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Ad Auctions with Data

Hu Fu, Patrick Jordan, Mohammad Mahdian, Uri Nadav, Inbal Talgam-Cohen, Sergei Vassilvitskii*

Abstract—The holy grail of online advertising is to target users
with ads matched to their needs with such precision that the
users respond to the ads, thereby increasing both advertisers’
and users’ value. The current approach to this challenge utilizes
information about the users: their gender, their location, the
websites they have visited before, and so on. Incorporating this
data in ad auctions poses an economic challenge: can this be done
in a way that the auctioneer’s revenue does not decrease (at least
on average)? This is the problem we study in this paper. Our
main result is that in Myerson’s optimal mechanism, additional
data leads to additional revenue. However in simpler auctions,
namely the second price auction with reserve prices, there are
instances in which additional data decreases the revenue, albeit
by only a small constant factor.

I. INTRODUCTION

When an item with latent characteristics is sold, information

revealed by the seller plays a significant role in the value

ascribed to the item by potential buyers. For example, when

booking a hotel room on a website such as Priceline.com,

every extra piece of information—including the hotel’s star

level or its location—affects the price a buyer is willing to

pay. In a similar manner, in online advertising scenarios, any

information revealed about the ad opportunity—including the

description of the webpage’s content or the type of user—

plays a crucial role in determining the ad’s value, in particular

because this information is extremely useful in predicting the

click and conversion rate of the user.

In online display advertising settings, the publisher auctions

off opportunities to show an advertisement to its users in

real time, often through online ad marketplaces operated by

companies such as Yahoo!, Google or Microsoft. For example,

every time a user visits The New York Times website, the

opportunity to show an advertisement to the user is auctioned

off. Both the publisher (in this case The New York Times) and

the market operator have a great deal of information about the

ad opportunity, including page specific features such as layout

and content, as well as user specific features such as the user’s

age, gender, location, etc. How much of this information should

be revealed during the auction in order to maximize revenue?

This is the question we study in this work.
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While concealing information can only decrease social

efficiency, it may be advantageous in terms of revenue, since

releasing information may decrease competition and lead to

lower revenues. As a concrete example, suppose an advertiser

values males at $2 and females at $8. In an incentive com-

patible auction, the advertiser bids his value when the user’s

gender is known, but will hedge and bid the expected value of

$5 when the gender is not revealed (assuming each gender is

equally likely). If there is a second advertiser who values males

at $8 and females at $2, then revealing gender segments the

buyers. As a result, when gender is revealed the auctioneer

will face a bid of $8 and $2, and thus collect only $2 in a

second price auction; on the other hand, if the gender is kept

hidden, the auctioneer will have two bids of $5 and will collect

$5 in a standard second price auction.1

The example above may seem to suggest that it is never

in the auctioneer’s interest to release information about the

item. Indeed, Board [4] has shown that revealing informa-

tion can only decrease the expected revenue from a second

price auction with two bidders. However, the auctioneer has

additional tools to increase revenue at her disposal, namely

she can set a reserve price for each bidder. The right reserve

price may counter the potential loss in competition, allowing

the auctioneer to preserve its revenue. In the example above, a

reserve price of $8 for both advertisers would lead to a revenue

of $8 precisely in the case where gender is revealed.

Our Contribution: In this work we show that while re-

vealing information can lead to a decrease in expected revenue,

in the context of ad auctions adding reserve prices helps

counteract that trend. Specifically, we propose a model for ad

auctions with data, and show that in Myerson’s optimal auction

[15], the expected revenue is guaranteed to increase when

information about the ad is revealed. We then ask whether this

result requires the full generality of the optimal mechanism, or

if simpler reserve-based approaches lead to a revenue increase

as well. We show that simply introducing reserve prices is

not enough, by demonstrating examples where anonymous or

monopoly reserves lead to a decrease in expected revenue for

the auctioneer. However, this decrease in revenue is upper

bounded by a small multiplicative constant when the bidders’

values are drawn from distributions that satisfy a standard

regularity condition.

1A similar example shows how withholding information can decrease social
welfare: if the first advertiser values males at $2 and females at $8 and the
second advertiser values males at $8 and females at $3, when gender is hidden
the second advertiser always wins, even though it is more efficient to allocate
female users to the first advertiser.
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A. Related Work

Auction theory has extensively studied the following sce-

nario: The auctioneer has access to a private source of data

about the item; she wishes to maximize her expected revenue

by pre-committing to a policy of revealing or concealing data.

