
Making Currency Inexpensive with iOwe

Dave Levin∗, Aaron Schulman�, Katrina LaCurts†, Neil Spring�, Bobby Bhattacharjee�
∗HP Labs, �University of Maryland, College Park, †MIT CSAIL

∗dml@hp.com, �{schulman,nspring,bobby}@cs.umd.edu, †katrina@csail.mit.edu

Abstract

We introduce iOwe, a deferred compensation scheme that

can be used in a broad range of decentralized systems. iOwe

is reminiscent of a currency scheme backed by a precious

commodity: network resources. iOwe does not require a cen-

tral authority, proofs of work, continuous connectivity to cur-

rency issuers, or trusted storage. Instead, in iOwe, any princi-

pal may issue their own currency, in any amount, at any time.

”Currency” in iOwe, called iotas, is a promise of future work,

bootstrapped by peers’ trust of one another. We present sev-

eral applications of iOwe, and an evaluation in the context of

bootstrapping video streaming systems.

1 Introduction
Decentralized, peer-to-peer systems are built on the notion

of peers providing resources to one another. When peers

are selfish but mutually interested in what one another has

to offer, the basic strategy is trivial: peers simply trade re-

sources with one another [12, 27, 13]. However, peers in

various distributed systems [38, 30] have varying demands

across both time—Alice is interested in Bob today, Bob is in-

terested in Alice tomorrow—and space—Alice is interested

in something worth more than what Bob wants from Alice.

Digital currency1 is a natural mechanism to equalize in-

terest for the same reason physical currency has been useful

for over 4000 years: it enables liquidity. Participants who do

not simultaneously (or ever) have goods that they wish to ex-

change with one another can instead exchange currency. As

long as a participant can then exchange this currency with

someone who has a service of interest, a peer with currency

is a peer of interest.

Unfortunately, digital currency has yet to experience wide-

spread application in decentralized systems. We believe this

is due to two fundamental properties of digital currency. First,

digital currency is not backed by a good with intrinsic value.

Historically, physical money was a precious commodity, such

as a precious metal, whereas the legal tender of today is fiat

money; it has value because a centralized authority deems it

to be of value. Digital currency, like all fiat money, is subject

to inflation. Furthermore, if the value of the digital currency

is not directly linked to a good such as network or computa-

1By “digital currency,” we are referring to systems such as proofs of

work [17] and tokens issued within a peer-to-peer system [42, 26], not, for

instance, electronic transactions with a credit card.

tional resources, it can be difficult to establish prices and to

intuit about valuations of currency.

The second, and perhaps most important, property of dig-

ital currency schemes that make them difficult to apply in

today’s systems is that, much like physical currency, digital

currency schemes are designed to make owning money the

first-order privilege. So long as a participant can obtain a

valid piece of currency, they can derive utility from it. A pri-

mary requirement of such approaches is therefore that it be

non-trivial to obtain and particularly difficult to create money.

Solutions to this problem rely on techniques that are typically

not compatible with decentralized systems (§2).

We introduce iOwe, a new primitive to enable liquidity

in decentralized systems. iOwe differs fundamentally from

standard digital currency schemes in that the first-order priv-

ilege is not owning money, but rather the ability to spend
money. We demonstrate that this difference makes iOwe

applicable to a broader range of decentralized systems than

standard schemes. Each iOwe user may mint an unbounded

amount of their own money, called iotas, at any time. Io-

tas represent promises of future work—“This iota is good for

one 500KB transfer”—and are thus backed by an intrinsic

good: network or computational resources. In this sense, an

iota is similar to an IOU. Also like an IOU, an iota is trivial

to create, but has value only to those who are willing to ac-

cept it. iOwe relies on peers to evaluate whether or not they

trust those who have owned a given iota in order to determine

whether or not the iota’s creator can be expected to perform

the work promised in the iota.

The primary difference between iotas and IOUs is crucial:

an iota does not specify to whom the promise is made, and is

instead a promise to perform the work for whomever returns

the iota first. An iOwe peer may therefore exchange iotas that

it has received from other peers without requiring the iotas’

creators in the transactions. This increases the liquidity that

iOwe offers over standard, bilateral IOUs.

