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Abstract. We consider a generalization of the discrete Voronoi

game, in which consumers with positive purchase power who are

located on the vertices of a network wish to connect to the nearest

facility. Knowing this, competitive players locate their facilities

on vertices, trying to capture the largest possible market share.

We study conditions that guarantee the existence of a pure strat-

egy Nash equilibrium in this finite non-cooperative game for pro-

gressively more complicated classes of networks, focusing in the

two-player case although some results can be extended to a larger

number of players. We find that equilibria in cycles exist when

there is at least one dominant vertex with a sufficiently big de-

mand. In the case of trees, equilibria always exist and consist

of players selecting a centroid, defined as a solution to a central-

ized facility location game. For the case of a general graph, we

construct a tree of maximal bi-connected components and apply

the results derived for the simpler classes to get sufficient condi-

tions for the existence of an equilibrium. This is shown to pro-

vide a complete and efficient characterization of equilibria in a

broad class of structures, that includes cactus graphs. Finally, we

provide sufficient conditions that guarantee that removing edges

from the network increases consumer cost, which precludes sit-

uations like the Braess paradox, whereby removing an edge can

increase the performance for all players. We show these condi-

tions hold in a broad class of structures. These results imply that

the networks with the worst possible equilibria are achieved in

trees because they are minimal instances with respect to inclu-

sion. While we show that equilibria can be arbitrary inefficient in

general, we provide parametric upper bounds that depend on the

topology of the network.

1 Introduction
Facility location problems study how to best locate facilities un-

der the assumption that consumers will connect to the nearest

open facility. Although most of the work in this area has been

done from the perspective of centralized optimization, some of

the existing literature has focused on the competitive version

where different players choose a location each and compete for

consumer demand. Namely, Hotelling introduced the first facil-

ity location model under competition [25]. This influential model

assumes that two players have to each select a location in a lin-

ear segment, and that a continuum of uniformly-distributed con-

sumers along the same segment select the closest facility.

Facility location games have several applications. Besides the

∗Columbia Business School, New York, NY, USA.

Emails: {ygur14,stier}@gsb.columbia.edu.

most immediate one, which is to use it to locate facilities, an in-

teresting application that generalizes the work of Hotelling is a

product differentiation model. Competing firms wish to max-

imize market share by producing the most profitable product,

which is the one that attains a maximum demand. To do that,

firms must select the properties of the product knowing that its

competitors will do a similar thing. The analysis of this situation

has been the subject of extensive research that focused on spa-

tial competition in a continuous (usually linear) market in which

consumers are distributed (in most cases, uniformly) over a low

(mostly one) dimensional space [14, 20, 4, 32, 17]. Another fa-

mous variation is Salop’s circular city model [37]. However, there

have been relatively few attempts to study this competition prob-

lem when either the design characteristics are captured in a multi-

dimensional space, or products are described as general objects.

Examples of markets with these characteristics are given by radio

and TV where the audience does not directly pay to the producer

for consumption, some bus transit systems where bus routes are

selected by operators but a regulatory authority sets fares, and in

higher education in some countries where institutions adjust their

program offerings but tuition rates are set by the government. We

provide more details on this application below.

We assume that the characteristics of the market are encoded

in a graph. Indeed, Wendell and McKelvey extended the basic

model of Hotelling to a network context in which vertices repre-

sent consumers and edges succinctly encode the possible routes,

but considered the set of possible locations to be the entire graph,

including the interior of edges [38]. We only allow facilities to

be located in the vertices and study the existence of equilibria

for progressively more complicated network structures. Because

each player selects a vertex in the network, this game is finite

and therefore always admits an equilibrium in mixed strategies

[31]. But because randomizing over the location of a facility is

not natural (it is hard to imagine that a player can make an im-

portant decision with a big financial impact using a coin flip), we

focus on pure-strategy equilibria. However, there is no guarantee

that such an equilibrium exists since it may happen that for any

configuration of locations, one player always has an incentive to

select another location instead of the one currently selected.

Recognizing that existence cannot be guaranteed, research ef-

forts in the literature focused on alternative solution concepts.

