
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Temporal Rate Limiting: cloud elasticity at a flat fee
John S. Otto

Northwestern University
Rade Stanojevic

Institute IMDEA Networks
Telefonica Research

Nikolaos Laoutaris
Telefonica Research

Abstract—In the current usage-based pricing scheme offered
by most cloud computing providers, customers are charged based
on the capacity and the lease time of the resources they capture
(bandwidth, number of virtual machines, IOPS rate, etc.). Taking
advantage of this pricing scheme, customers can implement
auto-scaling purchase policies by leasing (e.g., hourly) necessary
amounts of resources to satisfy a desired QoS threshold under
their current demand. Auto-scaling yields strict QoS and variable
charges. Some customers, however, would be willing to settle for
a more relaxed statistical QoS in exchange for a predictable flat
charge. In this work we propose Temporal Rate Limiting (TRL),
a purchase policy that permits a customer to allocate optimally a
specified purchase budget over a predefined period of time. TRL
offers the same expected QoS with auto-scaling but at a lower,
flat charge. It also outperforms in terms of QoS a naive flat
charge policy that splits the available budget uniformly in time.
We quantify the benefits of TRL analytically and also deploy TRL
on Amazon EC2 and perform a live validation in the context of
a “blacklisting” application for Twitter.

I. INTRODUCTION

The idea of load aware resource sharing has recently
been applied to a variety of networking problems includ-
ing wireless spectrum sharing [4], [11], [16], router DDoS
protection [27], distributed rate limiting [22], [26], seeder
bandwidth allocation [19], etc. What is common in all the
above applications is their spatial load awareness: a set of
resources is partitioned among a set of spatially distributed
nodes based on their current loads. Here we take an orthogonal
approach and look at temporal load awareness, which is used
for partitioning a set of resources across time in accordance
with the received demand. Whereas spatial load awareness
becomes dominant in highly distributed applications like P2P
networks, temporal load awareness becomes the primary con-
cern when the resources are highly centralized. Applications
utilizing centralized resources are faced with the problem of
over-dimensioning and poor utilization of expensive resources
resulting from the fact that owned infrastructure has to be
provisioned according to the peak of a typically highly variable
demand. Cloud-computing platforms like those offered by
Amazon EC2, GoGrid or Rackspace have allowed applications
to avoid over-dimensioning by applying elastic temporal load
aware purchase policies driven by time-varying demand.
Auto-scaling: The existing approach for dealing with temporal
variabilities in the demand of cloud-based applications is
called auto-scaling [1], [15]. A customer purchases dynami-
cally from the platform enough resources at each point of time
(e.g., hourly) to ensure a prescribed QoS level for its clients
(e.g., delay in completing a purchase, or bandwidth for a video

stream). Since the cloud permits fast capturing and releasing of
resources at a fine granularity, this simple policy can adapt to
daily and weekly demand variability and guarantee strict QoS
at a minimum charge. A direct consequence of the operation
of auto-scaling is that the resulting charge paid to the cloud
operator is generally variable and hard to predict. To quote a
Gartner report1: “A consumer of an unlimited capability will
consume unexpected amounts”.
Can elasticity be offered at a flat fee? Imagine a customer
that wants to take advantage of the elasticity offered by the
cloud but would rather pay a flat predefined fee over a certain
period of time (day, week, month) instead of a variable one.
Various reasons can give rise to such a requirement. Cost pre-
dictability is of paramount importance for several companies,
especially during their early life when the budget for leasing
hosting resources is tight [12], [17]. At the other extreme,
big customers are not driven by the requirement to guarantee
a minimum QoS but would rather like to maximize user
satisfaction granted a fixed budget that they can spend over a
certain period of time [12]. Notice that the latter objective
is not equivalent to a maintenance of QoS objective (a la
auto-scaling), especially if one considers non-linearities in the
satisfaction (user QoS) function and demand unpredictability.
Last but not least, the cloud providers themselves can benefit
by a scheme in which customers pay flat fees, committing in
advance for longer periods of time. In auto-scaling, there is
no financial long-term commitment on the part of customers
and thus the cloud has to perform statistical multiplexing
over short periods of time. However, under a flat-fee model,
the commitment horizon is longer and thus the operator can
improve the efficiency of statistical multiplexing and conse-
quently the amortization of the platform costs. Overall, there
exist several historical examples in which the success and
increasing adoption of a service are achieved by pushing for
simpler, flat pricing schemes [17].
Our contributions: The naive solution to realizing a flat
charge model under the current pricing scheme is to partition
an available budget of, say, C virtual machine instance-
hours per day uniformly by leasing C/24 VMs continuously
throughout the day. However, the demand of many services is
known to exhibit strong variations over time, including daily
diurnal patterns as well as day-of-week phenomena [3], [10],
[14], [24]. Temporal load awareness calls for a non-uniform

