
1

The Design of A Distributed Rating Scheme for
Peer-to-peer Systems

Debojyoti Dutta†, Ashish Goel‡, Ramesh Govindan†, and Hui Zhang†

Abstract— There exist many successful examples of on-
line reputation (or rating) systems, such as on-line markets
and e-tailer ratings. However, for peer-to-peer applications,
an explicit ratings subsystem has often been ignored in sys-
tem design because of the implicit assumption of trust and
altruism among P2P users. This assumption might be true
(or might not matter) when a P2P network is still in its in-
fancy and is relatively small in size. But the assumption
might break down with increase in the size and diversity of
the P2P network. In this paper, we discuss issues in the de-
sign of rating schemes for P2P systems. In keeping with the
design philosophy of many of these system, we consider the
design of distributed rating systems. As a case study, we illus-
trate two different approaches to a distributed rating system
aimed at tackling the free-rider problem in P2P networks. A
key challenge in designing such rating schemes is to make
them collusion-proof: we discuss our efforts in this direc-
tion.

I. INTRODUCTION

Rating people, goods, and services is a fundamental way
to add value to entities. Rating a user of a system cre-
ates a perception that influences how users interact with
each other within the system. Consider widely used rating
systems such as Ebay.com, Epinions.com and Resellerrat-
ings.com. These sites thrive on providing ratings to sellers,
goods, and e-stores respectively. They provide valuable
advice to users based on the collective experience of other
users. Such ratings (or, more generally, reputation sys-
tems [1]) are useful especially when there are communities
of independent users each with their own preferences, and
who can choose between several users to interact with.

A reputation system like that in Ebay.com is a popular
approach to build trust on the Internet. Most existing ex-
amples of such systems are centralized in nature. In this
paper, we posit that there will be some applications that
need to have distributed rating schemes, for the following
inter-related reasons.
1. Many systems themselves are distributed in nature.
Building a centralized rating mechanism may not be com-
patible with the philosophy of these open distributed sys-

†Department of Computer Science, University of Southern Califor-
nia. {ddutta, ramesh, huizhang}@usc.edu.
‡Department of Management Science and Engineering and (by cour-

tesy) Computer Science, Stanford University. ashishg@stanford.edu.

tems. For example, truly distributed systems promote free
exchange of information at the grass-roots level, while
making it difficult for authorities to monitor transactions
occurring in these systems.
2. Users might prefer to have distributed systems which
do not have a central point to keep track of their private ac-
tions. In a centralized system, it is easier to monitor users’
activities. However, in a distributed system, no single user
will be aware of all the transactions of another user. The
absence of a central server avoids a central point of failure.

In this paper, we discuss issues that arise in the design
of distributed reputation schemes (Section II). We present
(Section III) efficient techniques based on randomization
that can be used to design efficient distributed mechanisms
for rating users.

We then show how some of these techniques can be
used to design distributed reputation systems that improve
the performance and scalability of peer-to-peer (P2P) sys-
tems. During the last few years, P2P file sharing applica-
tions such as Napster, Gnutella, KaZaA, Freenet, and Mor-
pheus have gained tremendous popularity in the Internet.
P2P systems are classified either as unstructured (such as
Napster, Gnutella, and Freenet) or as structured (such as
Distributed Hash Table (DHT) systems [2], [3]) based on
the type of the overlay topologies they create.

We focus on a distributed rating scheme for tackling the
free-rider phenomenon that has been observed in P2P sys-
tems such as Napster and Gnutella [4], [5] . We present
(Section IV) one distributed rating mechanism along with
two different ratings validation schemes. In the first valida-
tion scheme, we present a Structured Verification Scheme
(SVS) which relies on a supervisory overlay. The second
validation scheme is a Lightweight Unstructured Verifica-
tion Scheme (LUVS) that uses a simple random sampling
technique, and does not require a structured overlay. Fi-
nally, we note that a key challenge in designing such rating
schemes is to make them collusion-proof: we discuss our
efforts in Section V.

II. PROBLEM STATEMENT

One of the objectives of any open economic commu-
nity is to maximize the quality of service QoS of different
entities (users). This might translate into more file down-



2

loads or fast data transfers in a P2P system, for example, or
might translate into better customer service provided by e-
tailers. Thus, the performance of the whole system will be
better when more users participate actively by providing
better services to others.

