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ABSTRACT
Stackelberg security game models and associated compu-
tational tools have seen deployment in a number of high-
consequence security settings, such as LAX canine patrols
and Federal Air Marshal Service. This deployment across
essentially independent agencies raises a natural question:
what global impact does the resulting strategic interaction
among the defenders, each using a similar model, have? We
address this question in two ways. First, we demonstrate
that the most common solution concept of Strong Stack-
elberg equilibrium (SSE) can result in significant under-
investment in security entirely because SSE presupposes a
single defender. Second, we propose a framework based on a
different solution concept which incorporates a model of in-
terdependencies among targets, and show that in this frame-
work defenders tend to over-defend, even under significant
positive externalities of increased defense.

1. INTRODUCTION
Security, physical and cyber, has come to the forefront of

national attention, particularly after 9/11. Among the vari-
ety of approaches that are used to tackle security problems,
from risk analysis to red teaming, game theory has had a
non-trivial impact, with tools based on game theoretic anal-
ysis having been deployed in LAX aiport to schedule canine
patrols [13, 6, 14], by Federal Air Marshall Service (FAMS)
to schedule the air marshals [9, 7, 5], and by the US Coast
Guard to schedule boat patrols [15]. All of these deploy-
ments, and numerous other related efforts, have cast security
as a Stackelberg game between a single defender and an at-
tacker, in which the defender leads (i.e., acts first), choosing
a probability distribution over defense actions, and the at-
tacker, upon learning this probability distribution, chooses
a response [4]. In many cases, the attacker is modeled as
a rational agent who selects an optimal response and, in
the many applications that compute a Strong Stackelberg
equilibrium, an attacker is often assumed to break ties in
the defender’s favor [13, 10]. A crucial assumption that all
these efforts have in common is that they assume a single
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defender. In practice, numerous parties are responsible for
security; indeed, the fact that the basic framework has been
deployed by different entities and agencies makes this man-
ifest already. If security decisions made by different parties
were entirely independent, both from the defender’s and the
attacker’s perspective, a single-defender model would be en-
tirely satisfactory. However, the assets protected by differ-
ent entities are typically interdependent, or, more generally,
have value to others who are not involved in security de-
cisions. Additionally, attackers, insofar as they may target
different sectors under the charge of different defenders, are
resource constrained, implicitly coupling otherwise indepen-
dent targets.

We extend the standard computational Stackelberg game
framework to analyze games with multiple defenders. One
key reason for using the Stackelberg game framework as a
point of departure is that as single-defender approaches are
increasingly deployed by the different parties, it is important
to anticipate the joint defense that emerges in the long-run
as a result. Additionally, unlike other multi-defender mod-
els (e.g., [11, 3, 1, 2]), our approach maintains the typical
complexity of individual defender decision process in the
multi-defender framework, with each defender responsible
for securing many, possibly interdependent, targets.

Our setup gives rise to two competing externalities of se-
curity decisions: a positive externality, where greater secu-
rity implies reduced contagion risk to other defenders, and
a negative externality, which arises because high security by
one player pushes the attacker to attack someone else’s as-
sets. Our main analytic contribution is therefore to study
the impact of these competing effects of defense on the re-
sulting Nash equilibrium outcomes. Overall, our results sug-
gest that the negative externality dominates, and defend-
ers tend to over-invest in security. However, the impact on
defense outcomes and welfare (relative to optimal) is sub-
stantial only when the security decisions are significantly
decentralized, and in the intermediate cases, joint defense
decisions are nearly optimal.

2. PRELIMINARIES
Our point of departure is the relatively mature literature

on single-defender Stackelberg security games. A (single-
defender) Stackelberg security game consists of two players,
the leader (defender) and the follower (attacker), and a set of
possible targets. The leader can decide upon a randomized
policy of defending the targets, possibly with limited defense
resources. The follower (attacker) is assumed to observe the
randomized policy of the leader, but not the realized defense



actions. Upon observing the leader’s strategy, the follower
chooses a target so as to maximize its expected utility.