1http://blogs.gartner.com/daryl plummer/2009/03/11/
cloud-elasticity-could-make-you-go-broke/

1

NetEcon'2012 1569559141

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

split of the C instance-hours over some time period, such
that the number of allocated instances is increased during
peak hours to benefit end-user QoS, and shrunk during off-
peak hours to avoid resource under-utilization. To that end,
we introduce and analyze Temporal Rate Limiting (TRL), a
purchase policy for cloud resources that enables a customer
(e.g., a startup company) to allocate dynamically a predefined
purchase budget over a certain period of time so as to optimize
the QoS offered to its own clients.

II. TEMPORAL RATE LIMITING

In this section we first formulate the Temporal Rate Limiting
problem and then present offline and online solutions for it.

A. Problem statement

Consider a customer that has a budget of C units (say VM-
hours) per day for running elastic services in the cloud. The
day is split in T time slots (say T = 24 hours) and the budget
can be split between these slots in an arbitrary manner by
buying Ct resource-units2 at time t. We also assume that the
cost of resource-unit can change3 in time and is given by rt
at time slot t.

The demand is also measured in application-specific units
(number of viewers in a VoD system, number of objects
that need rendering in a photo sharing service, etc.) and
is represented by the time series: D1, . . . , DT . Then the
performance at time slot t is measured through a metric q
that is a (monotone) function of the demand intensity Dt and
the capacity Ct:

qt = f(Ct, Dt) = ft(Ct).

The goal of TRL is finding the allocation C = (C1, . . . , CT)
of budget C that optimizes the expected daily performance:

Q(C) =

T∑
t=1

qt (1)

s.t.
T∑

t=1

rtCt = C. (2)

In order to ease the technical exposition we set the following
assumption. We note that this assumption is not critical for the
design of TRL, as the dimensionality of the problem is low
enough to allow exact numerical solution to TRL even for
non-convex functions ft (see also [6] and references therein).
It, however, holds for a wide range of cost/utility functions
and significantly reduces the complexity of the exposition.

Assumption 1: The functions ft(·) that relate capacity to
performance are convex (resp. concave) functions for all t

2The resource-unit is application specific abstraction and in the context of
cloud computing can be a VM-hour, Mbps-hour, etc.

3Note that majority of cloud providers have fixed (time-independent) price
for the resource. However, some providers, such as Amazon EC2, start to
offer variable, demand-dependent, prices for the resources. However over the
last 6 months the variation in time of the cost of on-spot EC2 instances is
very small, typically under 10%.

if the optimization problem is minimum (resp. maximum)
seeking.

Comment 1: The choice of performance metric is applica-
tion dependent. What is a relevant performance indicator is
driven by the application needs and it is hard to isolate a
single performance metric usable in all conditions. This is the
reason for the general presentation we follow here. Finally we
note that whether the optimization problem is maximum or
minimum seeking will be obvious from the context.

Comment 2: There are several sources of uncertainty (ran-
domness) in the design of TRL. These include: (1) The
demand time series (which can often can be estimated with a
reasonable accuracy from the long- and short-term history) [3],
[5], [14], [24]; (2) the model of the cost function f(Ct, Dt)
that needs to be estimated and is an input for the problem
[18]; (3) hardware interference (which is relatively small for
applications that are not I/O intensive, but can be considerable
otherwise) [2]; and (4) cost of resources that may vary on the
time scale of hours or even minutes [1]. In Section IV (and
also the Technical report [25]) we show that TRL is robust to
those sources of uncertainty.

Comment 3: TRL can be implemented either by the cus-
tomer or the service provider. The customer who wants to
control its daily bill of the cloud services can easily incorporate
a controller that leases the resources subject to daily budget
and strive to optimize the performance. Also, a cloud services
provider can offer TRL as a feature for maximizing the daily-
averaged performance the customer receives subject to a daily
budget.

