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ABSTRACT

Ad networks use revenue sharing and effective filtering of
fraudulent clicks to attract publishers. We develop a simple
Hotelling competition-based game-theoretic model to study
the effect of competition along these dimensions. We com-
pute the Nash equilibrium strategy for two ad networks that
compete for publishers. We then investigate how the pref-
erences of the publishers and the quality of the ad networks
affect the market share and the strategies chosen at equilib-
rium.
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1. INTRODUCTION
The online advertising market typically involves different

classes of players: publishers, ad networks, and advertisers.
Advertisers have products to advertise and design the ads.
Publishers own websites at which the ads can be placed and
receive traffic. Ad networks act as intermediaries between
publishers and advertisers: they match the publishers with
the different ads, and charge the advertisers for a certain
fraction of clicks, the ones the ad network deems valid.

Click fraud (or click spam) has been a serious problem
in the online advertising market. By click spam, we define
the act of clicking an ad without an interest to see the ad.
When such clicks are counted as “valid” by the ad network,
the advertiser pays for a useless click, and the publisher is
rewarded for generating it. Thus there is an incentive for
fraudulent publishers to inflate click numbers. Ad networks
have an incentive to identify and filter out fraudulent clicks
in order to deliver a more valuable service to advertisers,
which are their customers. On the other hand, ad networks
do receive revenue for fraudulent clicks, which creates an
incentive in the opposite direction to fight fraud less.

Work has been done to gauge the degree of click fraud. For
example, Dave et al. [2] have provided a systematic method-
ology to estimate and measure the click spam in ad networks.
Their analysis shows that the click spam is a serious prob-
lem, that tends to grow as the mobile advertising market
develops.
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Mungamuru, Weis, and Molina [5] have studied the effects
of click fraud in the online advertising market by modeling
the incentives of the different actors. The main result of
their analysis is that ad networks have a net incentive to
fight fraud, despite getting revenue from fraudulent clicks
that are billed to the advertisers. They have considered a
market of advertisers, publishers, and ad networks, and have
concluded that the ad network can gain a market advantage
by aggressively combating fraud. Their analysis, though,
is a one-step best response analysis and does not result in
the computation of Nash equilibria. Our work investigates
both the quality of classification algorithms and the revenue
share as strategies for the ad networks, who compete for
publishers, and we derive the Nash equilibria.

Hotelling has argued in his seminal work [3] that in reality,
duopoly is not fragile: a small price advantage by one firm
does not capture the whole market. He showed that “some
buy from one seller, some from another, in spite of moderate
differences of price.” In our paper, we consider a similar
“location” model, at which the publishers’ preferences are
distributed uniformly on a line between two ad networks.

Kim shows in [4] that in the context of several applications
of contemporary importance, the dispersion of consumers
relative preferences between competing firms results in soft-
ening market competition, and studies how the intensity of
competition influences the effects of firms strategies. We
also establish a similar result: when the publishers become
more heterogeneous in their preferences, the competition in
prices becomes less fierce. Researchers use the Hotelling
model within models of network platform competitions [6],
[9]. Of particular relevance is a model by Njoroge, et al. [7],
in which ISPs compete on both price and quality just as we
consider ad networks competing in two similar dimensions.

Perlof and Salop [8] have showed that as users’ preferences
become more intense, equilibrium price increases. Similarly,
changes in the utilities of the publishers by a different mul-
tiplicative factor in our model, led to different equilibrium
prices.

Comparing to other economic results on competition of
identical or differentiated products that take as given the
differentiation between the products (horizontal and/or ver-
tical) and examine how price competition takes place under
network effects [1], we study the competition between the
two ad networks in both price and degree of differentiation.

We are interested in this two-dimensional competition be-
tween ad networks — they simultaneously compete on filter-
ing aggressiveness and revenue share given to the publish-
ers. Our model is admittedly simplified, but it still captures
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Figure 1: Publishers’ preferences are uniformly dis-
tributed between AN1 and AN2.

those aspects that are interesting when fighting click fraud.
To the best of our knowledge, we are the first to investi-
gate the Nash equilibria in games of such a setting. Will
one network choose to be tolerant with filtering and com-
pensate by giving a bigger share to publishers, while the
other network is more aggressive and gives a smaller share?
Will the networks even care fighting click fraud? How are
the preferences of the publishers affect the decisions of the
ad networks? In which direction will the competition be
fiercer?