Two separate effects of revealing data have been identified—

the linkage principle by Milgrom and Weber [14], [11], and

more recently Board’s allocation effect [4]. The former states

that in certain settings, revealing data increases the expected

revenue from first price, second price or English auctions. The

latter applies to a different but overlapping family of settings,

and states that revealing data can either increase or decrease

the expected revenue from second price auctions, depending

on the number of participating bidders.

In more detail, the linkage principle is relevant to settings

with interdependent values, in which bidders’ estimates of the

item’s features are correlated, and their values for the item

depend not only on their own estimate but on estimates of

others as well. The linkage principle says that when bidders are

symmetric and their estimates are affiliated, the auctioneer can

increase her expected revenue by revealing her own estimate

of the item. Intuitively, revelation reduces bidders’ private

information and their ability to transform it into rents. In

contrast, the allocation effect and following it our result both

apply to settings with independent private values. Despite

being a special case of interdependent values, the linkage

principle has no effect in these settings since revealing the

auctioneer’s information does not decrease private information.

Instead, the allocation effect says that whenever information

revelation alters the order of the bidders’ values, the expected

second price revenue may change - when there are two bidders

the auctioneer will be worse off, and when the number of

bidders grows asymptotically the effect is reversed (under

certain conditions).

We study the effect of revealing information beyond the

second price auction and with any number of bidders. Our

focus on ad auctions justifies a specific model in which bid-

ders’ values are scaled by different constants determined by the

given information—a special case of Board’s general model

in which information can have an arbitrary effect on values.

Our analysis uses similar elements to Board’s for the two-

bidder case, but since we consider Myerson’s mechanism, the

revenue is determined by the maximum virtual value instead

of the minimum value, thus leading to different outcomes.

Additional Related Work: Emek et al. [2] consider in-

formation revelation in second price auctions with a general

information model. They demonstrate that even when the

number of bidders grows asymptotically, in general it may

be the case that neither full revelation nor full concealment

maximize the expected revenue, and in fact the auctioneer

can do better off by a non-constant factor by applying an

intermediary revelation policy. They proceed to study the

problem of finding the optimal revelation scheme and show

that, while computationally hard in general, several cases of

interest are polynomially solvable.

Levin and Milgrom [13] highlight the disadvantages of full

information revelation from a market design point of view—

with too much information every impression is essentially

unique, leading to thinner markets that are harder to operate.

Several proposed mechanisms address these issues [3], [6].

Dwork et al. [7] discuss important fairness concerns that arise

from revealing user data. A separate body of work considers

the case in which the bidders and not the auctioneer have

private sources of information about the item, resulting in

asymmetries among them; a recent example is Abraham et

al. [1].

II. PRELIMINARIES

We give a brief description of Myerson’s optimal mecha-

nism, which will be heavily used in Section IV. Myerson in

his seminal paper [15] showed that, in a single-item, truthful

auction where bidders’ valuations are drawn independently

from known distributions D1, · · · , Dn, the expected revenue

(a.k.a. virtual surplus) collected by assigning the item to

bidder i with valuation vi is ϕi(vi) = vi −
1−Fi(vi)
fi(vi)

, where

Fi is the cummulative distribution function of Di, and fi
is its density function. ϕi(vi) is called the virtual valuation

of vi. When ϕi(vi) is a monotone non-decreasing function

of vi, the corresponding distribution is said to be regular; in

the special case when
1−Fi(vi)
fi(vi)

is a monotone non-increasing

function of vi it is said to have monotone hazard rate

(MHR). When all distributions are regular, an optimal truthful

mechanism is simply to assign the item to a bidder with the

highest nonnegative virtual valuation. When the distributions

are not regular, however, such an allocation is not truthful.

For such cases, Myerson showed a procedure called ironing,

which monotonizes virtual valuations and produces the so-

called ironed virtual valuations {ϕ̃i(vi)}. The ironed virtual

valuation ϕ̃i(vi) is monotone non-decreasing with vi for

all distributions, and the optimal truthful auction allocates

the item to the bidder with the highest nonnegative ironed

virtual valuation. The optimal expected revenue is therefore

E[max{0, ϕ̃(v1), . . . , ϕ̃(vn)}].
The (ironed) virtual value can be seen as the marginal

revenue, as pointed out by Bulow and Roberts [5], and it is the

derivative of the (ironed) revenue curve. Given a distribution

F , each probability quantile q corresponds to a value v =
F−1(1 − q). Each value, in turn, corresponds to an expected

revenue v(1−F (v)) generated by setting a posted price of v.