In the next section, we review related work in deferred

compensation schemes and their application to decentralized

systems. We introduce the iOwe design (§3), and demonstrate

that, because it is purely decentralized, it can be applied to a

wide range of systems (§4). We further demonstrate via sim-

ulation of multi-channel video streaming that iOwe quickly

detects acts of misbehavior, and provides incentive to peers

to maintain long-lived, weak identities (§5).

1

2 Related Work
Digital currency schemes fall into one of two broad cate-

gories: those that seek to emulate physical currency by mak-

ing it difficult to create money, and those that seek to emu-

late an IOU by restricting money exchange to some subset

of the trust topology. In all cases, digital currency faces the

challenge that it is easy to copy and, therefore, to double-

spend. To be useful, currency must retain its value by limit-

ing double-spending (or making it impossible to do so), and

by ensuring that users cannot arbitrarily devalue currency by

issuing too much.

The majority of prior work in providing currency-like liq-

uidity has focused on making it difficult to create money.

Indeed, work in this area is broad, with mechanisms span-

ning electronic cash [41, 2, 32, 18, 24], analogs to credit

cards [29], privacy concerns [5, 23], trusted hardware [4, 8,

11, 14, 28], trusted intermediaries [39, 40, 21], resource-

intensive proofs of work [17], and a wide array of other

domain-specific problems [19, 23, 31, 10]. By making money

difficult to manufacture, these systems make money easy to

spend—peers are willing to accept any valid bill, regardless

of who owns it—and they mitigate the attackers’ ability to de-

value currency by injecting a large amount of money. Unfor-

tunately, the “difficult tasks” upon which these systems rely

are typically not compatible with the goals and assumptions

of decentralized systems. The above systems require either

a central trusted “bank” to issue currency, trusted storage to

maintain transaction histories, or proofs of work that are typ-

ically wasteful and weak against botnets. We seek a currency

scheme that is itself decentralized and does not impose exces-

sive resource costs.

There have been few proposals for currency schemes like

iOwe, in which money is trivial to create but difficult to

spend. Recent work by Dandekar et al. [15], who investigate

a currency in which participants exchange bilateral IOUs with

participants they trust, and demonstrate that this limited land-

scape of exchange has a relatively small impact on liquidity

for several different trust topologies. In their system, peers

form IOU chains, so that if peer A owes B who in turn owes

C, then C can redeem work from A but only by going through

B. Conversely, iOwe allows peers to exchange iotas without

requiring prior owners to be online. We demonstrate in §3 the

mechanisms and policies iOwe employs to achieve this prop-

erty. Perhaps the most related work to iOwe is SHARP [20].

The mechanisms behind iOwe and SHARP are both based

on signature chains and effectively creating an append-only

log. The predominant difference between these two systems

lies in the policy space. iOwe is designed to facilitate ex-

change between multiple resource-owners (e.g., BitTorrent

peers), rather than to delegate resources among agents on

the same resource (e.g., PlanetLab users on the same host).

In this paper, we present a set of policies that inform a peer

whether or not to accept an iota, in such a way that protects

the user from acts of misbehavior. We suspect that these poli-

cies could be applied not only to iOwe and SHARP, but to

���

���

���

�
������

�
����

�
����

�
������

�
����

�
����

�
����

�
����

������

��	
������
���

������

��	
������
�����

������

��	
������
�������

Figure 1: iOwe usage example. The value below each peer

represents the amount of resources that peer has promised in

iotas that have yet to be redeemed. (a) Peer A issues an iota

in exchange for a 500 KB transfer from B. (b) B exchanges

this iota for the same level of service from C. (c) Finally, C
redeems the iota at A.

other systems that require verifiable ownership chains, such

as PeerReview [22].

3 iOwe Design
To be compatible with a wide range of decentralized systems,

iOwe’s mechanisms are designed to be lightweight in terms of

computation and communication. As we will see, the mech-

anisms alone are enough to protect against acts of misbehav-

ior. However, when combined with policies regarding what

iotas to accept or reject, we demonstrate that iOwe is resilient

to peers who double-spend, refuse to honor their promises,

or fail to maintain long-lived identities. We present iOwe’s

mechanisms and policies in turn.

3.1 Mechanisms
iOwe exports three basic mechanisms: creating, spend-

ing, and redeeming iotas, as demonstrated in a high-level

overview in Fig. 1. Each of these have negligible compu-

tation and communication costs, and they serve to facilitate

the spending of iotas between principals by effectively im-

plementing an append-only log.

