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ABSTRACT
To design robust network topologies that resist strategic at-
tacks, one must first be able to quantify robustness. In a
recent line of research, the theory of network blocking games
has been used to derive robustness metrics for topologies.
However, these previous works did not consider the bud-
get constraints of the network operator. In this paper, we
introduce a budget limit on the operator and study two bud-
get constraint formulations: the maximum and the expected
cost constraints. For practical applications, the greatest
challenge posed by blocking games is their computational
complexity. Therefore, we show that the expected cost con-
straint formulation leads to games that can be solved effi-
ciently, while the maximum cost constraint leads to NP-hard
problems. As an illustrative example, this paper discusses
the particular case of All-to-One (e.g., sensor or access) net-
works.
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1. INTRODUCTION
Designing network topologies that are robust and resilient

to attacks has been and continues to be an important and
challenging topic in the area of communication networks.
One of the main difficulties resides in quantifying the robust-
ness of a network in the presence of an intelligent attacker
who might exploit the structure of the network topology
to design harmful attacks. Quantifying the robustness or,
equivalently, the vulnerability of topologies has been exten-
sively studied (e.g., [6, 11, 2]); however, the simultaneous
and strategic decision making of the defender and the ad-
versary, which is key to the security of information systems,
has received only little attention.

To capture the strategic nature of the interactions between
a defender and an adversary, game theoretic models have
been gaining a lot of interest. In a recent line of research
([4],[5],[9],[8],[3]), network blocking games (NBGs) have been
introduced and applied to the analysis of the robustness of
network topologies. An NBG takes as input the communica-
tion model (e.g., the All-to-One model for modeling access
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and sensor networks) and the topology of a network and
models the strategic interactions between an adversary and
the network operator as a two-player game. The Nash equi-
librium strategies are then used to predict the most likely
attacker’s actions and the attacker’s Nash equilibrium pay-
off1 serves as a quantification of the vulnerability (inverse
robustness) of the network. As a consequence, being able to
efficiently compute a NE is crucial for NBG models.

Zero-sum, two-player games can be cast as linear pro-
grams and, hence, can be solved “efficiently” using linear
programming tools, provided that the game is of reasonable
size. In the case of NBG models, however, the games are
generally exponential in size, which makes them challeng-
ing to deal with. In the series of NBG papers cited above,
new algorithms have been developed that compute a Nash
equilibrium efficiently for a number of communication mod-
els: All-to-One (e.g., access and sensor) networks [8], All-
to-All (e.g., Ethernet) networks [4, 9], and Supply-Demand
networks [3]. These algorithms are based on the theory of
network flows or, for some models, on the minimization of
submodular functions.

One implicit assumption of the NBG model is that the
defender (i.e., the network operator) can use the network
resources (links) at zero cost. However, in reality, network
links have positive usage costs (e.g., operation or protection
costs) and, in general, these costs are nonuniform. Further-
more, network operators do not have an unlimited budget,
which would allow them to use any combination of network
resources. In [3], a cost of security as well as a budget
constraint have been introduced for the particular case of
Supply-Demand (S-D) networks. The budget constraint lim-
its the operator to using only those sets of resources (links)
whose associated costs do not exceed her budget.

In the present paper, we extend the budget constraint idea
and provide complexity results with regard to the computa-
tion of the equilibrium payoff. Recall that the aim of solving
these models is to derive a quantification of the robustness
of the network in the presence of a strategic adversary, and
the equilibrium payoff is used as such a quantification. Thus,
being able to efficiently compute the equilibrium payoff is of
central importance in these models. As an illustrative exam-
ple, we discuss the particular case of the All-to-One commu-
nication model. The main contributions of this paper can
be summarized as follows:
• We generalize the (All-to-One) network blocking game

1It has been shown that the payoffs are the same in every
equilibrium of an NBG; thus, it suffices to find a single equi-
librium in order to characterize the robustness of a network.



model by introducing the maximum cost constraint,
which is based on a similar constraint previously pro-
posed for Supply-Demand networks, and a novel con-
straint formulation, called the expected cost constraint.
• We show that (in the All-to-One model) the problem

of determining the equilibrium payoff is NP-hard un-
der the maximum cost constraint, but can be solved
in polynomial time under the expected cost constraint.
To the best of our knowledge, these are the first com-
putational complexity results for any budget constrained
network blocking game model.

2. NETWORK BLOCKING GAMES
The concept of network blocking game was first intro-

duced in [4]. Here, we discuss it in the context of the All-
to-One communication model, which we introduce next.