In multi-defender security games (our model), multiple
defenders simultaneously and non-cooperatively choose se-
curity policies over a collection of non-overlapping targets
which they own. The attacker observes this joint policy of
all defenders and attacks a single target that maximizes its
expected utility. The restriction we impose in these games
is that the set of targets is partitioned among the defend-
ers; each defender can only choose defense configurations
over the targets assigned to it. However, defenders may
positively value any of the targets, including those that are
outside of their domain of influence.

To formalize, let D be the set of all defenders, and suppose
that a defender d can choose from a finite set O of security
configurations for each target t ∈ Td, where Td is the set of
targets under d’s direct influence. Let T be the set of all
targets, that is, T = ∪dTd, with |T | = n. A configuration
o ∈ O for target t ∈ Td incurs a cost co,t to the defender d.

If the attacker happens to attack a particular target t ∈ T
while configuration o is in place, the expected value to a de-
fender d is denoted by Ud

o,t, while the attacker’s value is
Vo,t. We assume throughout that each player’s utility de-
pends only on the target attacked and its security configu-
ration [9, 12]. We denote by qdo,t the probability that the
defender d chooses o at target t ∈ Td.

While the problem we study assumes that that the utility
of any player for a given target depends only on its security
configuration o, there is a rather natural way to model in-
terdependencies while retaining this structure, proposed by
Letchford and Vorobeychik [12]. Specifically, suppose that
dependencies between targets are represented by a graph
(T,E), with T the set of targets (nodes) as above, and E
the set of edges (t, t′), where an edge from t to t′ means that
a successful attack on t may have impact on t′. Each target
has associated with it a worth, wd

t , for the defender d, which
is the loss to d if t is affected (e.g., compromised, broken).
The security configuration determines the probability zo,t(t)
that target t is affected if the attacker attacks it directly and
the defense configuration is o. We model the interdependen-
cies between the nodes as independent cascade contagion [8,
12]. The contagion proceeds starting at an attacked node t,
affecting its network neighbors t′ each with probability pt,t′ ;
the contagion then spreads from the newly affected nodes
t′ to their neighbors, and so on. The contagion can only
occur one time along any network edge, and once a node is
affected it stays affected through the diffusion process.

3. COMPUTING A DEFENDER’S BEST RE-
SPONSE

A crucial step in computing (or approximating) a Nash
equilibrium of a game is to consider the problem of comput-
ing a best response for an arbitrary player (in our case, de-
fender, since the attacker’s best response is straightforward).
Appealing to the standard computational methods for the
now common Strong Stackelberg equilibrium is tempting in
this case, given the rich literature on the two-player Stackel-
berg security games that use that solution concept [10]. We
now describe the problem with this concept in the multi-
defender setting, and propose an alternative solution con-
cept that is more appropriate to our setting.

3.1 The Weakness of Strong Stackelberg Equi-
librium

By far the most important solution concept in Stack-
elberg security games is a Strong Stackelberg equilibrium
(SSE) [10]. A SSE is characterized by an assumption that
the attacker breaks ties in defender’s favor. When there is
a single defender, this is well defined, and quite reasonable
when the defender can commit to a mixed strategy: a slight
adjustment in the defense policy will force the attacker to
strictly prefer the desired option, with little loss to the de-
fender. As we now illustrate, however, SSE is fundamentally
problematic in a multi-defender context, because the notion
of “breaking ties in defender’s favor” is no longer well defined
in general, as we must specify which defender will receive the
favor.

To see concretely what goes wrong, consider the example
in Figure 1. In this example, there are two defenders, one
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Figure 1: Example of a problem with a SSE in a
multi-defender setting.

who defends the target on the left, while the other defends
the target on the right. Both defenders value their respective
targets at 1, and have no value for the counterpart’s target.
The cost of defending each target is 0 < ε � 1. Now,
consider a strategy profile in which qt = 0 for both targets
t, and let us focus on the best response of the first (left)
defender. If this defender attempts to compute an SSE by
fixing the strategy of the second player, he perceives his
utility under the current strategy profile to be 1, since he
would assume that the attacker breaks ties in his favor and,
thus, attacks the defender on the right. By the same logic,
the defender on the right will assume that the attacker will
attack his counterpart, and perceive qt = 0 to be the best
response. Since the attacker actually attacks one of them,
the best response of the defender being attacked is to defend
with a small probability, pushing the attacker towards the
other target. What goes wrong here is that both players
assume that the attacker attacks the other (breaks ties in
their favor), which is inconsistent with the assumption that
the attacker will certainly attack some target.