Prescott and Visscher [35] considered a Stackelberg game in

which the players sequentially choose a location for their facil-

ities. Hakimi [22, 23] presented computational approach to find

the Stackelberg equilibrium. Several authors continued the study

of optimal strategies and they extended this formulation in differ-
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ent directions such as allowing a player to control several facili-

ties [8, 9, 15, 16, 30, 34, 36]. Other variants of the model include

using utility models [10, 28], distributing demand using a logit

rule [13], applying a gravity rule [5, 6, 7, 9, 11], and defining a

sphere of influence to describe facility attractiveness level [12].

Our work closely relates to those of Durr and Thang [3], and

Mavronicolas et al. [29]. They consider a discrete version of the

Voronoi game in which vertices have equal weights, for a gen-

eral number of players. Durr and Thang studied the existence of

equilibria, and characterized the ratio of the consumer costs be-

tween the worst and the best equilibria. While they showed that

deciding the existence of a Nash equilibrium for a given general

graph is NP-hard, we provide existence conditions and charac-

terization in complexity which is linear in the size of the graph

for progressively more complicated classes of networks, up to a

broad class of general graphs, and allow general positive weights

for the vertices. Instead, Mavronicolas et al. studied cycle graphs;

we generalize their results on the existence of equilibria and their

efficiency to the case of general positive weights in cycles and to

broader classes of graphs.

Our Results We start our study of the equilibria of the facility

location games with cycles. We find that an equilibrium exists if

and only if one of the vertices is dominant, that is, it has a suf-

ficiently big demand so it is convenient to locate a facility there.

In the case of trees, we show that an equilibrium is always guar-

anteed to exist and it consists of facilities located in one of the at

most two centroids of the tree. (A centroid is a solution to the 1-

median problem in which an agent wants to place a single facility

in the network to minimize the distance between all vertices and

that facility.) We combine the two previous cases to provide re-

sults for more general graphs. We show that if one reduces an ar-

bitrary graph to a tree of maximal bi-connected components, the

equilibrium must be located in the bi-connected component that

corresponds to the centroid of that tree, and that it must also be

an equilibrium in the projection of the full graph to that compo-

nent. This provides sufficient condition for equilibria in general

graphs, which in the case where the bi-connected center of the

graph is either a single vertex or a cycle (e.g., in cactus graphs

where each edge is contained in at most one cycle) renders a full

characterization. We mainly focus on duopolies but some results

extend to more firms. The small number of firms can be justi-

fied by barriers of entry due to high investment requirements and

technological constraints.

At equilibrium, the consumer cost is not necessarily optimal

because players select their location optimizing the demand they

attract, disregarding the former objective. Koutsoupias and Pa-

padimitriou introduced the concept of price of anarchy to quan-

tify the gap between the consumer cost at equilibrium and the

minimum possible consumer cost that would be attained if play-

ers were controlled by a social planner [27, 33]. We present in-

stances that illustrate that equilibria of the facility location game

can be extremely inefficient, even in trees or cycles. To under-

stand what instances are particularly bad, we study in what cases

this game is monotone with respect to a topology given by edge

inclusion. We provide sufficient conditions under which remov-

ing an edge cannot improve equilibria, excluding situations like

the Braess paradox [2] whereby adding an edge can decrease the

performance of all players. The implication is that for monotone

instances, the worst possible inefficiencies are achieved in trees.

Although the price of anarchy cannot be bounded in general, we

provide parametric upper bounds that depend on the size of the

network, its diameter, and the variability of demands in the in-

stance. Notice that these parameters are given by the instance

and do not depend on the equilibrium itself so they can be used to

provide efficiency results for classes of instances that satisfy cer-

tain characteristics, which is useful when one works with realistic

applications since they are not infinitely large and their demands

are not unbounded.

A General Product Design Application A general version of

the product design problem referred to earlier may be modeled

using the facility location game described in this work. The ver-

tices V of the network represent products that are considered for

production (but will not be necessarily produced). The weight

w(vi) of a vertex quantifies its demand, given by the propor-

tion of consumers who prefer product vi over all other products.

