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Abstract 

While attention has been paid in the computer sci-
ence literature to improving efficiency of search 
algorithms in P2P networks, little attention has 
been paid to 1) economic incentives that guide us-
ers to share content, 2) content-based measures of 
similarity of interests among users, and 3) cost 
implications of physical location of peers on the 
underlying network. Our work draws on ideas from 
the economics literature of club goods and the in-
formation retrieval literature to propose next gen-
eration P2P file sharing architectures that rely on 
content-based, self organizing communities of 
peers to address these issues.  Using the model of 
ultrapeers and leaf nodes in Gnutella v0.6 archi-
tecture as context, we conceptualize an ultrapeer 
and its network of leaf nodes as a club (in Eco-
nomic terms). We specify a simple utility-based  
model for a peer to determine which “clubs” to 
join, for clubs to manage their membership, and 
for “clubs” to determine to which other clubs they 
should be connected. We simulate performance of 
these models using unique real world dataset col-
lected from the Gnutella v0.6 network. Our pre-
liminary simulations demonstrate that our en-
hancements result in at least 300% improvement in 
ultrapeers’ ability to satisfy their leaf node’s que-
ries, thereby significantly decreasing congestion 
on the network and enabling more efficient and 
effective file sharing architectures. 

1. MOTIVATION  

1.1 Economic Incentives 

File sharing networks that use decentralized Peer 
to Peer (P2P) computing architectures have gained 
considerable popularity in recent years with the 
emergence of applications such as Gnutella and 
Kazaa. New applications (e.g., Groove Networks) 
are emerging in areas such as knowledge manage-
ment within large distributed organizations such as 
the US Department of Defense and global consult-
ing companies. With the growth of these applica-
tions, fundamental shortcomings of extant P2P ar-
chitectures have been widely identified. Of these,  
the inability to scale or increase the size of the 
network is one of the major problems. There are 
two potential reasons for this. One,  inefficient 
search results due to the inability of peers to iden-
tify which other peers in the network have relevant 
content to their queries, and two,  the persistence 
of free riding (i.e., peers that do not provide con-
tent to the network) leading to  congestion and de-
lay.  Recent work on P2P networks has focused on 
enhancing network scalability and performance 
through improved indexing schemes, ultrapeers 
(super nodes), caching, and intelligent linkage 
promotion based on similarity of interests 
(Sripanidkulchai et al. 2001; Stoica et al. 2001). In 
these enhancements, cooperation among peers and 
their willingness to share their content through rep-
lication is taken for granted. However, recent em-
pirical research suggests that cooperation and shar-
ing is not the dominant mode of operation among 
members of P2P networks, and that this worsens 
with network size (Adar et al. 2000; Asvanund et 
al. 2002). Low levels of sharing in peer-to-peer 
networks limits network scalability and leads to 
inefficiencies from peers who consume scarce 
network resources without providing benefits to 
the network in the form of content, storage, or 
bandwidth (Krishnan et al. 2002a; Krishnan et al. 
2002b). 

There are several parallels between the findings in 
the economic literature and empirical research in 
the P2P context. The empirical results confirm a 
prediction of the public goods literature that the 
private provision of public goods will be socially 
inefficient either in terms of under-provision (a.k.a. 
free riding) or over-consumption (a.k.a. “the trag-
edy of the commons”) (Hardin 1968) and that that 
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users have a more incentives to free-ride in larger 
networks (Olson 1965; Palfrey et al. 1984). In each 
case, these inefficiencies arise because individuals 
only take into account their private utility when 
making consumption and provision decisions even 
though these decisions affect the utilities of other 
members on the network. Additionally, P2P net-
works share many parallels with the club goods 
literature (Buchanan 1965, Samuelson 1954). P2P 
networks exhibit characteristics of non-
excludability in that access is typically made avail-
able to all users of the network. However, exclud-
ability could be imposed, as in club goods, through 
membership rules. In the ideal case, P2P networks 
also exhibit non-rivalry in demand when a con-
sumer of content becomes a provider of the con-
tent, scaling supply to proportionally meet demand 
(Asvanund et al. 2002). However, in the presence 
of free riding (when a consumer does not share the 
files they download), P2P network resources will 
exhibit rivalry in consumption (i.e., congestion), as 
in club goods.  