B. Off-line solution to TRL

Assuming that all the parameters are known in advance, the
solution to the problem (1)-(2) is relatively straightforward
and is discussed below. It is also possible to derive closed-
form solutions for some specific scenarios as we show later
in Section III-A.

The problem (1)-(2) is a standard non-linear convex op-
timization problem with a linear constraint solvable by, for
example the gradient ascent method. Alternatively one can
derive more intuition on the nature of the optimal point by
taking advantage of the structure of the optimization problem
(which will also be used later in Section II-C3 for the design
of online TRL). Namely, let λ be the Lagrange multiplier of
the optimization problem, then the Lagrange function is

Λ(C, λ) = Q(C)−λ(

T∑
t=1

Ct−C) =

T∑
t=1

ft(Ct)−λ(

T∑
t=1

rtCt−C).

The vector C that minimizes Q(C) must satisfy:

∂Λ

∂Ct
= 0 for all t,

which is equivalent to:

f ′t(Ct)

rt
= λ for all t. (3)

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Finding (C, λ) that satisfy (2) and (3) can be done numerically
by solving the following equation:

h(λ) :=

T∑
t=1

rT (f ′t)
−1(rtλ) − C = 0. (4)

Given that ft is a convex function, f ′t is a monotone function
and indeed has the inverse (f ′t)

−1 that is also a monotone
function. The function h(·) is therefore a monotone function
and equation (4) can be solved simply by any zero finding
method (binary search, Newton method, etc).

C. Implementing TRL online

To decide on how many resources (virtual machines) we
need to buy at time slot t under a budgeting constraint to
optimize the performance over a time horizon we need to
solve several practical problems hinted at in Section II-A:
(1) demand forecasting; (2) accurate identification of the
relationship f(C,D) between offered demand D (in jobs per
second) and capacity C (in number of VMs); and (3) actual
control system for determining the number of VMs to buy,
subject to the budget and optimization criteria.

1) Demand forecasting: For demand forecasting we use
the Sparse Periodic Auto-Regression (SPAR) from [5]. The
demand at time t is forecasted as:

Dt =

n0∑
i=1

αiDt−i·T +

n1∑
j=1

βj∆Dt−j ,

∆Dt−j = Dt−j −
1

n0

n0∑
i=1

Dt−j−i·T .

where α’s and β’s are obtained through the least squares
method. The first part of the above model does the periodic
prediction over a time period T that corresponds to 24 hours in
this paper4. Interestingly, higher order models result in minor
improvement over the first order model (n0 = n1 = 1) and
throughout the paper we use n0 = n1 = 1.

2) Mapping demand and capacity to performance: In order
to use the insights from Section II-B and solve the optimization
problem (1)-(2) we need to know the functions ft(Ct) =
f(Dt, Ct) = qi, that relate performance qi with generated
demand Di and capacity Ci. These functions can be modeled
for some simple systems with known job size distributions.
However, in general, accurate identification of function f(·, ·)
requires fine-grained benchmarks for a range of values of
demand and capacity that we perform in an off-line manner.

3) Online TRL: For those services that have purely periodic
demand pattern, we can have accurate enough long-term
demand prediction and apply the framework from Section II-B
to directly solve the problem in an off-line manner. However,
many services have a demand pattern that is more volatile and
harder to predict at time scales greater than one hour. That
is the reason we choose to solve the optimization problem

4Taking into account weekly periodicity would improve the accuracy of
the forecasting algorithm. However, most of our traces are too short to allow
prediction on the weekly time scales.

1 TRL−online()
2 At time slot t do
3 Dt = forecast(D0, . . . , Dt−1)
4 Ct is such that df(Dt,Ct)

dCt
= rtλ(t)

5 λ(t+ 1) = λ(t)(1 + η(
∑T−1

i=0
rt−iCt−i − C))

6 enddo
Fig. 1: Pseudo-code of online TRL

with ’soft’ budget constraint as follows. The key observation is
that the point C = (C1, . . . , CT) that maximizes the expected
utility satisfies (3). Instead of picking one λ to solve the system
exactly, we continually search for it, using a feedback control
loop. Namely, we keep internal variable λ(t), and determine
Ct as:

Ct = (f ′t)
−1(rtλ(t)). (5)

where ft(x) = f(Dt, x) is the function for the forecasted
value of demand Dt at time t.