3.1.1 Creating iotas
Iotas are not proofs of completed work, but instead are

promises of future work. Node A issues an iota I by calling

issueA(resource, expiry-time). issueA returns an iota with

the following form:

I = 〈A, resource, expiry-time, nonce n〉
This iota states that any peer who redeems this iota at A,

before the stated expiry time, will be provided the speci-

fied application-dependent resource. In a block-based trad-

ing system, for example, the resource could be a number of

blocks that the issuer promises to provide. The nonce n dis-

tinguishes iotas generated by A. Cryptographic operations at

2

the time of issue are not required; nothing prevents A from is-

suing an unlimited amount of currency. Note also that, unlike

IOUs, iotas do not indicate ownership; rather, the iota repre-

sents a promise that the issuer will provide the stated work to

whomever redeems the iota first.

3.1.2 Spending iotas
A peer spends an iota by signing the iota followed by the

recipient’s public key. A (with private key Ak) spends iota I
at B (with public key Bp) by transferring I to B (Fig. 1a). A
invokes spendA(I, Bp) to produce IA→B where:

IA→B = [I, Bp]Ak

B may further spend this iota at another peer C with-

out making promises of its own (Fig. 1b). B invokes

spendB(IA→B , C) to transfer the iota it received from A to

C.

These chains of signatures are crucial to iOwe’s security

and incentives properties, such as ensuring no peers double-

spend iotas. The predominate cost of this approach is the lack

of anonymity [9]; when a peer B owns an iota, all peers who

own that iota in the future will be able to verify that B owned

it, who gave it to B, and who B gave it to.

The intended recipient may choose to reject an iota before

it is transferred. For example, if C had never interacted with

B, then A may not be able to accurately estimate whether

the iota’s issuer can be trusted to honor their promise, nor

whether a prior owner of the iota had double-spent and al-

ready redeemed it, thereby eliminating any value of the iota.

We discuss iota acceptance policies in §3.2.

3.1.3 Redeeming iotas
The final stage in an iota’s lifetime is being redeemed at the

issuer, in return for the service specified in the iota (Fig. 1c).

Iota redemption is therefore simply a special case of spend-

ing an iota, with the property that the iota is returned to its

issuer. As with spending, the recipient of the iota—in this

case, the issuer—may refuse to accept the transfer. There are

two reasons by which a peer is allowed to refuse to honor an

iota he has created: if the iota has expired or if the issuer has

already honored the iota’s promise. To prove that he has al-

ready honored the iota, issuers store all redeemed iotas until

their specified expiry time. Note that multiple attempts to re-

deem an iota can only occur if some peer who has owned the

iota has double-spent it; we address this attack in §3.2.1. If an

issuer refuses to perform work he has promised and is unable

to provide such indemnifying proof, then that peer is said to

perform a step-omission attack, which we address in §3.2.3.

3.2 Policies
iOwe’s security and incentives properties derive predomi-

nately from user trust, and a set of policies defined over this

trust. This is necessary—because iotas represent promises for

future work, their valuation is intrinsically based on whether

or not the peer issuing that promise can be trusted to honor it.

Trust establishment can, in general, be system-dependent,

but takes the following basic form in iOwe. Two peers, A and

B, start without any trust at all. They then establish a his-

tory of successful simultaneous transactions, in which they

exchange resources of mutual interest with one another, such

as trading blocks in BitTorrent. This gives the peers the abil-

ity to measure one another’s ability and willingness to per-

form work, but without giving either peer the advantage of

getting significantly more resources before the other. Once A
and B develop sufficient trust from the limited transactions,

they can begin to exchange iotas for work. We call these non-
simultaneous transactions because one peer’s reward is de-

layed until he redeems the iota.

Although prior trust is a reasonable indication that peers

will honor their iotas, it is not a guarantee. We identify three

fundamental attacks that peers can launch in an attempt to

gain more from the system: double-spending attacks, Sybil

attacks, and step-omission attacks. In the remainder of this

section, we present each of these attacks, and the policies that

mitigate them, in turn.

