do not have an incentive to refer every item to all
their friends, since that will result in losing their credibility
and ruining their reputation.

Modeling this as a cooperative game, the players are the
SNP and all the users who participate The worth function
would be as follows. In such a model, referrals are propa-
gated through paths, and the expected revenue for a referral
from a user u is puQu if there is a path of users propagating
the referral iteratively to user u, i.e., fu(S) = puQu if P ∈ S
and there is a path of users v1, v2, . . . , vl ∈ S where v1 origi-
nally has become active, and then each user vi activates user
vi+1 after receiving it from vi−1, and finally vl activates u,
otherwise fu(S) = 0.

There are various ways for the SNP to keep track of acti-
vation paths. These various ways would, in turn, impose
different revenue sharing schemes. For example, the SNP
may only keep track of the first user who makes a referral to
each user. Alternatively, the SNP may keep track of all users
who made referrals to another user. Different methods for
keeping track of users making referrals can be divided into
two main categories. Consider a set w1, w2, . . . , wk activat-
ing user u.

Graph-based Model: The SNP may keep track of all



users who activated u, i.e., we may put edges from all nodes
w1, w2, . . . , wk to node u. Tree-based Model: We may
put an edge only from one node wi to user u, e.g. we may
put an edge only from w1 who is the first user who activated
u encourage users to make referrals as early as possible.

For each of the above multi-level models, we can define a
k-level propagation model in which the revenue sharing for
a node u happens among at most k users on the path to u,
i.e, the revenue from node u is shared only among the last k
nodes on a path to node u. For example, in the k-level tree-
based model, the revenue share for a user u is shared among
k top parents of node u in the corresponding propagation
tree. Throughout the paper, we mainly study the general
multi-level model both for the graph-based and tree-based
models, but all of our results hold for the k-level variant
of these propagation models. In parts of the paper that
we need to distinguish between different k-level models, we
specify the k-level propagation model.

4. COMPUTING THE SHAPLEY VALUE
The challenge in the above mentioned models is to design a
fair mechanism to share the added revenue with users that
participated in the process. Shapley value as described in
details in Section 3 not only ensures fairness, but also has
other desirable properties. In what follows, we discuss com-
putation of the Shapley value for the proposed models. We
either show that Shapley value can be computed polyno-
mially, or prove a hardness result and provide approximate
solutions.

4.1 Single-level propagation model.
Assume that k users have activated user u. Here, we dis-
cuss simple fair ways to share the revenue gained among the
contributing users and the SNP. One way is to just consider
the first user who starts the propagation, in which case the
revenue should only be divided between that first user and
the SNP. Alternatively, we may share the revenue with all
these k users1. Consider user u, let Ku be the set of ku users
who activated user u, and let the revenue of user u becom-
ing active be puQu. Then, the Shapley value revenue share
of SNP for each user u is ku

ku+1
puQu and the Shapley value

revenue share of each of these ku users is 1
ku(ku+1)

puQu. Let-

ting ku be the set of users who have activated user u, and
summing up the Shapley value revenue share for all users,
the revenue share of the SNP in the single-level model isP

u∈U
ku

ku+1
puQu. Also letting Ai be the set of users who

have been referred by user i, Shapley value for user i would
be

P
u∈Ai

1
ku(ku+1)

puQu.

4.2 Graph-based Multi-level propagation model
In this section, we show that computing the Shapley value in
the graph-based multi-level model is computationally hard,
and in fact is #P -hard. The proof is by reduction from a
node variant of the NetworkReliability problem, called
NodeReliability. Both problems are defined below:

1Considering the influence model known as the threshold
model, it is reasonable to assume that all referrers should
receive some credit.

NetworkReliabilityProblem
Instance: Graph G = (V, E),
a rational failure probability p(e) for each e ∈ E ,
nodes s and t.
Question: If edge failures are independent
from each other, what is the probability that
there exists a path from s to t in this graph?

NodeReliabilityProblem
Instance: Graph G = (V, E),
a rational failure probability p(v) for each v ∈ V ,
nodes s and t.
Question: If node failures are independent
from each other, what is the probability that
there exists a path from s to t in this graph?

The NetworkReliability is known to be #P -complete,
even for a fixed probability p(e) = 1

2
for each edge e [24, 25].

Using this, it is not hard to show that NodeReliability
is also #P -hard by giving a reduction from from the edge
variant: Given an instance of the NetworkReliability
problem, construct an instance (s, t, G′) of the NodeReli-
ability problem as follows: Let V (G′) = E(G)∪{s, t}, i.e.,
for each edge e in the graph G, put a node ve in graph G′

with p(ve) = p(e), and also put two nodes corresponding to
s and t. Two nodes in G′ are adjacent if their correspond-
ing edges or nodes in G are adjacent. One can easily verify
that the probability of having a path in a random sample
of G in the NetworkReliability problem is the same as
the probability of having a path from s to t in the random
sample of G′ in the new instance of the NodeReliability
problem.