Then we update λ to account for the difference between
used resource during the preceding T time slots and the cost
constraint C:

λ(t+ 1) = λ(t)(1 + η(C −
T−1∑
i=0

rt−iCt−i)), (6)

where η > 0 is the gain parameter such that in steady state λ(t)
is stabilized around the optimal value. Throughout this paper
we use the gain parameter η = 0.1

C . More detailed analysis on
the stability of the controller (6) is out of scope of this paper.
The online TRL does not strictly enforce the cost constraint
(2) over the time period of T time slots, but rather strives
to keep long-term average cost at the desired level C. The
pseudocode of online TRL is given in Figure 1.

III. SIMPLE ANALYTIC MODEL FOR TRL

In this section we look at the particular problem of min-
imizing the daily mean/median completion time of a photo
sharing online service, like SmugMug [15]. We model the
service as a M/M/1 system, where the demand and resources
are measured through the request and service rates, and the
goal is the minimization of the average per-photo rendering
time, subject to a daily budget C: the number of VM-hours
used. The request rate, Di, is measured in uploaded photos per
second. The service rate, Si represents the average number of
photos that can be rendered per second and is a linear function
of the number of running VMs: Si = αCi, where α is the
relative speed of one VM. Without loss of generality we take
α = 1. For brevity, we assume that the cost of a resource
(VM) does not change in time: rt = 1 for all t. Extending to
arbitrary rt is straightforward.

A. Mean response times

At time slot t, the performance metric, the sum of mean-
response-times for all Dt jobs, is a simple function of the
arrival Dt and service rate Ct (that corresponds to the number
of online VM at time t)

qt = Dt
1

Ct −Dt
.

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

The expected daily job mean response time can be approxi-
mated [9] by:

Q(C) =
1∑T

t=1Dt

T∑
t=1

Dt

Ct −Dt
. (7)

Proposition 1: The vector C = (C1, . . . , CT) that mini-
mizes the expected daily job mean response time Q(C) in
M/M/1 scenario described above is given by:

Ct = Dt +
C −

∑T
j=1Dj∑T

j=1

√
Dj

√
Dt. (8)

Proof: See the Technical report [25].
We conclude with the observation that similar analysis is

possible for many other queueing models (including straight-
forward generalization to M/G/1 queue), that allow closed-
form dependence between the capacity Ct and the performance
qt (expressed as a function of the statistical parameters of the
job size distribution).

B. Median and αth-percentile response times

Because of the space limitation we omit the analytical
results on TRL with objective functions given by median
and αth-percentile response times, which can be found in the
technical report [25].

C. TRL vs. auto-scaling

We note that in the model described above, it is possible
to derive closed-form expression for the difference in cost
of auto-scaling and (optimal) TRL that result in the same
expected daily average response time. For the detailed analysis
we refer the reader to [25]

IV. DEPLOYING TRL ON AMAZON EC2

In order to understand the behavior of TRL on a real cloud
platform and factor the potential impacts of virtualization
we deployed TRL on Amazon’s EC2 cloud and used it to
control the number of virtual machines that check tweets for
evidence of spam. In this case too, TRL provided a significant
improvement in mean application response time, which in
certain cases was an order of magnitude better than uniform
allocation.

A. Twitter Blacklisting

We adopt a blacklisting application for a microblogging
service (e.g.,Twitter) that searches the content and linked web
pages of microblog posts (“tweets”) for a set of blacklisted
words or patterns. A similar service is offered by filttr5, a
startup that processes tweets based on appropriate keyword
filters.

This application can be used for blocking spam or allow
users to build personalized filters. In this work, we search for
a subset of the patterns in the regular expression blacklist used
by wikimedia.org 6 to block spam.

5https://filttr.com/
6http://meta.wikimedia.org/wiki/Spam blacklist

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10

cd
f

processing time (sec)

with URLs
no URLs

Fig. 2: Processing time for tweets with and without web page
links.

To process a tweet, we first identify URLs and fetch the
content of linked documents. For each HTTP URL, we read
the headers to determine the MIME type of the document
(following any HTTP 30X redirections), and download the
entire content if it is a text or HTML file. Then, we iterate
over each of the elements in the blacklist, scanning the text of
the tweet and that of all its linked web pages. The application
returns the tweet with a list of all the blacklist elements that
matched, as well as a list of the web pages that were scanned.