3.2.1 Double-spending attacks
A peer may double-spend an iota by spending it at two (or

more) peers. Because iotas, like all digital currencies, are

trivial to copy, a double-spending attack is a simple attack

that must be addressed in order to retain iotas’ value.

The signature chains stored in iotas permit proof of double-

spending. Peer B double-spends the same iota I at C and D
by issuing spendB(IA→B , C) and spendB(IA→B , D). This

results in two signature chains that fork at B: (A → B → C)
and (A → B → D). These two signature chains together

constitute a proof of misbehavior (PoM) on behalf of B. Any

peer which observes two instances of an iota with a fork in

the signature chain can detect that a double-spending has oc-

curred, and can identify the peer who committed the attack,

namely, the final peer in the common suffix of the two signa-

ture chains. In the worst case, this will not occur until both

iotas are redeemed at the issuer, A, but in our implementation,

we also allow peers to compare recent iotas they have seen in

order to detect double-spending more quickly. Thus, iOwe’s

mechanisms allow for easy detection of double-spending, but

require an additional policy in order to mitigate the attack.

Policy toward double-spenders: When peer A obtains a

PoM implicating peer B’s double-spending, A freezes B’s

assets: A never trusts B again, and forwards this PoM to its

trusted peers.

It is important to note that the above policy does not make

double-spending impossible, rather it provides strong disin-
centive to do so. When peers apply the policy, the currency

and reputation of a double-spender B will be destroyed: peers

with proof of B’s misbehavior will refuse to accept any iota

that B has created. Thus, although double-spending may pro-

vide a short-term benefit—extra currency until the double-

spending is detected—the above policy outweighs this with a

permanent punishment.

Each peer A has incentive to inform other peers who trust

A of known double-spenders. Otherwise, double-spenders

3

may flood the market with iotas, consuming peers’ resources

and making it difficult for an honest peer to spend iotas.

Interestingly, A does not necessarily have incentive to in-

form peers who do not trust A. Because they would not ac-

cept an iota from A anyway, A gains no immediate benefit

from informing them. Further, A is essentially in competi-

tion with peers with whom A cannot trade but with whom

A’s trusted neighbors could. Keeping such peers uninformed

may result in them being unable to take A’s trusted neighbors’

iotas, increasing their availability for A.

3.2.2 Sybil attacks
iOwe is designed to be compatible with decentralized systems

which do not provide strong identities. When applied to such

systems, iOwe peers may attempt a Sybil attack [16]; that is,

they may create cheap pseudonyms, or Sybils, in an attempt

to gain more from the system than they would by maintain-

ing a single identity. A pseudonym in iOwe is “cheap” if it

performs no work for others, thereby earning no peer’s trust.

iOwe’s mechanisms limit the scope of potential attacks that

Sybils permit. Because peers only accept iotas created by a

trusted peer, Sybils cannot issue iotas. Also, since peers give

iotas only in exchange for work, a peer gains no additional

benefit from having its Sybils perform work to receive an iota

rather than simply performing the work himself.

However, the mechanisms alone do not address attacks

wherein a peer p uses its Sybils as a relay of iotas that p has

either created or obtained. In particular, p may spend iotas

he owns at one of his Sybils, s, and then use s to double-

spend. Given the policy from §3.2.1, the double-spending

attack will eventually be detected and s’s reputation will be

compromised, at which point p can simply replace that Sybil

with another. As a result, p will obtain the short-term benefit

that double-spending attacks provide, while pinning all of the

blame on a cheap pseudonym.

Such attacks are possible only if peers are willing to accept

iotas held, but not created, by an untrusted peer. We address

this with a policy that dictates that a peer A will accept an

iota only if A trusts all peers who have ever owned the iota:

Acceptance policy: Peer A accepts an iota I only if A trusts

the issuer and every prior owner of I.

Combined with the policy toward double-spenders, any

peer who double-spends will be unable to spend any iotas he

owns, whether he created them or not.

3.2.3 Step-omission attacks
When a peer B attempts to redeem an iota, its issuer A may

perform a step-omission, simply refusing to communicate

with the peer. The initial, straight-forward reaction is to no

longer value A’s currency:

Policy toward known step-omitters: When B detects a

step-omission by peer A, B devalues A’s currency: B no

longer accepts iotas created by A.

Upon detecting a step-omission, B has two options: at-

tempt to spend the iota, or spread the word of A’s defection.