Two products vi and vj are connected with an undirected edge

eij ∈ E whenever these products are partial substitutes in the

market. (This could represent that their functionally is similar or

that they are technologically close.) Firms choose a product they

will produce by selecting a vertex vi ∈ V . In summary, the graph

G(V,E) models a market where firms choose what to produce

and consumers buy the available product that is closest to their

preferred one. We assume that prices in the market are fixed (po-

tentially zero) and that revenues that producers receive are just

a function of their market share. The resulting equilibria repre-

sent production profiles chosen by firms. A consequence from

our monotonicity result (described in Section 6) is that a market

is more efficient when the graph that describes it is more dense

(i.e., the products preferred by consumers are more similar to one

another).

2 The Competitive Facility Location Game
We consider a finite undirected graph G(V,E) whose vertices

represent the locations of consumers. Each vertex v ∈ V has an

associated weight w(v) > 0 that represents the demand in that

location. We define W (S) :=
∑

v∈S w(v), and refer to the total

demand as W := W (V ). Edges in E form a connected graph.

Without much loss of generality, we consider that all edges have

length 1 (fractional values can be approximated with edge subdi-

visions). The game is played among players in N := {1, . . . , n}
who select a location for their facilities. We let xi ∈ V be the ver-

tex selected by player i ∈ N , and x := {xi}i∈N be the outcome

of the game.

Given a profile x, each vertex v splits its demand among facil-

ities F (v, x) := argmini∈N d(v, xi) that are closest to it. When

there is a tie, we assume that the demand w(v) will be equally

split between players in that set. Similarly, a player i will receive

its demand from vertices in Vi(x) := {v ∈ V |d(xi, v) ≤ d(xj , v)
for all j ∈ N}. The utility of player i ∈ N equals the total

demand attained at xi; i.e., ui(x) =
∑

v∈Vi(x)
w(v)/|F (v, x)| .

Note that our assumption of splitting demand equally between
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Figure 1: (Left) No equilibrium with two players in a cycle. (Right) The

vertex selected by both players is not dominant because W (S) = 201 >
303/2 = W/2.

equidistant facilities is equivalent to assuming that the demand

on each vertex is composed of small individuals that decide ran-

domly which facility to use. Alternative approaches, such as as-

signing the whole demand to one arbitrary facility, do not change

our main results, but may add technical difficulties in some cases.

We say that a profile x is a (pure strategy) Nash equilibrium
of the facility location game if ui(xi, x−i) ≥ ui(y, x−i) for any

y ∈ V and for any i ∈ N [31]. In this work, we primarily

focus on games with two players and study their pure-strategy

equilibria. The characterization of equilibria with more players

is much more involved and establishing conditions that guarantee

existence is far from trivial. (And in fact, deciding wheather or

not an equilibrium exists is NP-hard [3].) Where possible, some

directions of possible generalizations to more players will be pre-

sented. The following basic observation will be used to charac-

terize equilibria.

Remark 1 In an equilibrium of a facility location game with two
players, both of them experience the same utility. This holds be-
cause if it were not the case, the player with the lower utility
would prefer to select the location of the other player and conse-
quently split the market. Hence, both utilities at equilibrium must
equal W/2.

The next three sections study the game for progressively more

complicated classes of networks. For each class we present sim-

ple necessary and sufficient conditions for existence and unique-

ness of equilibria, and provide an efficient characterization that

allows us to list all possible equilibria. Note that we assumed de-

mand to be strictly positive. Allowing w(v) = 0 for some vertex

does not change any existence results, but it may generate multi-

plicity of equilibria.

3 The Case of Cycles
In this subsection, we study the equilibria of a facility location

game when the graph is a cycle. The game with two players on

a cycle may not posses an equilibrium: as illustrated in Figure 1

we can take a 6-cycle with weights that alternate between 1 and

100. Irrespective of the vertices selected by players, one of them

can always find a profitable deviation. However, when a weight

of 100 in an arbitrary vertex is replaced by one of 200, the profile

where both players select that vertex is at equilibrium.

We observe that if two players are located on different vertices

at equilibrium, not only each player receives half of the demand

(Remark 1) but also it controls exactly half of the vertices (if there

is an odd number of the vertices, one vertex is shared). Based

on this observation, the connected half-cycles will allow us to

characterize the equilibria of the game.

Definition 1 In a cycle of cardinality k, a half-cycle S is a set of
adjacent vertices that constitute a half of the cycle.