Theorem 1. Computing Shapley value in the multi-level
graph-based propagation model is #P -complete.

Proof. Consider an instance of NodeReliability prob-
lem as follows: Given a graph G = (V, E) and two nodes s
and t, and probability p(v) = 1

2
on each node, compute

the probability of having a path from s to t in a random
graph constructed by including each node of G with proba-
bility 1

2
. From this instance, we construct an instance of the

Shapley value computation in the multi-level graph-based
model. The propagation graph G′ is the same as graph
G with an additional node v and two edges (s, v) and (v, t),
i.e., V (G′) = V (G)∪{v} and E(G′) = E(G)∪{(s, v), (v, t)}.
Now consider the revenue share of nodes in G′ toward node
t, that is the revenue shares toward ptQt. We claim that
the total revenue share of nodes other than v in G′ is ptQt

times the probability of having a path from s to t in a ran-
dom graph where each node of G is present with probability
1
2
. To see this, note that in computing the Shapley value

revenue shares of nodes in V (G′)\{v}, the probability that
each node u ∈ V (G) appears before v in a permutation is 1

2
.

Thus the probability that each node is before v is 1
2

and is
independent of any other node appearing before v. Also, if a
path from s to t appears completely before v in a permuta-
tion, the marginal value of node t which is ptQt goes to one
of the nodes in V (G′) − {v}. Therefore, the total revenue
share of nodes in V (G′)−{v} in the multi-level graph-based
propagation model over G′ is equal to the the probability
of having a path from s to t in a random subgraph of G
where each node is present with probability 1

2
. Thus if we



can compute the Shapley value revenue shares, we can solve
theNetworkReliability problem which is #P -hard.

4.2.1 Approximating Shapley Value
In light of the above hardness result, we design an algorithm
based on sampling to approximate Shapley value for the
graph-based multi-level model. It can be observed that by
simply using polynomial number of samples we can compute
Shapley values approximately in this general model. For
completeness, we sketch the algorithm and the proof in the
Appendix 7.

Theorem 2. If φu(S, fv) > PvQv

n3 , then we can compute
φu(S, fv) within factor (1 ± ε) with high probability (i.e.,
probability 1 − o(1)), in time polynomial in 1

ε
and n. Oth-

erwise, if φu(S, fv) ≤ PvQv

n3 , one can approximate it within

multiplicative factor and PvQv

n3 additive error, in time poly-

nomial in 1
ε

and n.

4.3 Tree-based propagation model.
Here, we show that the Shapley value revenue share of each
user in the tree-based model can be computed easily.

Lemma 3. In the multi-level tree-based propagation model,
the Shapley value revenue share of each user can be computed
in time O(n2).

5. SUPERMODULARITY
In this section, we observe a main advantage of the tree-
based propagation model compared to the graph-based prop-
agation model. In particular, we show that the revenue func-
tion for the multi-level tree-based model described above is
supermodular, and this implies various nice properties of
the Shapley value revenue shares for the tree-based propa-
gation model. For example, this shows individual rational-
ity of these revenue shares for the corresponding cooperative
game. We first prove the supermodularity and then switch
to summarizing the corollaries.

As we have explained at the end of Section 2, it is impor-
tant to note that although this result might seem related
to the multi-cast cost sharing problem, the results are dif-
ferent. Before stating the proof of supermodularity for the
tree-based model, we observe that this property does not
hold for the graph-based propagation model, and even for
the single-level propagation model with uniform valuations
for the revenue shares. To see this, consider the following
example:

Example 1. Consider a single-level model with 4 users
A, B, C, D in which all 3 users A, B, C make referrals
to user D and D becomes active. Let the revenue of each
user be 1. In this case, the value of each subset of size 2
including s and one of A, B or C is 2 (since using A, B, or
C, the path from D is formed). Also f(s) = 0, f(s, A, B) =
3, since there are three nodes reachable from s each with
revenue 1. This example violates supermodularity as follows:
f(s) = 0, f(s, A) = 2, f(s, B) = 2 and f(s, A, B) = 3 and
f(s, A, B)−f(s, B) = 3−2 = 1 < 2 = 2−0 = f(s, A)−f(s).

Theorem 4. The revenue function in the tree-based multi-
level propagation model with uniform valuation for all users
puQu = P is a supermodular set function.