2.1 All-to-One Communication Model
In an All-to-One network [8], the primary goal of the net-

work manager is to enable all nodes to communicate with a
designated node r. This models sensor and access networks,
where all of the nodes are trying to reach a gateway or data
collection node (or, alternatively, a set of nodes, which can
be modeled by a super-designated node).

The topology of the network is represented by a connected
simple graph G = (V,E) with node set V , link set E, and
designated node r ∈ V (G). To get all nodes connected to r,
the network manager chooses a subset of links T that forms
a spanning tree. In practice, this spanning tree could be
implemented, for example, as the next-hop forwarding table
entries for r, which are stored at the individual nodes of the
network. We let T designate the set of all spanning trees.

Let the network be connected using a spanning tree T . If
a given link e ∈ E fails (because of the action of an attacker),
some nodes might no longer be able to communicate with r
and, thus, can be considered as lost for the network operator.
We let λ(T, e) designate the number of those nodes that are
disconnected from r. Notice that, if e /∈ T , then λ(T, e) = 0.
In the next section, we use this loss to define the payoffs in
our game model.

2.2 Game-Theoretic Measure of Robustness
The game is played on the topology of the network by a

defender (the network operator or manager) and a strategic
attacker. The operator wants to guarantee that all nodes
can communicate with r. For this, she chooses a spanning
tree T ∈ T (i.e., her strategy space is the set T of all span-
ning trees). At the same time, a strategic and malicious
adversary is trying to disrupt the communication by remov-
ing a link (i.e., her strategy space is the set E of links in the
network). We model this attacker-defender “interaction” as
a zero-sum, two-player game where the payoffs are defined
as follows: when the operator picks spanning tree T and the
attacker targets link e, the defender loses λ(T, e) (as defined
above), which goes as a payoff to the attacker.

We consider mixed strategy Nash equilibria, where the
network operator chooses a distribution (denoted by α) over
the set T and the attacker chooses a distribution (denoted
by β) over the set E. It is assumed that the operator tries to
minimize her expected loss (i.e., negative payoff), while the
attacker tries to maximize her expected payoff. Formally, the
operator chooses α to minimize L(α,β), while the attacker
chooses β to maximize L(α,β), where

L(α,β) =
∑
T∈T

∑
e∈E

αTβeλ(T, e). (1)

In the analysis of the general NBG, it has been shown that
the equilibrium expected loss L(α∗,β∗) is a property of (i.e.,
solely determined by) the topology of the network and the
communication model (which, in this paper, is considered to
be the All-to-One model). A low L(α∗,β∗) indicates that
operating the network has low expected loss due to attack,
that is, the network is robust against attacks. If, on the
other hand, L(α∗,β∗) is high, then the expected loss is also
high, and the network can be considered vulnerable. As
such, L(α∗,β∗) can be used as a measure of network topol-
ogy vulnerability (i.e., inverse robustness). It is noteworthy
that, for the All-to-One model, this measure was shown to
be the inverse of the persistence of the graph of the network
[8], which had been previously proposed in [1] as a metric
for graph robustness in a non-game theoretic framework.

The model above discusses scenarios where the defender
can choose from the set of spanning trees at zero cost. For
such (unconstrained) models, efficient algorithms have been
derived to compute a NE for multiple NBG models (as stated
earlier). In the following section, we introduce a budget con-
straint on the defender and, then, analyze the complexity of
computing an NE in Section 4.

3. BUDGET CONSTRAINT
In the basic NBG, the operator is only interested in min-

imizing her expected loss due to attack, without taking her
operating costs into account. In practice, however, network
operators have to take economic goals and constraints into
consideration when deciding their strategies. These eco-
nomic decisions are affected by the topology of the network
as links (and, hence, spanning trees) can have varying (unit)
costs of usage.