When k is even, a half-cycle may be either a set of k/2 adjacent

vertices, or a set of k/2 + 1 ones where the two extreme vertices

get only half of their original weight (i.e. half-vertices). When k
is odd, each half-cycle contains (k − 1)/2 adjacent vertices and

one half-vertex. In both cases, there are a total of 2k half-cycles.

When both players are located on different vertices, each of them

controls a half-cycle. Therefore, if both players are located on

the same vertex v, one of them would prefer a different vertex

only if a half-cycle of total weight exceeding W/2 that excludes

v exists. The approach we take to characterize equilibria with 2

players on cycles consists on finding dominant vertices, where a

vertex v dominant if an improving half-cycle does not exist when

both players are located on v. It turns out that a dominant vertex

exists if an only if an equilibrium exists.

Definition 2 A vertex v is called dominant if W (S) ≤ W/2 for
every half-cycle S that does not contain v.

To show the relation between dominant vertices and equilibria,

let us revisit the instance without equilibria presented earlier. The

picture on the right of Figure 1 shows that none of the vertices

in this cycle is dominant because for every vertex v we can find a

half-cycle that does not contain v and that has a weight larger than

W/2. A location profile in which one of the players is located at

a non-dominant vertex is not an equilibrium. Since the utilities

of both players at equilibrium are equal, it suffices to show that

the other player can reach a utility of more than W/2 to get a

contradiction. Missing proofs can be found in the full version of

the paper due to lack of space.

Theorem 1 An equilibrium of a facility location game with two
players on a cycle exists if and only if the cycle contains a dom-
inant vertex. In addition, any profile that consists of dominant
vertices is an equilibrium.

The set of equilibria for two players in a cycle is derived di-

rectly from the set of dominant vertices. Whenever there are m
dominant vertices, there are m +m(m − 1)/2 different equilib-

ria, not including permutations between players, and m2 equilib-

ria including permutations. In the full version of the paper, we

provide a method to enumerate all equilibria in a cycle of size k
in O(k) time, by finding all the dominant vertices.

Notice that when all weights are equal, all the vertices are dom-

inant and Theorem 1 implies that an equilibrium always exists.

In this case, any location profile is an equilibrium. This result

relates to the characterization of equilibria on unit-weight cycles

for general number of players by Mavronicolas et al. [29].

4 The Case of Trees
In this section, we focus on trees T = T (V,E) and study the

equilibria of the respective facility location games. A centroid of

the tree is a natural candidate for an equilibrium location.

Definition 3 A vertex v is a centroid of a tree T if it solves the 1-
median problem; i.e., if v ∈ argminvk∈V

∑
i∈V d(vk, vi)w(vi) .
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Figure 2: A graph (left) and its tree of bi-connected components (right)

Equivalently, a centroid can be defined as a vertex that minimizes

the maximum weight of a connected component induced by re-

moving this vertex. Kariv and Hakimi [26], who showed this

equivalence, also showed that a vertex v is a centroid of a tree T
of total weight W if and only if the removal of v induces com-

ponents of weight at most W/2. It can be shown that a tree with

positive weights has either one or two centroids. In the latter case,

both centroids must be adjacent. Our next two results will be use-

ful to characterize the equilibria of the facility location game in

trees.

Proposition 2 A tree T of total weight W has two centroids if
and only if the removal of a vertex induces a component of weight
exactly equal to W/2.

Proposition 3 For any vertex v that is not a centroid of T , there
is a centroid such that removing it will leave v in a component T ′

of weight W (T ′) < W/2.

We next prove that trees always admit an equilibrium.

Proposition 4 In a facility location game with two players on a
tree, an equilibrium always exists. Moreover, a location profile is
an equilibrium if and only if both players selected a centroid of
the tree (not necessarily on the same one).

This provides a O(k)-time algorithm for finding all the equilib-

ria in a tree of size k because we can solve the 1-median problem

to find all centroids of a tree within that time [19]. We remark

that if the number of players is larger than two, an equilibrium

may not exist, even if the graph is a tree. We will touch upon the

case of more than two players in Section 7.

5 More General Graphs
In this section we switch our attention to more general topolo-

gies. We will combine the results obtained for cycles and trees by

transforming a general graph to a tree and a cycle, while conserv-

ing the essential information of the instance. Using the results

of the previous two sections, we provide a full equilibria char-

acterization for a broad class of general graphs, and show that

location profiles at equilibrium for arbitrary general graphs can

be narrowed down to a typically small subset of vertices.