One basic characteristic of any open economic system is
that users are given the freedom to decide how much they
want to contribute to the system. Users might choose not
to cooperate. Thus, users can be classified as well-behaved
and misbehaving. Misbehaving users can be further di-
vided into
• Selfish (Greedy): Selfish users are interested in their
own benefit. The moment they get less utility, they change
their actions or strategies. Systems are called strategy-
proof if they are resistant to single user misbehaving. The
users might also collude in order to satisfy their individual
selfish needs. Systems that are resistant to collusion are
called group strategy-proof.
• Adversarial (Malicious): Adversarial users are not both-
ered about their own good. Their only goal is to subvert
the system. Subverting the system in a P2P context may
include the introduction of worms or fake files, for exam-
ple.
Even though ratings systems rely on the altruism of users
to rate their interactions with other users, we must expect
that any rating system will need to protect itself against
selfish and malicious users.

A. The Free-Rider Phenomenon

One practical problem that brings out the need for a dis-
tributed rating system is the free-rider phenomenon ob-
served in file-sharing P2P systems. This phenomenon has
the following characteristics:
• Most files (e.g., 98% reported in [4]) belong to a small
percentage of the users (20%, respectively). The ratio of
the number of queries to the number of users that respond
to queries is similar. Hence, the quality and availability of
the system is dependent on a small subset of the users.
• A majority of the users are “one-time, one-hour” users.
They just download files and do not make their resources
available to others. Thus, many users do not really partic-
ipate in the network, which goes against the basic premise
of P2P systems.
The prevalence of free-riders might make it much harder to
deploy large, robust P2P systems Also, if there were only
a few good users, a P2P system might effectively become
clustered and centralized (in a loose sense), which leads to
the possibility of a system collapse and increased vulnera-
bility.

Clearly, a rating scheme whereby a user is given a level
of service that is concomitant with his or her participation

in the P2P system can help alleviate the free-rider prob-
lem. As we have argued before, such a rating scheme
needs to be distributed in keeping with the grass-roots na-
ture of such systems. Before discussing a distributed rat-
ings scheme for P2P systems, we list some general issues
in the design of such schemes.

III. SOLUTION SPACE

In this section, we discuss the basic design issues of
building a reputation system in a distributed fashion. We
address the first two of the following questions:

1. What kind of rating information do we use?
2. How do we manage rating information in distributed
fashion?
3. Is our system resilient to greed?
4. Is our system resilient to malice?

deferring to Section V a discussion of the latter two.

A. Rating

The first component of a rating based architecture is the
property of the rating information itself. This is a well-
studied issue [6]. Here, we briefly discuss the different
options for ratings:

• Positive vs. Negative: Positive rating quantitatively de-
scribes the services a user has provided to the community.
When there is no negative rating and users start at zero,
there is no incentive for these users to change their names
or identifiers. See [7] for a discussion of the social cost of
cheap pseudonyms.
A user might be assigned negative ratings for bad or fraud-
ulent transactions. We might want to reprimand users in
such cases. This is also a way to detect and isolate mis-
behaving users. But negative rating alone is not effective
when malicious users can change their identities.
Both positive rating and negative rating have their own de-
sign goals, and might be needed to handle different types
of users in a practical reputation system.
• Continuous vs. Steps: The raw rating value of a user
may represent the accumulation of feedback from other
users, and, hence, may be represented by an integer vari-
able that increases monotonically. Instead of using it di-
rectly, we can also use rating values based on steps. For
example, a 4-level positive rating system can be defined
where the difference between each level would require a
user to get an order of magnitude more recommendations
from other users. We will show later that such discrete
rating system is useful when handling collusions.
• Full window vs. Sliding window: We can either con-
sider the complete history of a user’s transaction or use
ratings received in the recent past (sliding window). A



3

sliding window motivates users to contribute to the com-
munity continuously. Also, ratings based on sliding win-
dows can alleviate the effect of user dynamics (users join-
ing/leaving) on the rating verification techniques discussed
later.