Proof. A potential way to show that function f is su-
permodular is by showing that the set function fu for any
user u is supermodular. However, it is not the true in this
case, i.e., for some users u, the set function fu might not be
supermodular. Nevertheless, we can show that the summa-
tion f(S) =

P
u∈U fu(S) is supermodular. In the tree-based

propagation model, for a subset S ⊂ U ∪ {s}, f(S) = 0 if
s 	∈ S, and otherwise, f(S) is equal to |T (S)|P where T (S)
is the maximal connected subtree rooted at s with all inter-
nal nodes in S. In other words, f(S) is proportional to the
number of nodes that are connected to s using a path whose
all internal nodesare in S. Knowing f(S) = P |T (S)| in the
uniform valuation model, it is sufficient to prove that |T (S)|
is supermodular. We do so by verifying the supermodularity
property of f by proving that for any two subsets A ⊂ B
and any element i 	∈ B,

|T (B ∪ {i})| − |T (B)| ≥ |T (A ∪ {i})| − |T (A)|.

Letting Δi(B) = T (B ∪ {i}) − T (B) and Δi(A) = T (A ∪
{i}) − T (A), it is sufficient to prove that Δi(A) ⊆ Δi(B).
To show this, we consider two cases:
Case 1: i’s parent is not in T (A) ∩ A. In this case, adding
i to A does not change T (A), and thus Δi(A) = ∅ ⊆ Δi(B).
Case 2: i’s parent is in T (A) ∩ A. In this case Δi(A) con-
tains all non-root nodes of the maximal connected subtree
rooted at i with all internal nodes in A. In this case, i’s
parent is also in T (B)∪B, and Δi(B) contains all non-root
nodes of the maximal connected subtree rooted at i with
all internal nodes in B. Now since A ⊆ B, the correspond-
ing connected maximal subtree in the induced graph of B
is larger than the maximal subtree rooted at i in A. The
result follows from the above case analysis, as it shows that
Δi(A) ⊆ Δi(B), and thus |Δi(A)| ≤ |Δi(B)| which implies
supermodularity of f .

The supermodularity of revenue shares, in turn, implies in-
dividual rationality, computability, and incentive compati-
bility results for the revenue shares based on the tree-based
propagation model with uniform valuations. In the appendix 7
we list three corollaries of this property.

6. SINGLE-LEVEL VS. MULTI-LEVEL
In the previous sections, we argued for an advantage of us-
ing tree-based propagation model compared to a general
graph-based propagation model. In this section, we compare
single-level and multi-level propagation models, and show
which revenue sharing strategy is more effective in maximiz-
ing the spread of viral marketing or advertising campaign.

Let M be the total revenue share for each new user who
gets the referral, i.e., M = pR where p is the probability
that a new user becomes active, and R is the amount that
the online retailer or the advertiser pays as the total revenue
share with each user. We observe that there exists a direct
relation between the amount of revenue shared with users
and the amount of spread of the advertising campaign. In-
tuitively, the more revenue share there is, the more probable
the spread is. Here, we observe that other than the param-
eter M , the revenue sharing scheme also plays an important
role in the expected reach of the viral marketing method.
Intuitively, for multi-level revenue sharing schemes, the po-
tential gain of each user for making referrals is more than
the potential gain for single-level sharing schemes. The rea-



son is that the user not only gains a revenue share from her
immediate neighbors, but also from her neighbors of neigh-
bors and so on. This in turn increases the probability of
making referrals by users, and thus it may result in higher
expected reach of the marketing for multi-level revenue shar-
ing schemes.

We model the potential reach of a revenue sharing strategy
by simulating a random propagation process on real-world
networks, and reporting the simulation results. In order to
simulate this process, we consider the following model over
a network: Each each user u has a random threshold tu,
where tu is chosen uniformly at random from [0, 1]. Before
making a decision to make a referral or not, each user com-
putes her potential gain, Potential(u), and makes referrals
if Potential(u) ≥ tu. This propagation model is inspired by
the probabilistic threshold model that is widely studied as a
model for viral marketing [13]. An important feature of our
model is the way we compute the potential gain of users. In
fact, the main difference in various revenue sharing policies
is the way users compute their potential gain. If we use a
k-level tree-based propagation model for a large k, there is a
larger potential revenue from referrals (at the beginning of
the propagation process). In such a setting along with a k-
level tree-based revenue sharing, a user u may get a revenue
share M

k
(or M

t
for some t ≤ k) for each new user who gets

a referral from u, and also u may get a revenue share of M
k

from each new user who becomes active through u, and so
on. As a result, the total potential gain of user u for making
referrals is proportional to the potential number of new users
within a distance k of user u who became active through u.
At the beginning of the propagation process, this potential
is larger for each node u, but as time goes on, more people
hear about it through other friends, and the chance that a
new user is informed by user u becomes lower. The more k
is, the more potential gain users have at the beginning, and
thus there is a higher chance that they start propagating
referrals. On the other hand, for a larger k, after a fixed
number of steps, more people have already heard about the
product/ad, and the potential gain of users to propagate it
to new users is lower. Because of this tradeoff, using dif-
ferent propagation models will result in different expected
number of users who get the referral.