5.1 Bi-connected Components and Transformations Based
on Them Our approach will be to represent a graph as a tree

of bi-connected components, where a bi-connected component

is a subgraph in which each pair of vertices is connected by at

least two vertex-disjoint paths. This transformation represents a
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Figure 3: Two projections of B onto bi-connected components

general graph B as a weighted tree, while keeping some of the

relevant information about the original graph.

Definition 4 [24] A bi-connected component tree representation
of graph B(V,E) is a weighted tree B′(V ′, E′), in which every
maximal bi-connected component in B is represented by a vertex
in B′ whose weight equals that of the component it represents.

Notice that a vertex may belong to more than one maximal bi-

connected component. When this happens this vertex is copied

to the maximal bi-connected tree with its own weight. To pre-

vent double-counting the adjacent components will not include its

weight. Figure 2 provides an example that illustrates the transfor-

mation of a unit-weighted graph into its bi-connected component

tree. The construction of a bi-connected component tree from a

graph with k vertices can be done in O(k) operations [1].

Any general graph B contains a finite set {Yj} of maximal bi-

connected components. We would like to pay special attention to

components associated to centroids of the bi-connected compo-

nent tree. It turns out that these bi-connected components in B
are natural locations to look for the equilibria of B.

Definition 5 A bi-connected center of a general graph B is a
bi-connected component Yj associated to a centroid in the bi-
connected component tree B′.

Our next definition allows us to focus on the important part

of the graph by projecting it to one of its maximal bi-connected

components, typically the bi-connected center.

Definition 6 Given a general graph B and a maximal bi-
connected component Yj ⊆ B, we define a weighted graph Bj

as the projection of B onto Yj if Bj is isomorphic to Yj and the
weights of its vertices equal the original weights plus the weights
of the components not in Yj connected through that vertex.

To illustrate, Figure 3 depicts two projections of the graph B
shown in Figure 2.

5.2 Characterization of Equilibria To characterize the equi-

libria of a facility location game on a general graph B with two

players, our next result shows that it is enough to consider bi-

connected centers.

Theorem 5 A facility location game with two players on a gen-
eral graph B admits an equilibrium if and only if a projection
Bj of B onto a bi-connected center Yj admits an equilibrium as
well. Furthermore, if x is an equilibrium of Bj , it is also an equi-
librium of B.
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We next provide an example of a simple class of a general

graph, for which we can characterize equilibria using Theorem 5.

Corollary 6 If a bi-connected center of B is a single vertex v,
then x = (v, v) is an equilibrium in B. Moreover, the equilibrium
is unique if and only if v is a unique bi-connected center (i.e.
associated with the unique centroid of B′).

We next define a class of graphs for which the combination of

our results for cycles and trees provides a full characterization of

equilibria. This class both generalizes cycles and trees.

Definition 7 [18] A graph B(V,E) is called a cactus if each
edge in E belongs to at most one cycle.

We note that when B is a cactus, the maximal bi-connected

components are cycles, and so are the corresponding projections,

which allows us to use the results of Section 3.

Corollary 7 If a bi-connected center of B is a cycle (in particu-
lar, when B is a cactus), we have a complete characterization of
the equilibria of the facility location game with two players.

The idea of this result is to use Theorem 1 to find an equilib-

rium in the projection of B onto its bi-connected center, and then

use Theorem 5 to complete the characterization. Corollary 7 is

important because it applies to a fairly general class of graphs.

We complete this section with a short discussion on the com-

plexity of finding an equilibrium. Naively, to find equilibrium

profiles for n players in a k-vertex graph we need to check kn

possible profiles. For each we would need to calculate utilities,

and compare with the utilities calculated for all the alternatives.

Altogether, we need O(k2n) to complete a list of existing equilib-

ria. However, we have discussed the complexity of finding equi-

libria in trees and cycles in the previous sections, and showed

that in both cases the such process can be done in O(k)-time.

The computation of the bi-connected component tree [1] and the

projections on the bi-connected center can also be done in O(k)
time. Therefore, we can find an equilibrium of a graph with a

bi-connected center given by a cycle (cacti in particular) in O(k)-
time.