Recent work (Golle et al. 2001) attempts to use 
micropayments as a solution to the free riding 
problem in P2P networks. While payment has the 
desirable effect of causing users to internalize the 
externality they impose on the community, they are 
impractical in common P2P settings. We explore 
an alternative approach and make access to club 
content contingent on content or other resources 
made available by the user (leaf node) to the com-
munity (ultrapeer network). In this way, our ap-
proach aligns the incentives of the user with the net 
utility to the community. 

It is important to note that P2P networks differ 
from the traditional club goods model in the eco-
nomics literature in several respects. First, club 
members in P2P networks contribute shared re-
sources rather than monetary payment. Second, a 
consumer of content also becomes its provider. 
Third, members may choose to simultaneously 
connect to more than one club; and finally, clubs 
can have inter-club relationships as in (Sterbetz 
1992) through ultrapeer to ultrapeer connections. 
We incorporate these differences into both our 
model and our simulation. 

1.2 Sociological and Physical Context 

Users can be sociologically characterized by their 
interest for content. Users with dissimilar interest 

may inadequately respond to each other’s informa-
tion needs. Recent work (Sripanidkulchai et al. 
2001) introduces intelligent linkage promotion. 
However, it also does not address the content iden-
tifiability issue and assumes unique identifiers for 
content. Unlike books, content in P2P networks do 
not have unique ID, such as ISBN, and uniquely 
identifying content is nontrivial. There is the need 
to quantify similarity in interest – an important 
metric to determine the capacity of either a single 
peer or a network of peers (i.e., a club) to satisfac-
torily respond to queries – and use it to promote 
the formation of communities of interest. In this 
paper, we use techniques derived from the Infor-
mation Retrieval literature to develop such similar-
ity metrics, and these methods do not require con-
tent indentifiablity.  

P2P networks are an overlay network on top of 
existing Internet infrastructure (Ripeanu et al. 
2002). Users are distributed on several physical 
networks, and communicating across network 
boundary is inefficient and costly. A study 
(Ripeanu et al. 2002) found that most Gnutella us-
ers establish connections across network bounda-
ries, which does not take advantage of the underly-
ing infrastructure, and that this results in inefficient 
routing. A report (Sandvine Incorporated 2002) 
states that P2P traffic takes up almost 60% of cross 
network traffic. Thus, a solution should also take 
into account the cost implications of routing, relay-
ing and satisfying queries over the underlying 
physical infrastructure.  

1.3 Approach 

 

Figure 1: Gnutella v0.6 architecture 

We use the Gnutella v0.6 protocol to provide con-
text to our discussion. Gnutella is currently the 
most popular open protocol (do we have any statis-
tics here?). In Gnutella v0.4, the first public ver-
sion of Gnutella, all peers are treated equal. Each 
peer establishes and maintains stateful connections 
to a few (average of 5) other peers (neighbors), 
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who also recursively establish and maintain con-
nections to other peers. These connections are used 
for relaying query messages. When a peer issues a 
query requesting some content, he sends the query 
message through the connections to all of his 
neighbors, who in turn recursively forward this 
query to their neighbors. Query hits then traverse 
the same path back to the originator. This protocol 
has proven inefficient because the number of query 
messages passed overwhelms peers with slower 
connections. Gnutella v0.6, introduces the concept 
of ultrapeers. Ultrapeers act as a local hub for its 
leaf nodes. Leaf nodes are regular peers who main-
tain stateful connections to their ultrapeers. Ul-
trapeers are connected to each other in the same 
fashion as regular peers are connected in v0.4. Ul-
trapeers forward queries for their leaf nodes and 
shield their leaf nodes from receiving unnecessary 
query messages. By knowing the content hashes of 
their leaf nodes, ultrapeers can determine whether 
or not to forward a query to a leaf node. By design, 
peers with high system resources and bandwidth 
can volunteer to become an ultrapeer, whereas 
peers with low system resources and bandwidth 
can remain leaf nodes. Figure 1 illustrates a 
Gnutella v0.6 topology. Ultrapeers are depicted by 
dark circles, while leaf nodes are depicted by light 
circles. Ultrapeer interconnectivity is depicted by 
thick lines, while leaf nodes’ connections to ul-
trapeers are depicted by thin lines. 