To address the above questions, our paper is organized as
follows. Section 2 describes the underlying economic model.
Section 3 provides the Nash equilibrium analysis. Section 4
presents numerical experiments that show how the quality
of the ad networks and the distribution on the publishers’
preferences affect the revenue sharing strategies of the two
ad networks. Finally, we conclude with the main results and
insights in Section 5.

2. ECONOMIC MODEL
We consider a one-shot game between two ad networks,

called AN1 and AN2. The two ad networks compete to
receive clicks (display ads) from the publishers. The pub-
lishers are uniformly distributed along a line of length 1
between the two ad networks, as shown in Fig. 1. Prefer-
ences are driven by anticipated click volume. A publisher
could believe that one ad network would be better at plac-
ing relevant ads for the type of content the publisher offers
and the demographics of the users it serves. In this context,
we assume that AN1 is “preferred” by some publishers and
AN2 is “preferred” by others.

Each ad network, ANi, simultaneously decides how ag-
gressively to filter out invalid clicks, and what fraction of
the revenue the publishers will get. After both ad networks
announce their decisions,

1. Publishers choose between the ad networks, according
to their preferences and the revenue they get.

2. Ad networks mark a fraction of these clicks as valid.

3. Advertisers adjust their bids in ad auctions to realize a
fixed return on investment – based on the anticipated
ratio of truly valid clicks to clicks that are marked valid
by the ad network.

4. Advertisers pay for the clicks marked as valid.

Our goal is to compute how aggressive ad networks will
be, what fraction of their revenue will be distributed to the
publishers at equilibrium, and how the market of publishers
will react.

2.1 Ad networks
As in [5], we assume that ad networks can identify fraud-

ulent (invalid) clicks with a receiver operating characteristic
(ROC) curve of the form shown in Fig. 2. Ad network i is
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Figure 2: ROC curve: if the ad networks are willing
to tolerate a false positive rate of xi, they can achieve
a true positive rate of xαi

i
.

endowed with a type αi that characterizes the ROC curve
of his click fraud filtering technology. Each ad network’s
inherent type is the effectiveness αi ∈ [0, 1] of their filter-
ing, while their strategic decisions involve the aggressiveness
xi ∈ [0, 1] and the revenue share hi ∈ [0, 1]. We define ag-
gressiveness xi to be the fraction of valid clicks classified as
invalid. An ad network that is more aggressively identifying
fraud would choose a higher value xi. Given xi and αi, each
ad network marks a fraction (1− xi) of valid clicks as valid,
and a fraction (1 − xαi

i
) of invalid clicks as valid, as shown

in Table 1. If α1 < α2, AN1 is more effective.

Variable Classification Truth Result
xi “invalid” valid False positive

1− xi “valid” valid True negative
x
αi

i
“invalid” invalid True positive

1− x
αi

i
“valid” invalid False negative

Table 1: Ad networks make mistakes when filtering
out invalid clicks.

The goal of the ad networks is to maximize their revenue

UAN

i (xi, hi) = (1− hi) ·N
r

i · c,

where hi is the revenue share given to the publishers, c is
the price per each ad click, and N r

i is the number of clicks
marked by ad network i as valid or “real” (the ones the ad-
vertiser is charged for). N r

i is a function of both the quality
αi of the classification algorithms and the aggressiveness xi

selected by the ad network and is given by

N r

i = (1− xi) · r · Vi + (1− xαi

i
) · (1− r) · Vi,

where r is the fraction of total clicks that are real or valid,
and Vi is the volume of the clicks received by each network.
The volume Vi depends on how the market of publishers is
split.

2.2 Publishers
Depending on the quality of traffic and clicks generated,

publishers can either be classified as good or bad. The in-
formation is asymmetric: publishers know if they are good
or bad, but the ad networks do not. Therefore ad networks
need to develop classification algorithms. Also, bad pub-
lishers that get discovered as being bad can easily change
identities.

We assume that all clicks generated on good publishers’
websites are valid, and that all clicks generated on bad pub-



lishers’ websites are invalid. The assumption that good pub-
lishers have only good clicks is extreme, but it is a convenient
way to model the fact that good publishers will have a much
larger fraction of good clicks than fraudulent ones. It would
be cumbersome to add more parameters, like the fraction of
bad clicks for good publishers and the fraction of bad clicks
for bad publishers for instance.