A revenue curve depicts such revenue R(q) = qF−1(1 − q)
as a function of the quantile q, as shown in Figure 1, and

the ironed revenue curve is the concave hull of this curve, as

indicated by the dashed curve in Figure 1. The ironed virtual

valuation of v is then
dR̃(q)
dq

∣

∣

∣

q=1−F (v)
.

III. MODEL

In this section, we describe our model for an ad auction with

data. The players are the publisher who acts as an auctioneer,

and n advertisers, bidding on an opportunity to show an ad to

the specific user.
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Fig. 1. (Ironed) Revenue Curve

We assume there are m different types of users and that the

distribution over user types is publicly known. Formally, every

user is characterized by a discrete random variable U drawn

from a publicly known distribution FU on support {1, . . . ,m}.

The auctioneer has access to information about the type of user

viewing the impression, i.e., she knows the realization u of U
(u is also called the auctioneer’s signal). In contrast, unless

the auctioneer decides to reveal u, the advertisers only know

the distribution FU , and in this case it will be convenient to

say that they know the user is of a fictitious average type ū.

How do the advertisers value the impression offered to them

by the auctioneer? Every advertiser gains a private utility si
from the event that the user clicks on his ad (si is also called

advertiser i’s signal).2 We study the Bayesian setting in which

si is drawn independently at random from a publicly known

distribution Fi with density fi. Advertiser i’s value vi for the

impression is thus si times the probability of the user clicking

on the ad, called the click through rate (CTR).

While the advertiser’s value per click, si, does not depend

on the type of user who clicks on the ad, the CTR is completely

determined by the user’s type. For every u ∈ {1, . . . ,m}∪{ū},

we denote by pi,u the probability that a user of type u clicks

on advertiser i’s ad. By definition, pi,ū = Eu∼FU
[pi,u]. We

assume that the auctioneer knows the value of pi,u for every

i, u. We can now write advertiser i’s value for the impression

as vi = pi,usi.
Without loss of generality, we focus our attention on di-

rect revelation mechanisms where the bidders directly report

their private signals. We require incentive compatibility and

individual rationality (IR). The auctions we consider have the

following form:

1) The auctioneer commits to whether or not she will use

its knowledge of the user’s type during the auction.

2Alternatively, si can express advertiser i’s value for a conversion, the event
that the user who clicks on the ad proceeds to make a purchase.

2) The auctioneer learns the user’s type.

3) The advertisers report their values per click {si}.

4) For every i, the auctioneer calculates the value per

impression vi = pi,usi, where u is either the user’s

known type or ū if the type information is ignored.

5) The auctioneer runs a truthful IR mechanism on {vi}.

Note that if the advertisers know the CTRs {pi,u}, the above

is equivalent to first letting the auctioneer decide whether or

not she will reveal the user’s type to the advertisers, and

then (after realization and possible revelation of the type)

having the advertisers calculate and bid their values vi and

running a truthful IR mechanism. The above mechanism is

thus truthful and IR in expectation. In what follows, we say

that the auctioneer reveals the user type, if she uses it in the

auction to calculate the values {vi}.

Remark III.1 We assume the auctioneer uses the true type of

the user, and do not address here the interesting but separate

question of incentivizing the auctioneer to be honest (e.g., by

designing appropriate reputation mechanisms, etc.).

A. Discussion

Abraham et al. [1] point out that advertisers have their own

private data about users, which they store in cookies on the

users’ computers. However, a prerequisite for using this data

is that the advertisers know the user’s identity. Our model

captures the realistic situation in which the auctioneer has

exclusive knowledge of the user’s identity. In this situation,

the auctioneer can opt not to reveal the user’s identity to the

advertisers until after the auction has taken place (note that

this is a separate decision from whether or not to reveal the

user’s type in the auction).

Modeling the value per impression as the value per click

times a type-dependent CTR is compatible with the pay per

click approach common in practice—the winning advertiser

pays only when his ad is clicked, indicating that this is the

event to which he attaches value. Our model assumes that

the value per click is not affected by the user type and

that the auctioneer knows the CTRs; this matches standard

assumptions in the context of sponsored search auctions [12].

Note that just like in sponsored search, the auctioneer is

in excellent position to learn the CTR values over time

by accumulating auction statistics. The assumption that the

auctioneer knows the user’s type is also reasonable—she has

access to demographic information about the user, and can

purchase further information such as search history from third-

party data providers.