An iota is not redeemed back to the issuer (A is not given

IA→...B→A) until A has provided the named service. Hence,

if A step-omits, B will retain ownership of the iota, and may

attempt to spend it at a peer who still trusts A.

Directly informing others of A’s silent defection is a more

difficult matter. Contrary to double-spending, step-omission

does not allow for nonrepudiable proofs of misbehavior. In-

stead, the peers who have experienced a step-omission from

A can choose to go public as a witness of this act. B becomes

a witness by “spending” the associated iota at a virtual null
node: X = spendB(IA→···→B , null). B can then forward

this “canceled” iota, X , to the peers who trust B. In doing

so, B can no longer spend the iota: he has already informed

its peers that it has transferred it to null, and another transfer

would be a double-spending.

Peers can interpret B’s canceled iota as B’s willingness to

pay to lodge a complaint against A. After all, B performed

work to obtain the iota. Multiple complaints lodged against

A may indicate to C that it, too, should devalue A’s currency.

Each peer may have a varying parameter θC of how many

complaints collectively indicate a step-omitter.

Policy toward alleged step-omitters: When C obtains θC

distinct iotas claiming defection from A, then C devalues A’s

currency: C no longer accepts iotas created by A.

This policy is much less stringent than one toward the more

egregious act of double-spending, because a step-omission

may not necessarily be an act of misbehavior. For instance,

the alleged step-omitting peer may have simply experienced

a network fault. By waiting for additional evidence, C can

be more certain to devalue the currency only of those who

consistently fail to uphold their promises.

3.3 Discussion

The policies discussed in this section are examples from a

larger space. For example, the presented policy toward step-

omitters is subject to an attack in which a rich participant can

smear another by simply accruing (and subsequently burn-

ing) many of their iotas. An alternative policy would be to

base decisions on the number of peers who file complaints,

rather than the number of complaints; after all, one peer’s

extreme dislike of another may not be as strong a signal as

a large contingent’s. One could also envision using PoMs

and step-omission allegations as input to a reputation system.

To more quickly and reliably spread word of a step-omission

failure, one could alternatively apply techniques from gener-

alized accountability systems, such as Nysiad [25] and Peer-

Review [22]. Such systems attribute to each peer a set of wit-
nesses; in the event of a step-omission failure, these witnesses

attempt to contact their associated peer and, if they agree the

peer is step-omitting, they inform others of this silent defec-

tion. Investigating other policies and their connections to ex-

isting systems is an area of future work.

4

4 Applications
iOwe’s decentralized, lightweight design makes it suitable for

a wide range of applications. We discuss three here, demon-

strating that iOwe’s necessary input—prior interaction among

participants—naturally appears in many settings.

4.1 Bootstrapping
iOwe can assist peers in more quickly joining a system. Con-

sider a peer-to-peer video streaming system [3, 6, 34, 33], in

which peers exchange pieces of a live video stream. Efficient

bootstrapping is critical in video streaming, as users wish to

start watching the stream as soon as they tune in. However,

bootstrapping times are notoriously poor in mesh-based sys-

tems, wherein a peer has no pieces of the stream to trade ini-

tially.

Users switching among multiple channels compounds

bootstrapping, but this is the setting where iOwe thrives. As

peers change channels, they build up history with others. This

history serves as the necessary, a priori trust to iOwe. When

user A joins a channel, there may be another user B in that

channel with whom A has interacted. A may then issue (or

exchange) iotas with B in order to quickly fill her video buffer

and start viewing the stream.

4.2 Seeder promotion in BitTorrent
Encouraging BitTorrent peers to stay in a swarm after com-

pleting a download is a challenging open problem. Proposed

solutions exhibit parallels to that of traditional digital cur-

rency. For instance, BitTorrent communities [1] use a cen-

tralized coordinator to track peers’ contributions as seeders,

and BitStore [36] explicitly incorporates its own form of cur-

rency. One-hop reputations [35], on the other hand, limit IOU

spreading to a single hop.

iOwe can be applied in this setting as follows. Peers who

have completed downloading a file act as seeders, not by giv-

ing out pieces of the file for free, but by exchanging them for

iotas. They can then exchange the iotas they received from

seeding in the past for blocks from seeders in future swarms.