We simulate the above process for different k-level tree-based
propagation models for several networks, and report the to-
tal expected number of users who end up getting the referral
using different propagation models. We denote this expected
number of users who hear about a product using a k-level
tree-based model by E(k). As we will explain in details, in
all simulations, we observe that this expected number E(k)
increases as k increases.

Data. To evaluate the performance of our models we tested
them on five large real networks. Due to space constraints,
we report one of them in this section of the paper as the be-
havior for all the networks were similar. The network pre-
sented here is a who-trusts-whom network of Epinions.com
which is a consumer review website. Users of the site can
explicitly indicate wether they trust another member or not.
The graph contains a node for each user and there is an edge
from each user to the other users that she trusts. The graph
has 75879 nodes and 508,837 edges between the nodes [28].

Table 1: Epinions dataset properties.

Nodes Edges Avg. Degree Diameter largest CC
75879 508837 13.41 13 32223

Results. The performance of the k-level propagation model
is depicted in Figure 2 for the Epinions network. The sim-
ulation is done for k = 1, . . . , 20, for M = 0.3 and M = 0.5.
The plots indicate the number of users that hear about the
product for each k-level simulation. As the plots show the
number increases as k increases up to 13 lvels for the Epin-
ions network. At level k = 13, the network is saturated.

We observe that the saturation level is close to the diame-
ter of the graph. This implies that implementing a k-level
model beyond the diameter will not improve the number of
informed users. The 90 percent effective diameter of the
graph is 5.8. We also observe that the relative increase in
the number of users getting the referral is at maximum be-
tween levels 4, 5 and 6. We also find that, especially in the
case where the total revenue share M is smaller, having a
k-level propagation model is even more effective to trigger
users initiate propagation. This observation can be inter-
preted intuitively as follows: when M is small, the single-
level model might not be incentivizing enough for the users
to opt in, however, by increasing the levels the potential in-
creases which gives more incentive to users to take part in
this process.
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Figure 2: Epinions.com

7. CONCLUSION
In this paper, we have developed multi-level revenue shar-
ing schemes for viral marketing over social networks. For
the proposed models, we develop results on the computa-
tional complexity, individual rationality, and potential reach
of employing the Shapley value as a revenue sharing scheme.
Our results indicate that under the multi-level tree-based
propagation model, the Shapley value is a promising scheme
for revenue sharing, whereas under other models there are
computational or incentive compatibility issues that remain
open. We also assess the effectiveness and potential reach of
the single-level and k-level tree-based models through simu-
lations, and our findings show that using a k-level tree-based
model has higher potential for increasing the spread over the
social network.
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Appendix
Proof of Theorem 2

Proof. Consider the following algorithm based on sampling: First, generate m = O( n7

4ε2
) random permutations of the

players 1 to n. For each player u, compute the the marginal contribution of player u in each of these m permutations. Let
the revenue share of each player u be equal to the average of its marginal contributions over these m permutations. Let Xi

be the marginal contribution of player u in trial i of the sampling algorithm. Let Xv(u) be the random variable which is the

output of the sampling algorithm using m = O( n7

4ε2
) samples, i.e,. Xv(u) =

Pm
i=1 Xi

m
. The expected value of Xv(u) is equal to

φu(S, fv) by definition, i.e., E[Xv(u)] = φu(S, fv). Let σ2
Xv(u) be the standard deviation of the sample mean, and σi be the

standard deviation of Xi.

Using Chebyshev’s inequality, we have:

Pr[|Xv
u − φu(S, fv)| ≥ εφu(S, fv)] ≤ σ2

Xv(u)

ε2φu(S, fv)2
,

It is not hard to see that

σ2 ≤ (Ximax − Ximin)2

4
,

where Ximax and Ximin are the minimum and maximum marginal value for u in any permutation of elements of S. Since

marginal value is non-negative and at most PvQv, thus Ximax ≤ PvQv and Ximin ≥ 0, and therefore,σ2
i ≤ (Pv)2(Qv)2

4
, or

σi ≤ PvQv
2

, and thus

σ2
Xv(u) =

σ2
i

m
≤ P 2

v Q2
v

4m
=

ε2P 2
v Q2

v

n7
.