B. Dataset and Processing

We characterize the requirements of our application using
a trace of posts to Twitter collected by [20], and examine
several aspects of the dataset. On our target platform (m1.small
instance on Amazon EC2), we find that the average processing
time per tweet is approximately 0.8 seconds.

The distribution of processing time is bimodal. The tweets
that have URLs take significantly longer to process than the
tweets without URLs. First, it takes up to several seconds to
open a connection and fetch the content of the page. Addition-
ally, it takes much longer to do the regular expression search
on webpages (sometimes as large as ˜100KB) compared to
tweets with no URLs, which have at most 140 characters.

Approximately 36% of the tweets in the dataset we used
contained at least one link to an HTML or text document.
In Figure 2, we show the distributions of processing time for
tweets with and without URLs. Without URLs, the average
processing time is only 173 msec, which is significantly
higher than the median of 0.9 msec because about 10% of
these tweets have URLs that point to documents that are not
HTML or text files. In these cases, it takes time to read the
HTTP headers to determine the type of content on the page.
For tweets with URLs, the average processing time is about
2.66 sec.

Next, we determine the number of servers required to
handle various system loads (i.e. tweets per second), given
these characteristics of the tweets in our dataset and the
amount of time needed to process each tweet. Since each
tweet takes on average 0.8 sec to be processed, then each
server can process 1

0.8 = 1.25 tweets per second. The system
load levels generated by our Twitter trace range from 4 to

44

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

12 tweets/second peak on a typical weekday. In terms of the
number of servers required to service this load, this translates
to a minimum of 4 to 10 servers, depending on the time of
day.

C. System Design

We design a system that runs on Amazon EC2 to execute
this Twitter blacklisting application, and which implements
both the TRL and uniform allocation policies.

We divide the responsibilities of the system among several
different virtual machines running in EC2. In one virtual
machine, we run a coordinator that accepts connections from
clients (who submit tweets for processing) and manages job
handling with workers via a queue of jobs. In another, we run
a client that plays back the tweets in the Twitter trace into the
coordinator. We use additional virtual machines for running
the servers that do the actual processing of the tweets.

The coordinator implements a first-in, first-out queue of
tweets to be processed, and workers follow a pull-based model
to fetch jobs from the queue. Our design is preferable to a
push-based model, in which tweets are committed to a single
queue, and may be subject to indeterminate delays because
a single job at that worker took a long time to complete.
Although our design is simple and could be optimized for
performance (e.g. processing multiple tweets per worker), it
does provide a valid comparison between the tested allocation
policies.

Under our pull-based model, short processing jobs at the
head of the queue will continue to be served quickly as long
as there is at least one worker that is not busy processing a long
job. As a result, having more workers reduces the probability
that short processing jobs are delayed by longer jobs saturating
all the workers.

D. Performance Evaluation

We evaluate the performance of our application running
under TRL in comparison to a uniform allocation model in
terms of several response time metrics. We define response
time to be the latency from when a job is sent by the client
until the response it is received at the client.

For each experiment, we select either TRL or the uniform
allocator as the policy to define how many servers to use,
and define a daily budget to limit the total number of server
hours. Our smallest budget is that which would allow the
uniform allocation policy to have sufficient server time to run
the necessary 10 servers (at full processing capacity) for the
whole day – 240 server hours. From here, we increase the
number of servers that can be run for the whole day to 18
(432 server hours).

We use the same two-day region of the Twitter trace,
covering all of a Tuesday and Wednesday, for each experiment.
Figure 3 shows the trends in demand – tweets per second –
for these two days of the trace. For the TRL experiments, we
train the SPAR model with the demand from the first day and
report the performance from the second day of the trace. For

 0

 2

 4

 6

 8

 10

 12

 0 6 12 18 24 30 36 42 48

de
m

an
d

(jo
bs

/s
)

time (hours)

Fig. 3: Demand rate (tweets per second) for a 48-hour segment
of the Twitter trace.

the uniform allocation runs, we simply report the performance
statistics from the second day of the trace.

For all the budgets we tested, TRL provides performance at
least as good as the uniform allocator across all metrics: mean,
median, and 95th percentile response time (see Figure 4).