We conceptualize the Gnutella network as a collec-
tion of clubs operated by ultrapeers who seek to 
maximize their club value, while leaf nodes (i.e., 
peers) connect to the right clubs in order to maxi-
mize their private utility. Figure 1 depicts a club by 
a dotted circle, which represents an ultrapeer and 
its connected leaf nodes. We leverage the ultrapeer 
architecture to introduce club formation and em-
ploy exclusivity to optimize allocation of rivalrous 
(i.e., shared) club resources. This framework, 
which is outlined in Section 2 below, imposes an 
incentive reinforcing structure on the network that 
encourages users to form the club efficiently, and 
improve cooperation through sharing and replica-
tion. 

We use this approach to simulate the performance 
of P2P networks under a variety of different infor-
mational conditions (facilitated through augmenta-
tion of the existing protocols). This simulation will 
be seeded using a unique data set  that we have 

compiled documenting user content, queries, geo-
graphical location, and the correlation between the 
three. Such correlation is critical to accurately 
simulate club formation. While, we chose Gnutella 
as a context for our discussion because it was the 
largest P2P network, and we could obtain real 
world data from it, our club model is applicable to 
any decentralized P2P architectures that can take 
advantage of the ultrapeer structure.  

2. MODEL 

As noted above, our goal is to treat network par-
ticipants as economic actors by modeling the 
utility functions of network participants and, based 
on these utility functions, to develop a set of incen-
tives such that the participants will choose actions 
to maximize social welfare. Our model develop-
ment follows the standard game theoretic specifi-
cation of each participant’s information set, strat-
egy set, and utility function. Following the 
Gnutella v0.6 architecture, our model participants 
are leaf nodes and ultrapeers. The information and 
decision sets we use can be achieved with only 
minor extensions to the existing Gnutella v0.6 draft 
protocol. 

2.1 Leaf Nodes 

Information Set: Each leaf node is provided with 
an initial set of content. Each leaf node also has its 
endowed bandwidth and geographical location. 

Utility Function: The leaf node’s net utility is a 
sum of the utility provided by each of the ul-
trapeers to which it is connected. For each ul-
trapeer up that a leaf node l is connected to, l gains 
utility directly from that up and indirectly from 
other ultrapeers connected to up. Specifically, 
Ul(up) = Ul, d(up) + Ul, i(up), where Ul, d refers to 
direct utility and Ul, i refers to indirect utility. 

To compute direct utility, a leaf node needs to 
compute the utility it obtains from other leaf nodes 
connected with this ultrapeer. We use a linear util-
ity formulation such that a leaf node gets some 
utility from every other leaf node connected to that 
ultrapeer.  Let l, X for X � [1, M] represents the M 
linear weights that l puts on the utility derived 
from other M leaf nodes. Specifically, Ul, d(up) = ��
l’  member of up l, 1 * vl(l’ ) – l, 2 * cl(l’ ), where vl is the 
value gained and cl is the cost incurred by leaf 
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node l due to a leaf node l’ , which is also 
connected to ultrapeer up. How do we specify vl? 
We use the IR literature to specify vl as,  vl(l’ ) = 
sim(ql, kl’) * |kl’ | * ( l, 3 * bl’  + l, 4 * d(l, l’ )), where 
ql is l’ s queries, and kl’ is the content provided by 
l’ . Function sim is a similarity measure based on 
information retrieval methods. Furthermore, bl’ is 
the bandwidth of l’ , and d is a distance measure. 
Function d assigns higher value to nodes from the 
same backbone than to nodes from other back-
bones. In summary, we can think of vl as a function 
that assigns higher value to leaf nodes who 1) have 
high probability to satisfy l’  s information needs, 
2) provide more content, 3) have high bandwidth, 
and 4) are located on the same backbone. Simlarly, 
cl(l’ ) = sim(ql’, kl) * |kl| * ( l, 5 * bl’ - l, 6 * d(l, l’ )). 
In other words, leaf node l’  will also impose costs 
of lead node l.  can think of cl as a function that 
assigns higher cost to leaf nodes 1) whose informa-
tion needs l has a high probability of satisfying, 2) 
who have high bandwidth, and 3) who are located 
on a different backbone. Indirect utility is similarly 
defined. In the interest of space we leave the full 
specification in our full paper. 