6 Efficiency of Equilibria
In this section we examine the inefficiency of the equilibria of

facility location games, usually referred to by price of anarchy.

To do that, we introduce our measure of social cost.

Definition 8 Let dxv denote the distance from vertex v ∈ V to
the nearest facility in x. We define the total consumer cost corre-
sponding to a location profile x as Dx :=

∑
v∈V dxvw(v) .

With this definition in mind, the consumer optimum refers to

the solution of the n-median problem, where n is the number of

players in the game. This profile is the best outcome for con-

sumers, but in practice it can only be achieved if players coordi-

nate themselves and agree to just benefit consumers, as oppose

to maximizing their own utilities. Let us denote the optimal con-

sumer cost by Dopt.

The Price of Anarchy is defined as the worst-case inefficiency

of an equilibrium among all instances [27]. It is a measure of how

much it is lost by the lack of central coordination. To compute

it, we evaluate the ratio of the cost of an arbitrary equilibrium

to that of a consumer optimum, and maximize the ratio over all

instances, as given by a graph G and a demand vector associated

to the vertices of G. In summary, we evaluate

POA := sup
G,{w(v)}v∈V

Deq

Dopt

,

where NE(G, {w(v)}v∈V ) is the set of equilibria for the instance,

and Deq := supx∈NE(G,{w(v)}v∈V ) Dx is the consumer cost of the

worst equilibrium. We note that the price of anarchy is defined

only when an equilibrium exists. Furthermore, we disregard in-

stances where Dopt = 0 because otherwise the inefficiency is triv-

ially unbounded. This can happen for instance in a game with two

players on two vertices connected by an edge. A consumer op-

timum selects both vertices achieving a cost of zero while both

players at equilibrium may select the same vertex.

6.1 Monotonicity In this section, we study if equilibria of fa-

cility location games are monotone with respect to edge removals.

In effect, it would be intuitive that such a thing happens because

removing edges constrain results so value would be lost. Nev-

ertheless, it is well-known that removing edges in network rout-

ing games can make all players (and the social cost) better off.

This apparently counterintuitive phenomenon has been called the

Braess paradox [2]. We show that facility location games are

well-behaved in this respect: equilibria get worse when an edge is

removed. That motivates the following definition of monotonicity
for instances. We study this property for the case of two players,

noting that whether it holds or not depends on the number of play-

ers in the game.

Definition 9 Let B(V,E) be an arbitrary graph that admits an
equilibrium. We say that B is monotone under edge removals if
for any subset of edges E′ ⊆ E that induces a connected graph
B̂(V,E′), B̂ has an equilibrium such that Deq(B̂) ≥ Deq(B).

Whenever we remove an edge from a monotone graph, the

worst case equilibrium can only get worse. Furthermore, the

property is transitive: if B(V,E) is monotone and E′ ⊆ E in-

duces a connected graph that admits an equilibrium, B̂(V,E′) is

monotone too. We next show that monotonicity is obtained in a

broad class of structures in which bi-connected centers are fairly

simple. In particular, the result implies that cacti are monotone.

Theorem 8 Let B(V,E) be a general graph with bi-connected
centers that are either cycles or vertices, then B is monotone.

6.2 Bounding the Efficiency of Equilibria Using monotonic-

ity, it follows that when looking for inefficient instances and

price-of-anarchy results, it is enough to just consider trees. We

note that this result does not use the fact that there are only two

players in the game; it holds as long as the graph is monotone.
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Figure 4: A Bad Tree

Theorem 9 For any monotone graph G(V,E), for any edge e ∈
E that is contained in a cycle, G(V,E \ {e}) has a higher price
of anarchy.

The price of anarchy in trees, however, is not bounded, even

for two players and unit weights. Figure 4 shows an example of

two players on a tree with unit-weight vertices for which there is

a unique equilibrium and a unique social optimum for any k ≥
2. Under the unique equilibrium, both facilities are located in

in the center (the only centroid). There are O(k2) vertices at a

distance of O(k) of the centroid, totalling a consumer cost of

Deq = O(k3). On the other hand, it is optimal to place facilities

at the extremes, in the center of the clusters, where O(k2) vertices

are at a unit distance from the facilities while O(k) vertices along

the segment connecting the two extremes are located at distance

of O(k). This results in Dopt = O(k2), from where we see that

the price of anarchy is not bounded.