This example demonstrates that iOwe can be applied to keep

peers in a system even when they do not otherwise have a

benefit to do so.

4.3 Payments among friends
Finally, we note that iOwe offers natural mechanisms that

can be applied to a much wider set of applications than net-

worked systems. iOwe can, for instance, facilitate transac-

tions between friends by offering a simple and easy means of

accounting for who owes what. Users may issue iotas to their

friends when they borrow money or favors, and exchange

these promises of repayment to others. iOwe thereby serves

as a means of making concrete the social capital that exists

in a nebulous form today. A natural substrate upon which to

deploy iOwe in this fashion is online social networks, which

opens the possibility for a rich set of policies, such as accept-

ing an iota only if its prior owners are within no more than,

say, two friend-of-friend hops.

owners 1 2 3 4 5 6–9

fraction 0.315 0.160 0.290 0.190 0.041 0.002

Table 1: iOwe permits multi-hop exchanges.

5 Experimental Evaluation
We present a preliminary evaluation of iOwe in the context

of bootstrapping a multi-channel video-streaming system, as

discussed in §4.1. In our simulation, when a peer joins a chan-

nel, they are alloted up to 20 random neighbors also on the

same channel. We model trust in a rough approximation of

interaction as proof of work: once two peers have interacted

for 60 seconds, they trust one another. Thousands of peers

change among the 111 channels according to a distribution

found in a recent study of TV viewer behavior [7], both in

terms of which channels users switch to and how long they

stay on a channel. In the simulation, we allow a single iota to

be sufficient payment for bootstrapping, but find that the same

results hold for varying bootstrapping costs. Our initial re-

sults show that iOwe not only allows peers to be bootstrapped

quickly, but gives peers incentive to maintain weak identities

and is robust against attacks such as double-spending.

Iota lifetimes
We begin our study by measuring how often iotas change

hands. Table 1 shows the benefit iOwe adds from allowing

peers to exchange others’ promises; pairwise exchanges ac-

count for only 31% of all iOwe transactions. The particular

values from Table 1 reflect the users’ channel changing be-

havior from the underlying dataset. These are certain to vary

from one system to another. The benefit of iOwe is its ability

to adapt to various usage characteristics, as opposed to being

limited to bilateral exchange or some fixed number of hops.

Prior work on a one-hop reputation system [35] focused on

trading only between pairs of nodes, and seemed to demon-

strate a contradictory result: that this limited scope of indirec-

tion offered sufficient liquidity. This discrepancy arises from

the differences between the trust topologies in our simulation

and in the one-hop reputations study. In our study, all peers

change channels and trust their neighbors after 60 seconds of

interaction, resulting in a mesh with high average degree, but

with no set of nodes who have many more edges any other

node. In the one-hop reputations study, however, there is a

small core of BitTorrent users who have trust edges to virtu-

ally all other nodes. While it is possible that there are many

different trust topologies that occur in deployed systems, we

are skeptical of the existence of a small trusted group of Bit-

Torrent users, as these are likely to be participating not to

trade but to monitor [37].

Weak identities are enough
We next study whether peers have incentive to maintain their

weak identities for long periods of time. Figure 2 shows the

fraction of channel changes that can benefit from using iOwe

(binned over 5 minute intervals). Each line represents 1000

viewers joining the system. Shortly after joining the system,

more than half of a viewer’s channel changes are to channels

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

fr
ac

tio
n

of
 io

ta
 tr

an
sa

ct
io

ns

time (hr)

Figure 2: Viewers do not have incen-

tive to give up their identity.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5 6 7 8

fr
ac

. i
ot

a
tr

an
s.

time (hr)

 0
 25
 50
 75

 100
 125
 150

tr

us
tin

g
us

er
s

Figure 3: Viewers quickly freeze the

assets of a double-spender.

failed

spend

issue

 0 1 2 3 4 5 6 7 8

io
ta

 o
pe

ra
tio

n

time (hr)

 0
 150
 300
 450
 600
 750
 900

tr

us
tin

g
us

er
s

Figure 4: Viewers quickly devalue the

currency of step-omitters.

at which more than 5 of its neighbors are willing to accept its

iotas. At any point, were a user to shed her identity in favor of

a new one, she would suffer from fewer channel-changes at

which she could spend iotas. These results indicate that iOwe

provides users incentive to maintain their identities.