Strategy Set: Leaf nodes make the following deci-
sions to maximize their private utility: which 
pieces of content to share, how many and which 
ultrapeers to attempt to connect to, and when to 
drop an ultrapeer connection (and search for a new 
connection).  

For example, we consider a simple decision model 
where each leaf node l chooses CUPl, the set of 
ultrapeers that he is directly connected to, and kl, 
the content that l provides (in this simple model, 
we assume that l provides the same content to all 
clubs that he is connected to). In this setting, utility 
of l is the sum of Ul(up) for all up � CUPl. In each 
period, l discovers a new set of ultrapeers DUPl. 
To optimize his utility, l will add an ultrapeer up � 
DUPl to CUPl, or will disconnect from a connected 
ultrapeer to connect to up if only the change in 
CUPl will result in better utility. Furthermore, each 
ultrapeer may have a specific requirement about 
the size of kl that l will have to offer in order to be 
accepted by the ultrapeer. Therefore, modifying 
CUPl may force l to adjust his kl as well, and this 
may affect the overall utility. Thus in each period, 
each leaf node will be performing a local optimiza-
tion algorithm on the optimal CUPl and kl.  

2.2 Ultrapeers 

Information Set: Ultrapeers know (or has the abil-
ity to estimate) the set of shared content for each 
connected node (where nodes can include either 
leaf nodes or other ultrapeers), and other attributes 
mentioned in the previous section. From this 
information, the ultrapeer can estimate the value 
and cost each node provides for other nodes in the 
network, using utility functions outlined in the 
previous section.  

Utility Function: The utility of an ultrapeer is the 
weighted sum of the expected utilities provided by 
each of the connected leaf nodes. In our initial 
specification weights are equal for each member of 
the group. We plan to extend this to allow for un-
equal weights to endogenize the decision to be-
come an ultrapeer.  

Strategy Set: Ultrapeers decide which nodes they 
should connect to (both leaf nodes and other ul-
trapeers) to maximize the total utility of connected 
leaf nodes. In this version, an ultrapeer is only 
concerned with the utility of his connected leaf 
nodes. When an ultrapeer is at capacity, it can 
choose to accept an additional connection when the 
expected utility gained from the requesting node is 
higher than the lowest utility provided by an exist-
ing node. The connected node with the lowest ex-
pected utility is then dropped to make room for the 
new node. The threat of being dropped provides 
the incentives for nodes to behave in a way that is 
aligned with the network’ s interests — both in 
terms of providing content and consuming scarce 
network resources. 

2.3 Similarity measures using Information Re-
trieval techniques 

A significant part of our club model depends on a 
peer’ s and a club’ s ability to determine who can 
satisfy its information needs. Although assumed in 
many previous studies, content in P2P networks is 
not uniquely identifiable. We use established in-
formation retrieval methods to determine similarity 
by comparing frequency of each word occurrences 
in a given peer’ s content naming scheme. These 
methods allow us to produce a quantifiable estima-
tion of similarity that can be directly used in our 
club model. We experimented with two popular 
methods: tf-idf cosine and Jensen-Shannon diver-
gence (Dhillon et al. 2002). Tf-idf is based on the 
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vector-based model, while Jensen-Shannon diver-
gence is based on the language model, which has 
its roots in Information Theory (Cover 1991). 

3. SIMULATION 

We simulate our model as a computational game in 
which leaf nodes and ultrapeers jointly attempt to 
find their optimal provision of content and optimal 
club membership respectively (Fudenberg et al. 
1998; Gibbens et al. 1995; Ross et al. 1989). 
Following the standard approach, game partici-
pants take their “opponents’ ” strategies as given 
and the outcome is expected to converge towards a 
stable equilibrium in content provision and club 
formation. 