One possible resolution of the problem with SSE is to
constrain that, in computing a player’s best response, the
attacker strictly prefers a single target over any other. This
resolution would be convenient, as it would require only a
minor modification to the standard formulations for com-
puting a defender’s best response based on the SSE solution
concept. However, we now illustrate that this gives rise to
a different problem: the utility of a defender is undefined
when the attacker has multiple best responses. To see what
can go wrong in this case, consider the above example, but
suppose that each defender also has a value of 2 for the
counterpart’s target, and consider a best response of the
left defender when qt = 0 for both targets t. Since the con-
straint of the best response computation of a player is that
the attacker has a strict preference for some single target,
qt = 0 is not feasible, as it causes the attacker to be indif-



ferent between the two targets. The defender’s best feasible
choice will make the attacker strictly prefer to attack the
other player’s target, a clear loss compared to staying with
qt = 0.

3.2 ASE: An Alternative Solution Concept
Since the classic (two-player) SSE solution concept used

in Stackelberg security games does not conceptually extend
to be an individual defender best-response problem in the
multi-defender setting, we need to consider an alternative.
One option is to compute an arbitrary subgame perfect equi-
librium. However, we wish to impose a natural constraint
on the solution concept that the attacker’s best response be
computed consistently for any joint defense policy, just as
it is in a SSE (in other words, we wish to fix a tie-breaking
rule). One natural tie-breaking rule is that the attacker
chooses a target uniformly at random from the set of all best
responses [1]. We call the corresponding solution concept
(which is a refinement of the subgame perfect equilibrium of
our game) the Average-case Stackelberg Equilibrium (ASE).
The crucial property of this solution concept that we desire
is that the attacker’s behavior presumed by a defender’s best
response problem is independent of that defender’s identity,
a property that SSE violates.

3.3 Computing ASE
While ASE seems a very natural alternative to SSE even

in two-player security games, we are not aware of any pro-
posals for computing it. Below, we present the first (to our
knowledge) MILP formulation for computing ASE, which
in our case would compute a best response for an arbitrary
defender d when the strategies of all others, q−d

t,o , are fixed.

max
a,qd,s,u,v

u−
∑
t∈Td

∑
o∈O

ct,oq
d
t,o (1)

s.t.

0 ≤ qdt,o ≤ 1 ∀ t ∈ Td, ∀o (2)∑
o∈O

qdt,o = 1 ∀t ∈ Td (3)

at ∈ {0, 1} ∀ t ∈ T (4)∑
t∈T

at ≥ 1 (5)

0 ≤ v −
∑
o

qdt,oVt,o ≤ (1− at)M ∀ t ∈ Td (6)

0 ≤ v −
∑
o

q−d
t,o Vt,o ≤ (1− at)M ∀ t ∈ T−d (7)

st = v −
∑
o

qdt,oVt,o ∀ t ∈ Td (8)

st = v −
∑
o

q−d
t,o Vt,o ∀ t ∈ T−d (9)

at +Mst ≥ 1 ∀ t ∈ T (10)

u = f(q, a), (11)

where M is a very large number and

f(q, a) =

∑
t∈Ti

at
∑

o∈O q
i
t,oUt,o +

∑
t∈T−i

at
∑

o∈O q
−i
t,oUt,o∑

t∈T at
.

While constraint 11 is non-linear, we can linearize it using
McCormick inequalities.

4. APPROXIMATING NASH EQUILIBRIA
Previously, Vorobeychik and Wellman [16] presented a

convergent equilibrium approximation algorithm based on
simulated annealing (SA) that would be applicable in our
setting. They additionally showed in simulation that SA is
actually outperformed by a simple heuristic based on iter-
ated best response (IBR) dynamics. Here, we interpret IBR
as a greedy equilibrium approximation heuristic, with the
property that if the starting point is a Nash equilibrium,
IBR will never deviate from it (i.e., Nash equilibrium is a
fixed point). Clearly, then, the choice of a starting point can
be significant for the performance of IBR, making it natural
to consider coupling it with random restarts. Our main con-
tribution in this section is to present evidence that IBR with
random restarts is a highly effective equilibrium approxima-
tion approach in our setting (and outperforms several alter-
natives). This is both of broad significance, and of particular
importance in our setting, as we use this algorithm for our
analyses below.

