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Abstract

Peer-to-peer networks introduce a new area of interplay
between computer science and economics. Designers of
such systems must firmly understand the incentives, pref-
erences, and decision space of participating agents in
order to decide the policies and make the system func-
tion as well as possible. This paper models the eco-
nomic behavior of agents in a peer-to-peer storage net-
work. From the model, it becomes clear that agents have
single-peaked preferences for a system-wide parameter
that defines the reliability of the storage network. Con-
sequently, the system designer may implement a mecha-
nism to elicit opinions for this parameter (knowing that
they will be truthfully revealed) and set the system-wide
value to some socially optimal level, or agents with sim-
ilar preferences may cluster together to form a p2p net-
work closer to their preferences.

1 Introduction

Peer-to-peer (p2p) networks provide a new plat-
form for distributed applications, allowing users to
share their computational, storage, and network-
ing resources with their peers to the benefit of ev-
ery participant. Most p2p system designs focus
on traditional computer science problems includ-
ing scalability, load-balancing, fault-tolerance, and
so forth. However, many systems tend to assume
that all users in the system are running “official”
software, whereas users have a clear self-interest in
modifying their software if it allows them to con-
sume the network’s resources without contributing
any of their own. P2p systems must be designed
to take user incentives and rationalities into consid-
eration [6, 10, 14]. Given rational user behavior,
we can then study the overall economic behavior of
such systems. How will these systems evolve over
time? How should the parameters of the system,
such as the degree of object replication, be chosen
when different users have different ideas about these
parameters’ optimal values?

While such parameters could be declared by a cen-
tral authority, the total utility of the system could
possibly be increased if individual utility is taken
into account. This paper addresses this problem by
considering a game theoretic model of p2p storage
networks. We consider the preferences, utility func-
tions, and constraints of the agents in the model.
This allows us to analyze the economic behavior of
the agents and suggest policies for system adminis-
trators. Such a model is most relevant to p2p sys-
tems, such as distributed backup systems (e.g., Pas-
tiche [2]), where storage, not network bandwidth, is
the limiting resource.

The rest of this paper is organized as follows. Sec-
tion 2 gives a background on p2p storage networks.
Section 3 uses utility theory to analyze the eco-
nomics of such networks, and Section 4 discusses
how this effects the decisions of system adminis-
trators and participants. In Section 5, we present
simulation results to support our assumptions in the
analysis. Finally, we conclude in Section 7.

2 Background

This paper considers economic incentives that will
apply in virtually any p2p storage system. However,
in order to be concrete in our discussions, we will
focus on PAST [12].

PAST is a storage system built on top of a structured
overlay and can be viewed as a distributed hash ta-
ble (DHT). Each stored item in PAST is given a
160 bit handle and replicas of an object are stored
at thek live nodes whose nodeIds are the numer-
ically closest to the object’s handle. PAST main-
tains the invariant that the object is replicated onk
nodes, regardless of node addition or failure. The
handle is built from a cryptographically secure hash
(e.g., SHA-1) applied to the data being stored. As
such, the handle has sufficient information for the



holder of the handle to verify that the actual docu-
ment has not been modified in transit. PAST is im-
plemented using Pastry [11], a p2p routing substrate
that scales well to large numbers of nodes, provid-
ing efficient mechanisms to locate the nodes closest
to a desired handle as well as gracefully handling
when new nodes arrive and leave the system.

Pastry, like other structured p2p overlays, assumes
that nodeIds are assigned randomly and uniformly
from the 160-bit space of possible identifiers. At-
tackers who can choose nodeIds can compromise
the integrity of Pastry or any other structured p2p
overlay. Even when they cannot choose nodeIds,
they may still be able to mount “Sybil” attacks if
they can obtain a large number of legitimate nodeIds
easily [3]. Such attacks can be prevented only by
limiting the attacker’s ability to join the network
multiple times. Castro et al. [1] consider several ap-
proaches to accomplish this, although the only ro-
bust approach they identify requires a trusted cen-
tral authority (CA) to issue entrance permits. Aside
from issuing such permits, the CA is otherwise un-
involved in the operation of the p2p network, limit-
ing the damage that can be caused if the CA is of-
fline. The CA is assumed to serve the common good
and all members of the p2p network must fully trust
the CA. As such, the CA can potentially be extended
for other operations requiring a globally trusted au-
thority.