B. Managing Rating Information without a Central Server

We now consider possible approaches to answer the sec-
ond question. Clearly, there are two general approaches
we could take. One is self-maintaining, the other is
supervisor-based.
• Self-maintaining: In this approach, each user maintains
all the related information about its own rating locally.
Whenever a user x wants to know another user y’s rating
information, x asks y directly. This is an efficient approach
since all information is stored locally at y. Also, users are
willing to keep track of their own positive rating informa-
tion for their own benefit. However, this approach has two
problems. First, a user might exaggerate its positive rating
if it has the complete control of his rating information. One
solution to this is to verify y’s rating information by ran-
domly sampling a few of the users y claims to have served,
which in turn requires each user to record a list of servers
from which it has received services successfully. The sec-
ond problem is that a user is unwilling to record any neg-
ative information for itself. This could be solved by com-
plicated monitoring scheme, or just maintaining negative
information at other users, like in the following approach.
• Supervisor-based: In this approach, each user x’s be-
havior will be monitored by a few other users, called its
supervisors. Any message related to x’s rating is directed
to those supervisors. To make this approach robust to ma-
licious users and collusions, all decisions that the group of
supervisors takes are subjected to voting. The supervisors
are chosen so that they appear to be some random users to
the supervised user. This will dissuade cheating. In ad-
dition, there should be no small loops in the supervisory
graph in order to prevent the formation of small groups
that control its own ratings.

IV. A DISTRIBUTED RATING SCHEME TO

INCENTIVIZE COOPERATION

In this section, we present a positive rating based dis-
tributed rating scheme for the free-rider problem.

A. A Verification-based Rating Scheme

Assume a network of n selfish users. We place an im-
portant restriction: all users must support the basic routing
operations to keep the system running in a normal state.
Therefore, a request might fail due to the lack of the re-
sources it asked for, but it should not fail because it is

discarded in the middle of a routing operation. This re-
striction is reasonable, and has been observed in the real
P2P systems by past studies of measurements [5]. We also
assume that the routing operations are not compromised
by the users.

Each user will rate other users based on the service it
receives from them and will store its own ratings. This
service includes factors like the number of successful re-
quests it makes, response delay, and download speed of the
file transferring transaction, etc. The rating Ri of user ui is
defined by the set of all users it served within some sliding
window. For each satisfied request r from a certain user
x, Ri will be increased by a certain value. Therefore, the
more actively a user participates in the system, the more
requests it should satisfy, and the higher its Ri should be.
We believe that by giving better services to the users with
higher rating information, we introduce incentives for co-
operation.

In a generic description of our distributed rating scheme,
each requesting user ui will claim a rating value R′

i and en-
capsulate it in the query message. The responder uj will
decide how to satisfy the request with the claimed rating
R′

i. The exact mechanism for satisfying a user’s request
based on its rating is somewhat application dependent. For
example, uj could keep a single queue and order all re-
quests according to the rating values. Or uj could provide
differentiated service (e.g., withhold some information, or
return only the initial part of a music file) to users with
lower ratings. However, a key problem with our generic
description is: how can uj verify ui’s rating? We now dis-
cuss two kinds of ratings verification schemes.

B. Structured Verification Scheme

In the structured scheme, each user has k (random) des-
ignated supervisors. After every transaction, the user ui’s
supervisors will update the rating value Ri to an appropri-
ate value.

We break down the verification problem into two sub-
problems:
• How do we set up the supervising network in a dis-
tributed fashion?
• How do we perform cheat-proof supervising?
B.1 Supervising overlay – As mentioned in Section III-B,
the supervising network should not contain small loops in
order to dissuade collusion. Many graphs satisfy the above
condition, such as rings, binary trees and star topologies.
We choose the ring as the overlay topology where each
user supervises its k immediate successors. For simplic-
ity, we choose k = 2; thus each user i supervises its two
immediate successors on the ring. i is the main supervisor
for its immediate successor only. For its successor’s suc-



4

cessor, i works as a backup supervisor. All reputation re-
lated transactions happen only between a user and its main
supervisor, and a backup supervisor periodically refreshes
the rating information from the corresponding main super-
visor. However, we can always choose k > 2 and give
equal responsibility to all supervisors when considering
malice.

Chord [3] is an ideal infrastructure for setting up and
maintaining such ring based supervisory overlays. Chord
organizes users on a ring, and each user is mapped into a
fixed point on the ring by hashing its IP address. There-
fore, two neighbors in Chord may not have any relation
with each other. Thus, there should be no relationship be-
tween a user and its supervisor.