TRL provides the most significant performance improve-
ment – over an order of magnitude reduction in response time
– relative to the uniform allocator when the system is given
a small budget. For example, when the uniform allocator is
given only 240 server hours it is only able to run 10 servers.
During the heavily loaded portion of the day (e.g. hours 38-
44 in Figure 3), the uniform allocator system has significant
queuing delays. In contrast, TRL allocates fewer of its server
hours during periods of low demand, and is thus able to afford
to scale up the number of servers for periods of high demand.
As a result, TRL is better able to avoid queuing delays, even
when demand is high.

For both systems, increasing the budget improves perfor-
mance for all three metrics – but only to a point. For example,
increasing the budget by 40% from 240 to 336 server hours
results in an order-of-magnitude reduction in response time for
the uniform allocator system. However, increasing the budget
from 384 to 432 server hours yields only a very small increase
in performance for both systems.

The reduction in marginal performance gains as we increase
the budget occurs because we reach the lower bound of these
metrics, given our application’s characteristics. For example,
our average per-tweet processing time is about 0.8 sec, and
our daily mean response time plateaus at just over 1 sec
(with a budget of 432 server hours). Likewise, the 95th
percentile metric curves also flatten out (at about 10 sec) under
large budgets because the 5% of the tweets with the longest
processing time take at least 10 sec.

The median response time metric provides a rough estimate
of the proportion of tweets that are subject to queuing delays.
Since the majority of tweets (about 64%) do not have any
URLs to be fetched, they complete in less than 1 msec.
As a result, when we have low median response times, that
means that the majority of tweets are not subject to significant
queuing delays. Consequently, for a daily budget of 336 server
hours, the uniform allocator system has a median response

55

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

 0.1

 1

 10

 100

 240 264 288 336 384 432

da
ily

 m
ea

n
re

sp
on

se
 ti

m
e

(s
)

Daily budget (server-hours)

uniform allocation

TRL

(a) Mean

 0.1

 1

 10

 100

 240 264 288 336 384 432

da
ily

 m
ed

ia
n

re
sp

on
se

 ti
m

e
(s

)

Daily budget (server-hours)

uniform allocation

TRL

(b) Median

 0.1

 1

 10

 100

 240 264 288 336 384 432

da
ily

 9
5

pe
rc

en
til

e
re

sp
on

se
 ti

m
e

(s
)

Daily budget (server-hours)

uniform allocation

TRL

(c) 95th Percentile

Fig. 4: Mean, median and 95th percentile daily response times for TRL and uniform allocation policies, for various budgets.

time of about 1 second. We expect that the median tweet –
one with no URLs to process – should complete very quickly,
so we can conclude that the majority of tweets are subject
to queuing delays of up to one second. Alternatively, TRL’s
median performance with a budget of 336 server hours gives a
median response time of only 50 msec, implying significantly
smaller queuing delays than the uniform allocator.

V. RELATED WORK

The mechanism we propose here is motivated by the
following maxim “provide more resource when resource is
needed”. The spatial equivalent of the maxim “provide more
resource where resource is needed” has been utilized in a
number of designs (briefly discussed below) that have recently
been presented [4], [8], [11], [16], [22], [27], [19]. The key
observation is that the spare resource of the lightly-loaded
node is worth more on the heavily-loaded nodes.

The topic of cost-effective running cloud based services
and data centers has lately attracted significant attention in
the networking community, see [10] and references therein.
A major concern of these efforts is power control [5] as
it accounts for the largest part of the non-fixed (adaptable)
expenses [10].

Pricing of service by most cloud providers is usage-based
[1], [2], [22]. However, in the history of communications,
pricing of various services (e.g. ordinary mail, the telegraph,
the telephone, and the Internet) followed a similar pattern:
it started with usage-based pricing and converged to some
form of flat-fee pricing. Moreover, enterprises tend to prefer
fixed cost of an IT service rather than unlimited/unpredictable
usage-based cost, see [12] and [17].

VI. SUMMARY

In this paper we propose TRL, a scheme for introducing
temporal load awareness in the control of elastic resources
leased from a cloud infrastructure. We argue that for the same
daily budget, TRL allocation can exhibit significantly better
performance than nonelastic load-oblivious schemes. The level
of improvement depends on the demand variability as well as
the daily budget. TRL’s gains peak in the most difficult case
of highly varying demand and constrained purchase budget.