Culling double-spenders
Next we study how the system reacts to a double-spending
attacker. Figure 3 shows our results run on a system consist-

ing of 5,000 viewers. In this experiment, we simulate a peer

double-spending after one hour. Although this peer double-

spends only once, he quickly suffers the consequences of per-

forming a provable act of misbehavior. Peers exchange the

proof of misbehavior that the double-spending generated with

the neighbors they trust. These neighbors forward the PoM to

their neighbors and so on, and as peers change channels, the

PoM propagates throughout the system quickly. Hours after

this quick and large freezing of the double-spender’s assets,

the peer interacts with others who have yet to receive the PoM

(predominantly because they had spent a long period of time

on an unpopular channel), and thus begin to trust the peer.

However, they too eventually obtain a copy of the PoM and

the trust is lost. Thus, iOwe’s policy toward double-spenders

results in swift and long-lived disincentive to do so.

Detecting step-omitters
Finally, we study the effect of a peer repeatedly refusing to

honor the promises in the iotas he issued. Recall that, unlike

double-spending, step-omission failures in iOwe do not re-

sult in a PoM, and instead peers infer misbehavior only after

receiving some threshold number θ of “complaint” iotas, as

described in §3.2.3. In this experiment, the threshold θ is set

to 10, and the tenth step-omission occurs at around 3.7 hours.

The upper plot in Fig. 4 shows the number of users that trust

the attacker; in the lower plot, each point represents when the

attacker changed channels, and whether he was able to issue

a new iota, spend one he had received from someone else, or

neither.

The first observation from Fig. 4 is that it takes longer to

gather and disseminate sufficient evidence of step-omission

than for double-spending. The drop-off in the number of

peers begins as soon as one peer discovers that the attacker

has made ten omissions, at which point information spreads

quickly, as with double-spending. The second observation is

that, once this attacker’s misbehavior has been detected, the

value of the attacker’s currency is rendered worthless; the at-

tacker is no longer able to issue his own iotas, and experiences

a greater number of failed bootstrapping attempts after being

caught. However, the fact that the peer did not honor his own

promise of resources does not necessarily mean that the peer

is a double-spender—he may, for instance, have simply expe-

rienced a spike in demand at around hour 3.7—and as such,

peers continue to allow the peer to spend iotas that he did not

create.

6 Conclusion
We have presented iOwe, a deferred compensation scheme

for decentralized systems. The main insight behind iOwe is to

make money transfer the privilege, not the money itself. This

allows iOwe to avoid mechanisms such as centralized author-

ities, trusted hardware, and proofs of work, neither of which

are compatible with decentralized systems. Further, because

iOwe is based on promises for future work, the “currency”

in iOwe is backed by an intrinsic good, which we expect to

remove the problem of inflation.

We have demonstrated iOwe’s utility via simulation in a

multi-channel video streaming system. Our simulation shows

that even though iOwe does not use strong identities, it pro-

vides sufficient incentive for its users to build and maintain

trust with other peers. Additionally, peers that misbehave are

punished quickly and thoroughly. We have also discussed

other systems where iOwe is applicable, showing that it can

be used as a mechanism for deferred compensation in many

of today’s decentralized systems.

Acknowledgments
We would like to thank the anonymous reviewers for their

helpful comments. This work was supported in part by

NSF grants CNS-0643443, GRF-0645960, CNS-0917098,

and IIS-0964541.

References
[1] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ri-

peanu. Influences on cooperation in BitTorrent communities.
In Proc. of P2PEcon, 2005.

6

[2] H. V. Antwerpen. Electronic cash. Master’s thesis, CWI,
Neterlands, 1990.

[3] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Re-
silient Multicast Using Overlays. In Proc. of ACM SIGMET-
RICS, 2003.

[4] S. Brands. Untraceable off-line cash in wallet with observers.
In CRYPTO, 1993.

[5] J. Camenisch, J.-M. Piveteau, and M. Stadler. An efficient
electronic payment system protecting privacy. In ESORICS,
1994.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: High-Bandwidth Content
Distribution in a Cooperative Environment. In Proc. of ACM
SOSP, 2003.

[7] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatri-
ain. Watching television over an ip network. In IMC, 2008.