3.1 Unit Usage / Protection Cost
In [3], a (per unit) usage cost model was introduced and

discussed for the particular case of the S-D communication
model. Here, we extend this cost model to the All-to-One
communication model. First, recall that, in the All-to-One
model, λ(T, e) is the number of nodes that communicate
with r through e. Thus, λ(T, e) is proportional to the traffic
on e and, hence, to the usage of link e. We assume that
each link is associated with some unit usage cost w(e), so
that using link e has a net per link cost of w(e)λ(T, e) to the
operator. With this definition, the total cost of a spanning
tree T is

w(T ) :=
∑
e∈E

λ(T, e)w(e) . (2)

If the spanning tree T is chosen according to some distri-
bution α, then we define the expected usage cost as

w(α) :=
∑
T∈T

αTw(T ) =
∑
e∈E

w(e)
∑
T∈T

αTλ(T, e) . (3)

We assume that, to operate the network, the operator has
a fixed budget b ∈ R≥0 to spend. Therefore, her objective is
to minimize her expected loss (see Equation 1) by choosing a
strategy such that the constraint posed by the given budget
is satisfied. The budget constraint can be formulated in
multiple ways. In the following sections, we introduce and



study two straightforward formulations, the maximum and
the expected (or average) cost budget constraints.

3.2 Maximum Cost Budget Constraint
In our first budget constraint formulation, which is re-

ferred to as maximum cost constraint (MCC), we require
that, for a given budget b, the operator can use a spanning
tree T only if its total cost (in Equation 2) is less than or
equal to b. Formally, the pure-strategy set of the operator
is restricted to

T (b) = {T ∈ T | w(T ) ≤ b} . (4)

The maximum cost constraint is best-suited for budget
limits that are determined by the amount of preallocated
resources available. In this case, the cost of a link can be
the amount of resources needed (e.g., energy consumption)
to operate the link and the budget limit is the amount of
resources available (e.g., amount of power available).

3.3 Expected Cost Budget Constraint
The maximum cost constraint misses to capture certain

situations. For instance, when the amount of allocated re-
sources can be modified during operation, e.g., resources can
be leased, the budget limit applies to the average or, equiv-
alently, the expected cost of a strategy during continuous
operation. Thus, in our second budget constraint formula-
tion, which we will refer to as the expected cost constraint
(ECC), we only require the expected (or average) cost of the
operator not to exceed the budget limit.

Under the expected cost constraint with a budget limit b,
the operator can employ a mixed strategy only if its expected
cost (in Equation 3) is less than or equal to b. Formally, the
set of mixed strategies available to the operator is

A(b) =
{
α ∈ R|T |

∣∣∣w(α) ≤ b
}
. (5)

Note that the above formulation generalizes the classic no-
tion of mixed strategies in game-theory, where the set of
mixed strategies is always the set of all distributions over
the set of pure strategies. Here, a mixed strategy is chosen
from a predefined subset of distributions.

3.4 Constrained Game
Having defined the set of available strategies (pure for

MCC and mixed for ECC), we can now setup the con-
strained game (in a similar way as presented in Subsection
2.2). We are interested in mixed strategy Nash equilibria

where the operator picks a distribution α over T (b) (for

MCC) or from the set A(b) (for ECC), while the attacker
chooses a distribution β over the set of links. The Nash
equilibrium payoff is denoted L(b)(α∗,β∗) for a game with
budget limit b.

Using the same interpretation as in Subsection 2.2, the NE
payoff L(b)(α∗,β∗) can be used to quantify the vulnerability
(i.e., inverse robustness) of the network at budget limit b,
which is the minimum vulnerability that the defender can
achieve when her budget is b. By varying b, one can draw
the Pareto frontier between the region of achievable vulnera-
bility/budget points and the region of unachievable ones, as
was done in [3] for the particular case of S-D networks with
the maximum cost constraint. In the next two sections, we
discuss the complexity of computing L(b)(α∗,β∗).

4. COMPUTATIONAL COMPLEXITY
Recall that the game considered in this paper (and gener-

ally in NBGs) is exponential in size (the number of spanning
trees grows exponentially in the number of nodes). As a
consequence, usual solution techniques (such as linear pro-
grams) become impractical. However, it has been shown
that an equilibrium can be computed efficiently for a num-
ber of communication models ([4], [9], [8], and [3]) in the
unconstrained game. The next theorem gives the computa-
tional complexity for the constrained game.

Theorem 1. Computing the NE payoff for the All-to-
One communication model is
• NP-hard under a maximum cost budget constraint and
• can be solved in polynomial time under an expected cost

budget constraint.

In the following two subsections, we give an outline of the
proof. The complete proof can be found in [7].

4.1 Proof: Maximum Cost Budget Constraint
We show NP-hardness by reducing a well-known NP-hard

problem, the Partition Problem (PP) [10], to the problem of
deciding whether the equilibrium payoff in a given network
is greater than a certain value. We refer to this problem as
the Equilibrium Problem (EP).