B.2 Cheat-proof supervising – Suppose a user x sends
out a request which can be satisfied by the user y. Let
Super(y) denote the main supervisor of user y. Addi-
tional supervising operations incorporated into the regular
request operation will be one of the following:
• After y receives x’s request, and it decides to accept the
request, it sends a message to x, and notifies Super(y) of
the ongoing transaction with x.
• After the transaction is over, x notifies Super(y) (by fol-
lowing Chord protocol) to update the rate Ry with some
transaction information. A three-way hand-shaking proce-
dure is needed to confirm x’s ID.
Clearly, the above operations will not add any extra latency
to the regular request operations as are done after the trans-
action is over.

B.3 Rating verification – With the Chord infrastructure,
the verification of the rating information becomes sim-
ple. When user y needs to verify x’s rating information, it
gets x’s ID on the ring topology by hashing its IP address,
and sends a rating query into the supervising overlay with
x’s ID as the target key. The Chord protocol guarantees
that this query will never be intercepted by x itself, and
will take O(log N) hops to deliver to x’s main supervisor,
which implies that it will be hard for a user to indulge in a
small-group collusion.

C. Lightweight Unstructured Verification Scheme

In this section, we propose a lightweight Unstructured
Verification Scheme (LUVS). LUVS does not require an
additional supervising overlay and the verification is based
on a simple random sampling technique.
C.1. Random sampling based verification – The basic idea
in LUVS is simple. In LUVS, each user will keep a list
of the customers she has served and a list of servers from
whom she has been served, along with the details of the

transactions. Now, when a user x wants some service from
a user y, x sends the list of its customers along with the
request. If user y decides to verify x’s rating, it samples a
subset of x’s customer list to conform if they have received
the claimed service from x or not. If most members in this
sample say a yes, y trusts x and provides service depending
on the rating of x.

The cheat-proof properties of LUVS is due to random
sampling. However, the above scheme raises privacy con-
cerns due to the disclosure of the customer list (certificate).
Besides, the communication cost associated with transfer
of the customer list could be high. Instead of transferring
the complete customer list, our LUVS scheme incurs little
communication cost to randomly sample the customers in
the requesting user’s customer list.

C.2. Randomly sampling without accessing the complete
customer list – Assume a is the requesting user, and b is
the server. Now b wants to verify a’s rating information by
randomly sampling a’s customers.

• Onto a one-dimensional key space 0 − (2k − 1)(say
k = 64), a hashes each of its customers onto a point based
on their IP addresses. The customers will be distributed
randomly and evenly onto this space.
• The key space is divided into M (say M = 256) equal
bins. a counts the number of customers hashed into each
bin, and records those numbers in a M -entry vector.
• a sends the above vector to b, with a constant communi-
cation cost M ∗ 4 bytes (1KB for M = 256) despite the
real size of its customer list.
• b randomly picks one or several bins with the probability
proportional to the number of customers in that bin, and
asks a to send the detailed information of those customers
in the chosen bins.
• b then follows the rest of the steps described in the pre-
vious section.

V. COLLUSION

Clearly, the above two verification schemes can easily
detect those non-cooperative users when they lie. Thus
they are strategy-proof. However, they cannot avoid col-
lusion. There is because with positive rating alone, a user
can give credit to other users effortlessly. Now we discuss
two techniques which alleviate the collusion problem.

A. Discrete Rating

If we choose the four-star rating system as mentioned in
Section III-A, a clique or group of lying users has to have
enough members before they can benefit from the collu-
sion. The dynamic characteristic of P2P users and the high



5

cost or effort of organizing a large colluding group might
prohibit such behavior.

B. Negative Rating

Here a negative rating is defined as the payment a user
makes for the service it receives. If we use negative ratings
along with positive ratings, selfish users will have no in-
centives to give credits to others, and collusion is discour-
aged in a group of selfish users since the net gain of the
group rating (summation of the rating for all group mem-
bers) will be equal to or below 0 due to the collusion.

This can be easily implemented in our proposed struc-
tured rating scheme. The additional operation after a suc-
cessful request is to notify the requestor’s supervisors so
that its rating will be reduced accordingly.