A similar example can be given for non-uniform weights when

keeping the size of the graph constant. The price of anarchy

grows when δ := maxv∈V w(v)/minv∈V w(v) → ∞. As an

example, we can take a path on |V | vertices whose two leaves

have a weight of (W − (|V |−2))/2 and the interior vertices have

unit weight. When W → ∞ we have Dopt → 0 while Deq is

bounded away from zero.

We next turn to show an upper bound on the price of anarchy

for a given tree as function of the size of the tree, the spread of

weights, and the diameter (i.e., the length of the longest path).

Proposition 10 For a tree of size |V |, diameter d and weights
between 1 and δ, the price of anarchy is bounded by

1 +
4δ|V |d
d2 − 4

.

When applying Theorem 9, Proposition 10 gives an upper

bound for the price of anarchy on any monotone graph. Theo-

rem 8 points out this bound holds for any network for which the

bi-connected center is either a cycle or a vertex, and in particular

holds for cactus graphs. We note that in the case of vertices with

uniform weight we have δ = 1, and that in the case of lines we

have |V | = d. As an example, for a unit-weight line with d ver-

tices we get a bound of 5. However, this bound is loose; the full

version of the paper shows that the price of anarchy in this case

is exactly 9/4.

It could happen that the price of anarchy is bounded for some

classes of graphs that do not contain trees because worst-case in-

stances would be excluded. Unfortunately, the price of anarchy

is unbounded even for cycles. We do not include an example be-

cause it is an extension of the instance shown in Figure 4.

7 Final Remarks
We have provided an exhaustive characterization of equilibria

for facility location games for different classes of topologies un-

der duopolies. Below we comment on some generalizations that

would be interesting to tackle in the future.

More Than Two Players. Another interesting direction is char-

acterizing equilibria for an arbitrary number of players in trees

and in cycles with arbitrary weights. Such results would allow

us to generalize Theorem 5 to ultimately provide necessary and

sufficient conditions for existence of equilibrium on more general

graphs and allow us to extend Corollary 7 for cactus graphs to an

arbitrary number of players.

We have seen that we can always find an equilibrium on a dom-

inant vertex of a cycle when there are two players. The general-

ization to more players is not immediate. Namely, the character-

ization of Theorem 1 was based on how players split the vertices

and the total weight and this property does not hold for more than

two players.

For the case of trees with two players, we have seen that we can

always find equilibria among the centroids. However, an equilib-

rium may not exist if more players participate. For example, a

unit-weight tree with three players may not admit an equilibrium.

Actually, one can show that there is an equilibrium only if any

centroid of that tree has a degree strictly larger than two. We

note that this characterization generalizes the fact that an equilib-

rium does not exist for three players on a unit-weight line. In the

full version of the paper, we provide a complete characterization

of equilibria on a tree with three players using a decomposition

technique that may be useful for further generalizations. While

a generalization to an arbitrary number of players on a tree is

difficult, such generalization may be successful for simpler struc-

tures. For instance, in sharp contrast to the case of a line with

three players, Gur shows that equilibria always exist on a line

with k unit-weight vertices with 4 or more players [21]. He also

provides the equilibrium profiles, which depend on the values of

n and k

General Bi-connected Graphs. Corollary 7 provides a charac-

terization of equilibria for two players in a cactus, and more gen-

erally whenever the bi-connected center of the graph is either a

cycle or a vertex. However, a bi-connected graph can have a more

complicated structure than a cycle, making equilibria harder to

find. A characterization of equilibria for two players in a general

bi-connected graph would yield, in the form of Corollary 7, an

equilibrium characterization for two players on an arbitrary gen-

eral graph.

Monotonicity. It would be interesting to establish monotonicity

for other classes of graphs. Theorem 9 would imply that the mini-

mal elements of that class with respect to inclusion are worst-case

instances. The upper bound provided by Proposition 10 would

hold too.

Multiple Facilities for each Player. Generalizing our results to

the case where each player controls M facilities is far from trivial.

Taking the case of trees as an example, Proposition 4 cannot be

generalized: even for M = 2, the M -median solution does not

necessarily represent an equilibrium.
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