First, we construct an instance of EP (i.e., a network
topology, a budget limit, and an equilibrium payoff value)
from an instance of PP (i.e., a multiset of positive integers
{x1, . . . , xn} that has to be partitioned into two subsets of
equal size) in polynomial time as follows:
• Let the topology be the following: The designated

node r is connected with zero cost edges to 2n nodes,
denoted by 1a, 1b, . . ., na and nb, in the form of a large
star rooted at r. Additionally, there are n “outer”
nodes, denoted by 1, . . . , n. Node i is connected to
nodes ia and ib with edges having costs of xi and 0.
• Let the budget be b = 1

2

∑n
i=1 xi.

• Finally, let the equilibrium payoff value be 3
2
.

Second, we show that the equilibrium payoff in the above
network is greater than 3

2
iff the PP does not have a solution.

4.2 Proof: Expected Cost Budget Constraint
In order to overcome the computational complexity caused

by the exponential size of the operator’s pure strategy space,
we use a network flow based characterizations of the opera-
tor’s mixed strategy space, which was introduced in [8].

Let Lopt denote the value of the following LP:

Maximize − L (6)

subject to
∑

(u,v)∈E

f(u, v)w(u, v) ≤ b (7)

∀(u, v) ∈ E : f(u, v) ≤ L (8)

∀v ∈ V \ {r} :
∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w) ≤ −1 , (9)

where L ∈ R≥0 and ∀(u, v) ∈ E : f(u, v) ∈ R≥0.
First, we show that an operator strategy that achieves at

most Lopt loss (regardless of the adversary’s strategy) can
be computed in polynomial time. Second, we show that
an adversarial strategy that achieves at least Lopt payoff
(regardless of the operator’s strategy) can be computed in
polynomial time. Finally, by combining these results, we
have that the equilibrium payoff is Lopt.



5. APPLICATION EXAMPLE
In this section, we present a practical example, and show

how the choice of budget constraint can impact an opera-
tor’s investment decisions. The example compares the two
budget constraint formulations to each other and to the un-
constrained game. Note that, because of the small size of
the example, the computational complexity of the maximum
cost constraint is not an issue.

Assume that we have to operate a small sensor network,
whose topology is shown in Figure 1. The unit cost of each
link is assumed to be 1. To run the network, we are given
a budget of b = 12 units. Notice that this budget is large
enough so that, for the original topology, the robustness is
the same in the constrained and the unconstrained games
(as can be seen in the first row of Table 1).

e1

e3 e2

Figure 1: The topology of the example network. The
designated node is represented by the shaded disk.
Original links are represented by solid lines.

Now, assume that we are given the opportunity of adding
an additional link to make the network topology more ro-
bust. To simplify the example, three options are compared
to each other: link e1, whose unit cost is 4, link e2, whose
unit cost is 2, and link e3, whose unit cost is 1.5.

Table 1: Topology Vulnerability for Different Op-
tions and Constraints

Unconstrained Maximum
Cost Const.

Expected
Cost Const.

Original 2.5 2.5 2.5
e1 added 1.67 2 2
e2 added 1.75 2 1.86
e3 added 1.75 1.9 1.9

Table 1 shows the value of the equilibrium payoff, which
is a metric of vulnerability (i.e., inverse robustness), for each
option in the unconstrained, the maximum cost constrained,
and the expected cost constrained models. The optimal op-
tion (i.e., the lowest value) for each constraint is marked
in bold. The table shows that the optimal option is differ-
ent for each formulation: In the unconstrained game, the
long-range high-cost link is optimal. Under the maximum
cost constraint, which is the most restrictive, the cheap-
est link has to be chosen. Finally, under the expected cost
constraint, the medium-cost link is the best as it is a good
trade-off between cost and decrease in vulnerability.

6. CONCLUSION & FUTURE WORK
In this paper, we have generalized the All-to-One NBG

game by introducing budget constraints on the operator. As
the greatest challenge to computing the equilibrium (i.e., the
vulnerability of the topology) in practice is the exponential
size of the payoff matrix, we have focused our work on com-
putational complexity: we have shown that the maximum

cost formulation leads to NP-hard problems and proposed
an efficient algorithm for the expected cost formulation.

Proving that the maximum cost formulation leads to NP-
hard problems was a very important first step. Since we
now know that no polynomial-time algorithm can solve the
game under the MCC, an interesting future work is find-
ing polynomial-time approximation algorithms or efficient
heuristics. Another interesting future direction is the study
of the cost-security tradeoff problem, where the operator has
to maximize security and minimize budget at the same time.
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