We consider that publishers have different preferences for
ad networks. Publishers are uniformly distributed along a
line θ ∈ [0, 1]. The point of division between the regions
served by the two ad networks (denoted by θ∗) is deter-
mined by the condition that at this place the publishers are
indifferent between AN1 and AN2. Equating the delivered
publishers’ revenues we have

h1Φ1(x1)[(1−θ∗)(1−g)+g] = h2Φ2(x2)[θ
∗(1−g)+g], (1)

where Φi(xi) =
r · (1− xi)

r · (1− xi) + (1− r) · (1− xαi

i
)
is the frac-

tion of charged clicks that are valid, which also depends on
the quality of each network αi.

The parameter g ∈ [0, 1] is the degree of platform ho-
mogeneity. It reflects the importance of the preferences of
the publishers with respect to the prices. When g is small
(g = 0), preferences are more important, while when g is
large (g = 1), prices have a greater impact on the decision
of the publishers. In the subsequent analysis (Section 3), we
investigate both extreme cases and highlight how modeling
the publishers differently affects the equilibrium strategies
of the ad networks. Solving Eq. (1) for θ∗ we find

θ∗ =
h1Φ1(x1)− gh2Φ2(x2)

(1− g)[h1Φ1(x1) + h2Φ2(x2)]
. (2)

2.3 Advertisers
As in [5], we assume that the number of advertisers is

sufficiently large and covers the number of ad positions on
the publishers’ websites. This is a realistic assumption, as
the advertisers are actually competing to display their ads
through auctions. The advertisers adjust their bids to main-
tain a certain return on investment. It is arguable they
would have such a strategy since they would want to invest
in online advertising up until the point its return is com-
parable to that achieved from other forms of advertising.
Depending on the quality of the clicks they pay for, they
adjust their bids to account for clicks of inferior quality by
a factor of

r

r(1− xi) + (1− r)(1− xαi

i
)
.

We avoid dealing with the auctions mechanism details and
focus on the implications of the revenue sharing and ag-
gressiveness levels selected by the ad networks. Therefore,
we assume that the advertisers’ bid is the price per click c,
multiplied by the adjustment factor.

3. EQUILIBRIA
Following the previous analysis, the profits of the ad net-

works are

J1(x1, h1) = (1− h1) · r · c · V

(

1

2
−

θ∗2

2

)

(3)

Parameter Definition
αi quality of ad network i
hi revenue share given to publisher i
xi aggressiveness of ad network i
r fraction of clicks that are valid (“real”)
c price per click
Vi volume of clicks for ad network i
Nr

i
number of ad network i’s clicks that are valid

g degree of platform homogeneity
θ∗ point of market segmentation

Φi(xi, hi) fraction of charged clicks that are valid

Table 2: List of variables introduced in Section 2

J2(x2, h2) = (1− h2) · r · c · V ·

(

θ∗

2
−

θ∗2

2

)

, (4)

where θ∗ is given by Eq. (2).
Each ad network i needs to select xi ∈ [0, 1], and hi ∈ [0, 1]

to maximize the revenues given in Eq. (3) and (4). We
first analyze the case when the publishers are heterogeneous:
preferences are more important than revenues.

3.1 Heterogeneous publishers (g = 0).
In this case, the market share is highly determined by the

preferences of the publishers. For example, when a publisher
is located near (strongly prefers) AN1, no matter what rev-
enue share is given, AN2 will never win over all the market.

Lemma 1. The ad networks’ payoff functions Ji(xi, hi)
are concave with respect to xi, hi, for i = 1, 2.

Proof Sketch. Differentiating twice Eq. (3), we show

that
∂2θ∗

∂x2

1

> 0. We thus show the concavity of J1(x1, h1)

with respect to x1. Similarly, we show the concavity of
J1(x1, h1) with respect to h1, and of J2(x2, h2) with respect
to x2, h2.

Theorem 1. The levels of aggressiveness chosen by the
ad networks at equilibrium are x∗

1 = 1, and x∗

2 = 1.

Proof. The conditions ∂2Ji(xi, hi)/∂xi
2 < 0, sufficient

for a maximum of each of the functions Ji(xi, hi), i = 1, 2,
are satisfied (Lemma 1). Solving ∂J1/∂x1 = 0 for x1 results
to Φ1(x1)∂Φ1(x1)/∂x1, or (1 − α1)x

α1 + α1x
α1−1

− 1 = 0.
The unique solution to the previous equation for x1 ∈ [0, 1]
is x∗

1 = 1. We can similarly prove that x∗

2 = 1.