Our simulation uses a lightweight extension of the 
network and transport layers on top of Javasim’ s 
event scheduler. We model backbones as separate 
network clouds, in which there exists routing delay 
for communicating across backbones. We imple-
ment each Gnutella host as an autonomous agent 
who performs intelligent decisions for connecting 
to and disconnecting from other hosts. Our current 
simulator is capable of including up to 20,000 
Gnutella hosts – within an order of magnitude of 
the actual Gnutella network size.  

To parameterize our simulation with real world 
data we collected data from the Gnutella v0.6 
between August 31, 2002 and September 29, 2002. 
In our data we observed 10,533 unique hosts, 28% 
of which are ultrapeers and 72% of which are leaf 
nodes. We find that 42% of all hosts do not pro-
vide any files. For hosts that provide files, the av-
erage provision is 270, and this follows a long right 
tail distribution. On average, a host issues 13 que-
ries per hour, and this also follows a long right-tail 
distribution. We find that 16% of all hosts are dis-
tributed among the top 2 backbone providers 
(att.net and atdn.net), while the remaining are 
evenly distributed among other significant provid-
ers. Most significantly, we find that hosts issue 
queries with significant similarity to their content. 
This finding is very important for forming com-
munities and it also allows us to adopt the use of 
Information Retrieval techniques. We use the cor-
relation between the content, queries, and geo-
graphical location to accurately parameterize the 
hosts in our simulation.  

 

 Utility 
Topology 
Coverage 

Club 
Recall 

Club 
Provision 

Initial 21.64 0.0037 0.0045 110.55 
Enhanced 
5 moves 86.45 0.0037 0.0136 193.39 
Enhanced 
10 moves 92.47 0.0037 0.0180 223.73 

Table 1: Preliminary Results 

To demonstrate the effectiveness of our method, 
we perform a preliminary simulation as shown in 
Table 1. We include 2,000 hosts and simulate the 
formation of 100 clubs, each of which has a capac-
ity for 10 nodes. These hosts are randomly chosen 
from our data collection. We use their real content 
and query data, and we use a simplification of the 
model that we proposed to derive utility. Each 
node can be part of only one club, or not be part of 
any club at all. In each move we randomly choose 
a node that will have learnt about 10 random clubs. 
He will attempt to join a new club if his utility is 
greater than what he gets from his current club. 
The club, in turn, will only accept him if by accept-
ing him and removing its worst member, the club 
would be better off.  The initial setup assigns leaf 
nodes randomly to clubs, and this results in the 
utility of 21.64, topology coverage of 0.0037, club 
recall of 0.0045 and club provision of 110.55. Club 
utility is the combined utility of all users in a club, 
and is an expected value that we wish to maximize. 
Topology coverage is the percentage of the net-
work that a leaf node can reach from inside a club. 
Since we do not change club size and restrict 
search range of a leaf node to its own club, this 
value remains stable through out our simulation. 
Club recall is the percentage of total relevant con-
tent in the network that is available in a club. Club 
provision is the average number of files that club 
members provide. We can see that after each leaf 
nodes has moved on an average of 10 times, utility 
improves to 92.47, club recall improves to 0.0180, 
and club provision improves to 223.73. Please note 
that in this set up only half of the 2,000 nodes can 
belong to a club, thus undesirable nodes (e.g., free 
riding nodes, and nodes providing undesirable con-
tent) are kicked out in each iteration. The im-
provement in club recall can be attributed to both 
the increased in provision and similarity of content 
provided.   
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4. CONCLUSION AND EXTENSIONS 

We have preliminarily demonstrated that our 
model results in significantly enabling more effi-
cient and effective file sharing architectures by 
taking into account to economic incentives that 
guide users to share content and content-based 
measures of similarity of interests among users. 
Our model can be extended to address other poten-
tial efficiency gains in Gnutella networks. For ex-
ample, endogenizing the choice to become an ul-
trapeer, providing more refined incentives through 
differential quality of service levels for members 
based on their contribution, and the potential for 
intentionally malicious leaf nodes, or proposing a 
model in which an ISP can run its own ultrapeer. 
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