Using the above fact, if φu(S, fv) ≥ PvQv

n3 , we can rewrite the Chebyshev’s inequality as follows:

Pr[|Xv
u − φu(S, fv)| ≥ εφu(S, fv)] ≤

σ2
Xv(u)

ε2φu(S, fv)2
≤

n6ε2P 2
v Q2

v

n7ε2P 2
v Q2

v

= 1
n
,

as desired. For the case of φu(S, fv) ≤ PvQv
n3 , one can use the same Chebyshev’s inequality with an additional PvQv

n3 additive
error.

The above method can be easily generalized for computing revenue shares in the k-level graph-based propagation model
approximately. The only difference in the proof and in the algorithm is in computing the marginal contribution of adding
each player in the permutation.

Proof of Lemma 3

Proof. The revenue function f can be written as the sum of the revenue functions from each user u, i.e., f(S) =P
u∈U fu(S), and fu(S) for the tree-based propagation model is defined in Section 3. Thus in order to compute the Shapley

value revenue share of each node in a coalition S, we can compute the revenue share for each user u. In order to com-
pute the revenue share of each user from user u, we note the set of users who gets some share of the expected revenue
puQu generated from u are the nodes on the path from the root s to node u in the tree. Therefore, we focus on the path
s = u0, u1, u2, . . . , un = u of n users from the root s to the node u in the tree, and compute the Shapley value of user uk on this
path. There is also a root node s for SNP which is connected to u1. It is not hard to see that in any random permutation of
{u0, . . . , un−1}, the marginal revenue of adding an element to the list of elements is puQu if and only if this elements appears
at the end of the permutation which happens with probability 1

n
. Therefore, the revenue share of each user ∈ u0, u1, . . . , un−1

from user u is puQu
n

. Hence, the total Shapley value of a node v with a subtree Tv under v is equal to
P

u∈Tv

puQu
Du

, where
Du is the depth of user u in the tree.



Corollaries of Theorem 4
First of all, this supermodularity implies a desired individual rationality property of the Shapley value revenue shares, since
the Shapley value revenue shares lie in the core [6].

Corollary 5. For the tree-based propagation model with uniform valuations, the core of the corresponding cooperative
game is non-empty and can be computed in polynomial time. In particular, the Shapley value revenue shares for the tree-based
propagation model with uniform valuations lie in the core of the cooperative game.

Moreover, the above supermodularity result implies existence of a non-empty nucleolus for the corresponding game [7, 8].

Corollary 6. For the tree-based propagation model with uniform valuations, the nucleolus of the corresponding cooperative
game is non-empty and can be computed in polynomial time.

Moulin Mechanisms. One way to deploy a revenue sharing scheme for ad propagation or referral marketing is to run a
mechanism asking users’ willingness to opt in the propagation scheme. In order to run such a mechanism, the SNP can have
users bid the minimum value they need to receive in order to opt in the referral marketing system. In such settings, given
the information the SNP has about the network, it can estimate a potential revenue function f(S) for each subset S of users.
Now the SNP encounters the following mechanism design problem: Given a set of bids bi from each user i, what mechanism
should we use to decide on a set S of users to help the provider and the amount to pay them? A desired goal is to design a
mechanism that satisfies the following properties: (i) Individual rationality, i.e., each user should be in set S only if the SNP
can pay him/her more than his bid bi. Also each user not in S should get 0, (ii) Truthful (or group-strategyproof): Each user
(or any group of users) should have an incentive to reveal their true value bi as their bid, and (iii) budget-balance, i.e., the
total revenue f(S) of the set should be divided in some way among users and the provider.

One way to design a mechanism with the above properties is via finding a cross-monotonic revenue sharing method, i.e., finding
a function v : U × 2U → R, where for each two subset S ⊆ T ⊆ U of users and each user i 	∈ T , we have v(i, S) ≤ v(i, T ).
A revenue sharing method is budeget-balanced for a revenue function f , if for any subset S ⊆ U ,

P
i∈S v(i, S) = f(S). Given

a budget-balanced cross-monotonic revenue sharing method for a revenue function f , one can design Moulin mechanisms
satisfying all the above properties. It is also known that for supermodular revenue functions f , there exists a budget-balance
cross-monotonic revenue sharing method v for f [29]. As a result, we get the following:

Corollary 7. Given a revenue function f based on the tree-based model, one can design a mechanism satisfying individual
rationality, group-strategyproofness, and budget-balance properties.