In our unstructured rating scheme, a naive implementa-
tion of the above idea is to design the rule that a user x can
claim another user y as its customer only if x has given
more service to y than y to x. Then x and y cannot be in
each other’s customer at the same time. But simple collud-
ing schemes can defeat this rule. For example, a colluding
group can be organized into three ordered subgroups (e.g.,
GA → GB → GC → GA) so that a member in a sub-
group may claim all members in the next subgroup as its
customers. Improving the design of our unstructured rat-
ing scheme to be collusion-proof is our ongoing work.

C. Non-selfish collusion

In a non-selfish collusion, a group tries to act in such
a way such that at least one or a few of the members can
benefit from the collusion. One example of a non-selfish
collusion is that of a single physical user generating mul-
tiple virtual IDs (users) such that at least one of his IDs
gets higher rating. Another example of non-selfish collu-
sion is that of a group of adversarial users teaming up to
subvert the system, and not bother about their individual
reputation.

The first thing to note is that collusion will not benefit
from an individual’s negative rating. A user can only get
rid of its bad reputation by changing its ID. However, when
the reputation system is equipped with both positive rating
and negative rating, and biases new users based on positive
rating, it is always costly to commit a successful malicious
attack.

We must also note that it is hard to detect non-selfish
collusions efficiently. In a P2P network, when user x
claims it has successfully downloaded a file from y, it’s
difficult to determine whether there indeed was such a
download. Even if we could detect this download (e.g.,
through proxy forwarding/monitoring), it would be diffi-
cult to determine whether this was normal action or not.

VI. RELATED WORK

A quick introduction to ratings is nicely presented in [1].
In [8], the authors present schemes to calculate reputation
vectors similar to those in [9]. However, [8] does not
study whether the methods are cheat-proof, or whether the
scheme can be distributed.

P2P architectures have been extensively studied in the
recent past. Example systems are Napster, Gnutella (un-
structured) and CAN [2] and Chord [3] (structured). A
survey of P2P research is beyond the scope of this paper.

There has been a recent trend toward incentive compat-
ible distributed system design [10]. In [11], the authors
present a concise survey of the use of incentives to de-
sign better wireless ad-hoc networks. In [9], the authors
present a reputation based scheme to isolate malicious con-
tent providers in P2P systems. However, their scheme’s
protection from collusion relies on a set of well-known
pre-trusted users, and the calculation of global reputation
values requires synchronization of the whole network. Be-
sides, it’s not clear how the reputation calculation algo-
rithm might scale with the network size.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed general design issues
involved in building a distributed rating scheme. These
schemes have wide applicability. For a specific problem in
P2P systems, the free-rider problem, we have presented a
positive rating based reputation system along with two dis-
tinct mechanisms to validate the rating information. Our
current direction is to design efficient distributed rating
schemes that are collusion free.

REFERENCES

[1] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Rep-
utation systems,” Communications of the ACM, vol. 43, no. 12,
pp. 45–48, 2000.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in ACM SIGCOMM,
2001.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable Peer-To-Peer lookup service for Internet
applications,” in ACM SIGCOMM, 2001.

[4] E. Adar and B. Huberman, “Free riding on gnutella,” in First
Monday 5,Oct. 2000.

[5] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of
peer-to-peer file sharing systems,” Tech. Report UW-CSE-01-06-
02, University of Washington, 2001.

[6] P. Kollock, “The production of trust in online markets,” Advances
in Group Processes (Vol. 16), edited by E. J. Lawler, M. Macy, S.
Thyne, and H. A. Walker. Greenwich, CT: JAI Press., 1999.

[7] E. Friedman and P. Resnick, “The social cost of cheap
pseudonyms,” in Journal of Economics and Management Strat-
egy, 10(2):173-199. 2001.

[8] G. Zacharia, A. Moukas, and P. Maes, “Collaborative reputation
mechanisms in electronic marketplaces,” in HICSS, 1999.



6

[9] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in P2P networks,” to appear
in the 12th WWW conference, 2003.

[10] J. Feigenbaum and S. Shenker, “Distributed algorithmic mech-
anism design: Recent results and future directions,” in the 6th
International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, ACM Press, New York,
2002.

[11] P. Obreiter, B. Koenig-Ries, and M. Klein, “Stimulating coopera-
tive behavior of autonomous devices - an analysis of requirements
and existing approaches,” in Second International Workshop on
Wireless Information Systems (WIS2003), 2003.