[8] D. Chaum. Achieving electronic privacy. Scientific American,
267(2):96–101, 1992.

[9] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash.
In CRYPTO, 1988.

[10] D. Chaum and T. Pedersen. Transferred cash grows in size. In
EUROCRYPT, 1992.

[11] D. Chaum and T. Pedersen. Wallet databases with observers.
In CRYPTO, 1992.

[12] B. Cohen. Incentives Build Robustness in BitTorrent. In
P2PEcon, 2003.

[13] L. P. Cox and B. D. Noble. Samsara: Honor among thieves in
peer-to-peer storage. In SOSP. ACM Press, 2003.

[14] R. Cramer and T. Pedersen. Improved privacy in wallets with
observers. In EUROCRYPT, 1993.

[15] P. Dandekar, A. Goel, R. Govindan, and I. Post. Liquidity in
credit networks: A little trust goes a long way. Tech. rep.,
arXiv:1007.0515, 2010.

[16] J. R. Douceur. The Sybil attack. In IPTPS, 2002.

[17] C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work.
In CRYPTO, 2005.

[18] T. Eng and T. Okamoto. Single-term divisible electronic coins.
In EUROCRYPT, 1994.

[19] N. Ferguson. Extensions of single-term coins. In CRYPTO,
1993.

[20] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. Sharp:
An architecture for secure resource peering. In SOSP, 2003.

[21] F. D. Garcia and J. henk Hoepman. Off-line karma: A decen-
tralized currency for static peer-to-peer and grid networks. In
International Networking Conference (INC), 2005.

[22] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview:
Practical accountability for distributed systems. In SOSP,
2007.

[23] B. Hayes. Anonymous one-time signatures and flexible un-
traceable electronic cash. In AUSCRYPT, 1990.

[24] R. Hirschfeld. Making electronic refunds safer. In CRYPTO,
1992.

[25] C. Ho, R. van Renesse, M. Bickford, and D. Dolev. Nysiad:
Practical protocol transformation to tolerate Byzantine fail-
ures. In NSDI, 2008.

[26] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and B. A.
Huberman. Tycoon: an implemention of a distributed market-
based resource allocation system. Multiagent and Grid Sys-
tems, 1(3):169–182, 2005.

[27] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi,
and M. Dahlin. BAR gossip. In OSDI, 2006.

[28] C. Lim and P. Lee. A practical electronic cash system for smart
cards. In Korea-Japan Workshop on Information Security and
Cryptography, 1993.

[29] S. Low, N. Maxemchuk, and S. Paul. Anonymous credit cards.
In ACM Conference on Computer and Communications Secu-
rity, 1994.

[30] C. Lumezanu, D. Levin, and N. Spring. PeerWise discovery
and negotiation of faster paths. In HotNets, 2007.

[31] G. Medvinsky and B. Neuman. Electronic currency for the
internet. Electronic Markets, 3(9/10):23–24, 1993.

[32] T. Okamoto and K. Ohta. Universal electronic cash. In
CRYPTO, 1991.

[33] V. Pai and A. E. Mohr. Improving robustness of peer-to-peer
streaming with incentives. In NetEcon, 2006.

[34] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr. Chainsaw: Eliminating trees from overlay multicast. In
IPTPS, 2005.

[35] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One
hop reputations for peer to peer file sharing workloads. In
NSDI, 2008.

[36] A. Ramachandran, A. D. Sarma, and N. Feamster. BitStore:
An incentive-compatible solution for blocked downloads in
BitTorrent. In NetEcon+IBC, 2007.

[37] G. Siganos, J. M. Pujol, and P. Rodriguez. Monitoring the
Bittorrent monitors: A bird’s eye view. In PAM, 2009.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In ACM SIGCOMM, 2001.

[39] N. Tran, J. Li, and L. Subramanian. Collusion-resilient credit-
based reputations for peer-to-peer content distribution. In
NetEcon, 2010.

[40] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA
a secure economic framework for p2p resource sharing. In
P2PEcon, 2003.

[41] H. Youm, S. Lee, and M. Rhee. Practical protocols for elec-
tronic cash. In Korea-Japan Workshop on Information Secu-
rity and Cryptography, 1993.

[42] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, cheat-
proof, credit-based system for mobile ad-hoc networks. In
Infocom, 2003.

7