At first it may seem that the dependence of the advertisers’

values {vi} on a common random value—the auctioneer’s

signal indicating the user’s type—makes the values themselves

common to some extent. However, our model falls within

the setting of private and not interdependent values, since the

user’s type is either made public or not used at all (cf. [4]).

Note that this would not be the case if the auctioneer were to

use the information about the user asymmetrically, that is, only

in the calculation of the values for a subset of the advertisers.
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IV. REVENUE MONOTONICITY OF THE OPTIMAL

MECHANISM

In this section we show that when Myerson’s optimal mech-

anism is applied to our model, the expected revenue (weakly)

increases when the auctioneer fully reveals its information

regarding the user’s type.

Recall that applying Myerson’s mechanism to our setting

means that the auctioneer calculates the ironed virtual val-

uation ϕ̃i(vi) for each bidder given his bid {vi} and then

allocates the item to the bidder with the highest non-negative

ironed virtual valuation.

Observation IV.1 Let u ∈ {1, . . . ,m}∪{ū}, vi = pi,usi. The

distribution of vi is Fi,u(x) = Fi

(

x
pi,u

)

and the correspond-

ing ironed virtual value function is ϕ̃i,u(x) = pi,uϕ̃i

(

x
pi,u

)

.

The last equality follows by looking at the revenue curves

Ri and Ri,u corresponding to distributions Fi and Fi,u respec-

tively:

Ri,u(1− Fi,u(x)) = x(1− Fi,u(x))

= pi,u ·
x

pi,u

(

1− Fi

(

x

pi,u

))

= pi,uRi

(

1− Fi

(

x

pi,u

))

.

The ironed revenue curves are concave hulls of the revenue

curves, and therefore preserve this relationship: R̃i,u(1 −

Fi,u(x)) = pi,uR̃i

(

1− Fi

(

x
pi,u

))

. The ironed virtual val-

uations, which are their derivatives, therefore satisfy the same

linear relationship.

The next observation will be useful in analyzing the ex-

pected revenue from Myerson’s mechanism with and without

revealing information about the user type. By Observation IV.1

and the definition of pi,ū, for every value per click si, the

ironed virtual value for the impression when the user’s type

is not used is the expected ironed virtual value when the type

is used.

Observation IV.2

ϕ̃i,ū(pi,ūsi) = pi,ūϕ̃i(si)
= Eu∼FU

[pi,u]ϕ̃i(si)
= Eu∼FU

[pi,uϕ̃i(si)]
= Eu∼FU

[ϕ̃i,u(pi,usi)]

We now state our main result.

Proposition IV.3 (Revenue Monotonicity) The expected

revenue from Myerson’s mechanism when the user’s type is

revealed is at least as high as the expected revenue when the

user’s type is not revealed.

Proof: Myerson proved that the expected revenue of any

truthful mechanism is equal to its expected ironed virtual

surplus [15] (see also [9, Theorem 13.10]). We use Myerson’s

result to prove Proposition IV.3 pointwise, i.e., we show that

it holds for every fixed profile of values per click (s1, . . . , sn).
Taking expectation over the profiles completes the proof.

Fix (s1, . . . , sn) and let u ∈ {1, . . . ,m} be the user’s known

type. The virtual surplus of Myerson’s mechanism when u is

revealed is

max{0, ϕ̃1,u(p1,us1), . . . , ϕ̃n,u(pn,usn)}

Taking expectation over u gives the expected virtual surplus

when the user’s type is revealed

Eu∼FU
[max{0, ϕ̃1,u(p1,us1), . . . , ϕ̃n,u(pn,usn)}] (1)

If u is not revealed, the virtual surplus of Myerson’s

mechanism is

max{0, ϕ̃1,ū(p1,ūs1), . . . , ϕ̃n,ū(pn,ūsn)}

By Observation IV.2, this is equal to

max {0} ∪ {Eu∼FU
[ϕ̃i,u(pi,usi)]}

n
i=1. (2)

Since max is a convex function, by Jensen’s inequality (1) ≥
(2), so revealing the user’s type does not reduce the expected

revenue.

A. Strategic Revelation

Up until now we’ve considered only two possibilities for

the auctioneer—to fully reveal the user’s type or to conceal it.

However, following Milgrom and Weber [14, Theorem 9] and

Emek et al. [8], there are also many intermediate possibilities.

Let r : {1, . . . ,m} → 2{1,...,m} be a revelation strategy, which

takes the real user type u ∈ {1, . . . ,m} and outputs a (possibly

random) subset of user types r(u).3 Possible strategies include

r(u) = u (full revelation), r(u) = {1, . . . ,m} (no revelation),

r(u) 3 u (partial revelation), and noisy revelation in which

r(u) may not even contain the real type u.