3.2 General model for publishers (g > 0).
In this case, publishers are distributed between the two

ad networks, not only according to their preferences, but
according to the revenue share they get as well. We can
similarly prove that x∗

1 = 1 and x∗

2 = 1.

Lemma 2. The payoff function of each ad network is quasi-
concave with respect to the revenue share hi, i = 1, 2.

Proof. When g > 0, there exists a possibility that the ad
network with the higher revenue share will win over all the
publishers. We have already established that before such a
point occurs, the payoff functions will be concave. After this
inflection point, the ad network will have already won over
all the publishers. Since the competitor is already out of
the game, there is no benefit for the winning ad network to
increase the revenue share. Thus the payoff function will be
decreasing with respect to hi. Overall, the payoff functions
will be quasi-concave.
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Figure 3: When symmetric, the ad networks select
symmetric equilibrium prices.

Theorem 2. The game between the ad networks has a
Nash equilibrium in pure strategies.

Proof sketch. The payoff functions of the ad networks
are continuous and quasi-concave in a convex compact set.
Thus, there exists a Nash equilibrium in pure strategies.

4. EXPERIMENTS
In this section, we gain some insights into the Nash equi-

libria of the game, through numerical experiments. We have
shown in Section 3 that both ad networks will select an ag-
gressiveness level of x = 1 and will compete in prices. De-
pending on the quality αi of the classification algorithms
of each network i, the estimated fraud intensity r, and the
homogeneity g of the publishers, the two players adjust the
revenue shares h they give out.

The first experiment studies the impact of the networks’
efficiency in classifying valid clicks on the prices they give to
the publishers. When the ad networks are of the same qual-
ity, the ad networks’ NE prices are symmetric, as shown in
Fig. 3. On the contrary, when the ad networks are asymmet-
ric, we observe that the inferior network (AN2 in our case)
selects to give more to the publishers, as seen in Fig. 4.

We also explore the role of the publishers’ homogeneity g
in determining the prices in equilibrium. As g increases, the
networks become more homogeneous, and the gap between
the players’ equilibrium prices increases (Fig. 4). When g >
0, there is a chance for one ad network to get all the market
of publishers. Thus, we observe a fiercer competition on the
revenue shares. The invalid fraction of clicks is r = 0.3, and
the qualities of the ad networks are α1 = 0.2 and α2 = 0.7.

5. CONCLUSIONS
We presented a model to capture the incentives of ad net-

works to fight click fraud. The analysis shows that the ad
networks maximize their revenues as the limit of the aggres-
siveness x of classification algorithms approaches 1. There-
fore, the ad networks resort to competing in prices to attract
a larger fraction of the publishers. Our results show that the
more asymmetric in quality the ad networks are, the more
asymmetric their equilibrium prices will be. Another finding
of our work is that as the publishers become more heteroge-
neous, the competition in prices softens.
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Figure 4: As publishers become more homogeneous,
the inferior network (AN2) offers a larger and larger
share to publishers than the superior network.

6. REFERENCES
[1] B. Bental and M. Spiegel. Network competition,

product quality, and market coverage in the presence of
network externalities. Journal of Industrial Economics,
43(2):197–208, 1995.

[2] V. Dave, S. Guha, and Y. Zhang. Measuring and
fingerprinting click-spam in ad networks. SIGCOMM,
42(4):175–186, Aug. 2012.

[3] H. Hotelling. Stability and Competition. Economic
Journal, 39(1):41–57, 1929.

[4] J. Kim. The intensity of competition in the hotelling
model: A new generalization and applications. MPRA
Paper 6876, University Library of Munich, Germany,
Apr. 2007.

[5] B. Mungamuru, S. Weis, and H. Garcia-Molina. Should
ad networks bother fighting click fraud? (yes, they
should.). Technical Report 2008-24, Stanford InfoLab,
July 2008.

[6] J. Musacchio and D. Kim. Network platform
competition in a two-sided market: Implications to the
net neutrality issue. In TPRC: Conference on
Communication, Information, and Internet Policy,
Sept. 2009.

[7] P. Njoroge, A. Ozdaglar, N. Stier-Moses, and
G. Weintraub. Competition, market coverage, and
quality choice in interconnected platforms. In
Workshop on The Economics of Networks, Systems,
and Computation (NetEcon), Sept. 2009.

[8] J. M. Perloff and S. C. Salop. Equilibrium with product
differentiation. Review of Economic Studies,
52(1):107–20, 1985.
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