We compare the following Nash equilibrium approxima-
tion algorithms executed for 1000 iterations: random search
(RS), which simply generates 1000 strategy profiles ran-
domly, computes the game theoretic regret of each, and
chooses a profile with the smallest regret; simulated an-
nealing (SA), with the temperature exponentially increasing
with iterations; and iterated best response (IBR) with no
restarts. We also include in the comparison two additional
variations of IBR: the first uses SA for the first 100 itera-
tions, and then switches to IBR for the remainder (starting
with the best approximation produced by SA); the second
is IBR with random restarts, which we term RIBR. We exe-
cute our comparison on games with 2 players and 10 targets
and games with 5 players and 20 targets. In all cases, tar-
gets are divided evenly among the players, and values over
the targets are generated uniformly at random. The cost of
defense is fixed at c = 0.2, and the targets are assumed to be
independent (but players may have values for targets under
the control of other defenders). Figure 2 demonstrate that
in both settings, RIBR outperforms other alternatives.
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Figure 2: Comparison of algorithms. Left: |D| = 5
and |T | = 20. Right: |D| = 2 and |T | = 10.

5. ANALYSIS OF MULTI-DEFENDER SE-
CURITY GAMES ON NETWORKS

Now that we have a method for approximately computing
Nash equilibria in multi-defender security games, we proceed
with analyzing instances of such games, in which the play-
ers’ utilities for targets are derived based on the model of
interdependencies described earlier, taking the worth of each
target (asset) to be 1 to the player who owns it.

Our setting is a 8 × 8 grid, which we symmetrically di-
vide among the |D| players. Throughout, we assume that a



defender has only two defense options, to defend, and not,
with the cost of defense being a uniform c (independent of
players and targets), while no defense is free. In the experi-
ments we vary three parameters: the number of players, |D|,
the cost of defense, c, and the probability of cascade via an
edge, p (identical for all edges).
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Figure 3: Average welfare of all players on a 8 x 8
grid.

Figure 3 presents welfare (total expected utility of the
defenders) as a function of the problem parameters, with
the horizontal axis corresponding to the number of defend-
ers. The general trend is not in itself surprising: welfare
decreases as the number of players increases (clearly, a sin-
gle player computes the globally optimal solution). Another
general and intuitive feature exhibited by Figure 3, right, is
that increasing p decreases welfare across the board. Let us
focus now on a few surprises. First, note that for interme-
diate numbers of players (between 2 and 4 in the medium-
cost/p case, and 2-16 when the cost is high or p is low)
the welfare curve is relatively little impacted by decentral-
ization: equilibrium solutions are relatively close to opti-
mal. When the resource control is significantly decentral-
ized, however, externalities tend to lead to significant welfare
loss. Second, with high decentralization (32-64 players), the
value of p (i.e., the extent of positive security externalities)
has no impact on welfare.

To understand these phenomena, we consider what hap-
pens to the average defense (i.e., average qt over all targets
t) in equilibrium, shown in Figure 4. Both as we vary de-
fense costs, c, and the extent of network externalities, p,
increasing the number of players leads to higher security in-
vestment, and when each player controls a single node in
the grid, all players fully protect their nodes, resulting in
security allocation well in excess of optimal. To sum up,
the negative externalities appear to dominate, and players
over-defend, although the impact only becomes substantial
when defense decisions are highly decentralized.
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Figure 4: Average defense strategies for all players
on an 8 x 8 grid.
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Playing games with security: An efficient exact algorithm
for Bayesian Stackelberg games. In Proceedings of the
Seventh International Conference on Autonomous Agents
and Multiagent Systems, pages 895–902, 2008.

[14] James Pita, Manish Jain, Fernando Ordóñez, Christopher
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