The auction now proceeds as follows. The auctioneer

publicly commits (before learning the user’s type u) to a

revelation strategy r. This strategy, together with the realized

subset r(u) and the type distribution FU , induces a new ex

post distribution F̃U on the user types. In order to maintain

incentive compatibility, the auctioneer sets vi according to

this distribution as Eu∼F̃U
[pi,usi] (equivalently, the auctioneer

reveals r(u) to the advertisers and they report their values {vi}
where vi = Eu∼F̃U

[pi,usi]).
A direct corollary of Proposition IV.3 is that the full

revelation strategy yields the highest expected revenue of all

revelation strategies.

Corollary IV.4 (Full Revelation is Optimal) For every rev-

elation strategy r, the expected revenue from Myerson’s mech-

anism is upper bounded by the expected revenue when the

user’s type is fully revealed.

Proof: Condition on the revealed subset r(u). Together

with r and FU it induces the distribution F̃U on the user

3We use this definition for concreteness. r(u) can be defined more generally
to include reports beyond subsets of types (such as summary statistics etc.)
and the result in this subsection holds.
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types. We can now apply Proposition IV.3 to conclude that

the expected revenue from full revelation of u is at least as

high as the expected revenue from revealing r(u).

V. SIMPLE AUCTIONS WITH RESERVE PRICES

In this section, we present examples of simple auctions

with reserve prices in which data release strictly decreases

the expected revenue. We look at two types of such auctions:

the second price auction with an anonymous reserve price, and

the second price auction with monopoly reserve prices. In the

former, a single reserve price is applied to all bidders, and

those who bid above the reserve price compete in the second

price auction. In the latter, a monopoly reserve price is applied

to each bidder, and bidders who bid above their respective

reserves enter the second price auction. A monopoly reserve

price for a bidder is the optimal reserve price set in an auction

with this bidder alone. Equivalently, it is equal to the value v
whose corresponding ironed virtual value ϕ̃(v) is 0.

Our examples show that releasing data can decrease the

expected revenue even when the values are drawn from MHR

distributions (a special case of regular distributions). However,

for all regular distributions, the simple auctions we consider

are guaranteed to give at least a constant factor of the optimal

expected revenue [10]. We use this fact to show that since

releasing data does not hurt the optimal expected revenue,

the loss in expected revenue from data revelation in simple

auctions is bounded by a constant factor.

A. Second Price Auctions with Anonymous Reserve

This section gives an example in which announcing the item

type decreases the revenue of the second price auction with

the optimal anonymous reserve price.

The example has two bidders and m = 2, with FU being

uniform between 1 and 2. Bidder 1’s valuation for a “high”

type is uniformly drawn from [0, 2], and for a “low” type

is constantly 0. Bidder 2 is not sentitve to the types and her

valuation is drawn uniformly from [0, 1] regardless of the item

type.

When the type is not announced, the optimal auction is a

second price auction with reserve price 1/2, and the optimal

revenue is 5/12. When the item is a low type, the optimal

auction is a second price auction with a reserve price 1/2, and

the revenue is 1/4. We now compute the optimal anonymous

reserve price for a high type and the revenue it generates.

When setting a reserve price to be x ∈ [0, 1], the revenue is

x
[

x(1−
x

2
) +

x

2
(1− x)

]

+

∫ 1

x

y(1−
y

2
) +

y

2
(1− y) dy

=
3

4
x2 −

2

3
x3 +

5

12
.

To maximize this, we set x to be 3/4, and the revenue is
9
64 + 5

12 . Setting a reserve price in [1, 2] does no better (the

optimal reserve price in that interval is 1, which generates a

revenue of 0.5).

Therefore, for a high type, the revenue of an optimal second

price auction with an anonymous reserve price is 9
64 more than

5
12 , whereas for a low type the revenue is 1

6 less. On average,

if we reveal the type, the expected revenue is strictly less than
5
12 .

B. Second Price Auction with Monopoly Reserves

This section presents an example in which announcing the

item type decreases the revenue of the second price auction

with monopoly reserve prices.

As in the previous section, the example is on two bidders

and m is set to 2, with FU being uniform between 1 and 2.

Bidder 1’s valuation is uniformly drawn from [0, 8] for a

“high” type, and uniformly from [0, 4] for a “low” type,

whereas bidder 2 is not sensitive to the type of the item and

her valuation is uniformly drawn from [0, 6] regardless of the

item type.