ACKNOWLEDGMENTS

This work was done while J.S.O was an intern in Telefonica
Research, Barcelona. This work and its dissemination efforts
have been supported in part by the ENVISION FP7 project of
the European Union.

REFERENCES

[1] Amazon Elastic Compute Cloud: http://aws.amazon.com/ec2.
[2] M. Armbrust et al. “Above the Clouds: A Berkeley View of Cloud Computing”.

Tech. Report UCB/EECS-2009-28.
[3] L.A. Barroso. U. Hlzle. “The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines”. Morgan & Claypool, 2009.
[4] R. Chandra et al. “A Case for Adapting Channel Width in Wireless Networks”. In

Proc. of ACM SIGCOMM 2008.
[5] G. Chen et al.“Energy-aware server provisioning and load dispatching for

connection-intensive internet services. In Proc. of NSDI 2008.
[6] M. Chiang et al.“ Network utility maximization with nonconcave, coupled, and

reliability-based uilities”. In Proc. of SIGMETRICS 2005.
[7] N. Gans et al. “Telephone call centers: Tutorial, review, and research prospects”.

Manufacturing and Service Operations Management, vol. 5(2) 2003.
[8] D. Giustiniano et al. “Fair WLAN Backhaul Aggregation”. In Proc. of ACM

MOBICOM 2010.
[9] L. Green, P. Kolesar. “The pointwise stationary approximation for queues with

nonstationary arrivals”. Management Science, vol. 37(1), 1991.
[10] A. Greenberg et al. ”The Cost of a Cloud: Research Problems in Data Center

Networks”. ACM Computer Communications Review, vol 39(1) 2009.
[11] R. Gummadi, H. Balakrishnan. “Wireless Networks Should Spread Spectrum On

Demand”. In Proc. of ACM HotNets 2008.
[12] D. Hinchcliffe. “2007: The year enterprises open thier SOAs to the Internet”.

Enterprise Web 2.0, Jan. 2007.
[13] R. Jain. “The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling”. John Wiley and
Sons, INC., 1991.

[14] N. Laoutaris et al. “Delay Tolerant Bulk Data Transfers on the Internet”. In Proc.
of ACM SIGMETRICS 2009.

[15] D. MacAskill. “SkyNet: auto-scaling for SmugMug”.
http://blogs.smugmug.com/don/tag/skynet/.

[16] T. Moscibroda et al. “Load-aware spectrum distribution in wireless LANs”. In Proc.
of IEEE ICNP 2008.

[17] A. Odlyzko. “Internet pricing and the history of communications”. Computer
Networks, vol. 36, 2001.

[18] T. Osogami. “Accuracy of measured throughputs and mean response times”. In
Proc. of MAMA 2007, San Diego, CA, USA.

[19] R. Peterson, E. G. Sirer. “AntFarm: Efficient Content Distribution with Managed
Swarms” In Proc. of NSDI 2009.

[20] J. M. Pujol et al. “The Little Engine(s) that Could: Scaling Online Social
Networks”. Proc. ACM SIGCOMM 2010.

[21] A. Qureshi. “Plugging Into Energy Market Diversity”. Hotnets 2008.
[22] B. Raghavan, K. Vishwanath, S. Rambhadran, K. Yocum, A. Snoeren. “Cloud

Control with Distributed Rate Limiting”. In Proc. of ACM SIGCOMM 2007.
[23] G. Rosen. “Anatomy of an Amazon EC2 Resource ID”.
[24] M. Roughan, et al. “Experience in measuring backbone traffic variability: Models,

metrics, measurements and meaning”. In Proc. of IMW, 2002.
[25] R.Stanojevic, J. S. Otto, N. Laoutaris. “Temporal Rate Limiting: cloud elasticity at

a flat fee”. Technical report, http://www.cs.northwestern.edu/∼jot836/TRL TR.pdf.
[26] R. Stanojevic, R. Shorten. “Fully decentralized emulation of best-effort and

processor sharing queues”. In Proc. of ACM SIGMETRICS 2008.
[27] C.W. Tan et al. “A Distributed Throttling Approach for Handling High Bandwidth

Aggregates”. IEEE Trans. Par. Dist. Systems, vol 18(7), 2007

66