When the type is not announced, the optimal auction is a

second price auction with reserve price 3, and the expected

revenue is 2.5.

When the item is of high type, the monopoly reserves are

4 and 3, respectively. The expected revenue is:

4 · Pr(v1 ∈ [4, 8], v2 ∈ [0, 3])

+ 3 · Pr(v1 ∈ [0, 4], v2 ∈ [3, 6])

+ 4 · Pr(v1 ∈ [4, 8], v2 ∈ [3, 4])

+
14

3
· Pr(v1, v2 ∈ [4, 6])

+ 5 · Pr(v1 ∈ [6, 8], v2 ∈ [4, 6]) = 2.889

When the item is of low type, the monopoly reserves are 2
and 3, respectively. The expected revenue is:

2 · Pr(v1 ∈ [2, 4], v2 ∈ [0, 3])

+ 3 · Pr(v1 ∈ [0, 2], v2 ∈ [3, 6])

+ 3 · Pr(v1 ∈ [2, 3], v2 ∈ [3, 6])

+
7

2
· Pr(v1 ∈ [3, 4], v2 ∈ [4, 6])

+
10

3
· Pr(v1, v2 ∈ [3, 4]) = 2.0556

Thus when the type is announced, the expected revenue is

2.4722, which is less than 2.5.

C. Upper Bound on Revenue Loss

Theorem V.1 (Hartline and Roughgarden) For every

single-item setting with values drawn independently from

regular distributions:

1) [10, Theorem 5.1] There is an anonymous reserve price

such that the expected revenue of the second price

auction with this reserve is a 4-approximation to the

optimal expected revenue.

2) [10, Theorem 3.7] The expected revenue of the sec-

ond price auction with monopoly reserves is a 2-

approximation to the optimal expected revenue.

Corollary V.2 The expected revenue from the second price

auction with anonymous reserve (resp., monopoly reserves)
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when the user’s type is revealed is a 4-approximation (resp.,

2-approximation) to the expected revenue when the user’s type

is not revealed.

Proof: By Theorem V.1, the expected revenue from the

second price auction with anonymous reserve (resp., monopoly

reserves) when the user’s type is revealed is a 4-approximation

(resp., 2-approximation) to the optimal expected revenue when

the user’s type is revealed, which by Proposition IV.3 is as high

as the optimal expected revenue when the type is not revealed.

VI. OPEN QUESTIONS

Incorporating data in ad auctions raises many questions of

practical importance to which our work may be applicable.

We mention two open questions that follow directly from

our work. (1) In simple auctions, can an intermediate rev-

elation strategy lead to revenue increase, and if so can the

auctioneer efficiently find the optimal such strategy? Note that

this question was studied by [8] in a more general setting,

however the answer in our restricted model may be different.

(2) Can the auctioneer increase her revenue by asymmetric

revelation of information to the bidders, perhaps charging

them appropriate prices for the information? The answer will

involve overcoming the challenges associated with analysis in

the interdependent model (see [1]). Additional open questions

arise from generalizations of our model, e.g., allowing the user

type to affect the value per click in addition to the CTR.

REFERENCES

[1] Ittai Abraham, Susan Athey, Moshe Babaioff, and Michael Grubb.
Peaches, lemons, and cookies: Designing auction markets with dispersed
information. Manuscript, 2011.

[2] Noga Alon, Michal Feldman, Iftah Gamzu, and Moshe Tennenholtz.
Signaling in take-it-or-leave-it sales. Manuscript, 2011.

[3] Marissa Beck and Paul Milgrom. Auctions, adverse selection and
internet display advertising. Working paper, 2011.

[4] Simon Board. Revealing information in auctions: the allocation effect.
Econ Theory, 38:125–135, 2009.

[5] Jeremy Bulow and John Roberts. The simple economics of optimal
auctions. The Journal of Political Economy, 97(5):1060–1090, 1989.

[6] L. Elisa Celis, Gregory Lewis, Markus Mobius, and Hamid Nazerzadeh.
Buy-it-now or take-a-chance: A simple sequential screening mechanism.
In WWW, 2011.

[7] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich
Zemel. Fairness through awareness. In ITCS, 2012.

[8] Yuval Emek, Michal Feldman, Iftah Gamzu, and Moshe Tennenholtz.
Signaling schemes for revenue maximization. Manuscript, 2011.

[9] Jason D. Hartline and Anna R. Karlin. Profit maximization in mechanism
design. In Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V.
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