Like traditional file systems, PAST performance de-
grades when the system is operating near its full ca-
pacity. The probability of successfully inserting a
document on the system also decreases. However,
unlike traditional file systems, users cannot sim-
ply purchase larger disks for their local computer
to increase system capacity; they must somehow
convince remote computers to reserve more storage
space. P2p storage systems generally need a no-
tion of fairness in that a node should only get as
much remote storage as it contributes its own lo-
cal storage for the use of others. Ngan et al. [8]
consider architectures to meet that goal; requiring
nodes to publish auditable records of their usage and
allowing nodes to audit their peers’ records anony-
mously gives nodes incentives to report their usage
truthfully. Building on those results, we consider
the properties of the economic system that develop
when “cheating” has been rendered technically in-

Hi: Li Si Ni = kiSi Ri = λkiSi

Hi: total hard drive space of the agent
Li: agent’s private local space
Si : local copies of documents the agent

stores in the network
Ni: reciprocal space the agent uses for lo-

cally storing remote documents
ki : agent’s replication factor
Ri: additional local space the agent is re-

quired to contribute
λ : overhead rate

Figure 1: Hard drive space usage of an agent.

feasible.

3 Model

We begin modeling an agent of a nodei by parti-
tioning its hard drive space as shown in Figure 1 to
implement a “fairness” policy, as described in Sec-
tion 2. Each agent may choose its ownreplication
factor ki , while theoverhead rateλ is a system-wide
constant. Our agent wishes to storeSi units of data
in the network. In reciprocity, the agent must make
availableNi = kiSi units of space for the use of re-
mote nodes plus an additional overheadRi = λkiSi .
Thus, includingLi units of private, unshared data,
the total disk space usage is

Hi = Li +Si +Ni +Ri

= Li +(1+ki (λ +1))Si (1)

The constantλ defines an important aspect of how
the system will behave. Higher values ofλ increase
the efficiency of finding a node with free space to
absorb storage requests, at the cost of lower effec-
tive capacity in the p2p storage network.

3.1 Agent preferences

Initially, we assume that all agents considerλ to be
an exogenous variable. The agent then needs only
to decide how much of its personal data should be
archived on the network (and, thus, how much space
it must make available for remote storage). Thus,
an agent primarily cares aboutLi, Si (see Figure 1)
and pi(λ): the probability of successfully storing a
document. While an agent’s preferences might vary
with changes in other values,λ is the only value that



must be agreed by all agents. Therefore, we will fo-
cus on the importance ofλ . We start by modeling
the utility function of nodei to beUi(Li,Si , pi(λ)).
We expectUi to be a three good Cobb-Douglas util-
ity function because the utility-maximizing values
of the arguments should all be non-zero.1 For in-
stance, an extremely large amount of completely un-
reliable remote space (i.e.,pi(λ) = 0) would be use-
less. In general, zeros for any argument to the utility
function represent degenerate cases (e.g., when an
agent is providing no space for remote storage) that
are uninteresting in practice.

From equation (1),Li = Hi − ciSi whereci = 1+
ki(λ +1). We can now write the utility function as

Ui (Li,Si , pi (λ))

= Lα
i Sβ

i (pi (λ))γ where α + β + γ = 1

= (pi (λ))γ
(

(Hi −ciSi)
α Sβ

i

)

(2)

log
(

(Hi −ciSi)
α Sβ

i

)

= α log(Hi −ciSi)+ β logSi (3)

Since(pi (λ))γ is a constant with respect to the other
arguments, maximizing equation (2) or (3) will also
maximizeUi. The first order conditions for maxi-
mizing equation (3) imply that

β
Si

=
αci

Hi −ciSi
.

By rearranging the terms, we have

β
Si

=
(α + β)ci

Hi
,

and thus

Si =
βHi

ci(α + β)
and Li =

αHi

α + β
. (4)

We can now express an agent’s preferences through
an indirect utility functionvi(λ), which gives the
highest utility available to an agent for a givenλ .
By substituting (4) into (2), we obtainvi(λ) =

(pi (λ))γ
(

αHi

α + β

)α(

βHi

α + β

)β(

1
1+ki(λ +1)

)β

.

1For background reading in economics, consult the utility
theory or consumer behavior section of a microeconomics text-
book such as Varian [15, Ch. 7].

All terms without λ are constant and can thus be
collectively represented bym.

vi(λ) =
(pi (λ))γ

(1+ki (λ +1))β ·m (5)

Before further analyzing the properties ofvi we will
model the reliability of the system with the function
pi(λ).

3.2 Reliability function: pi(λ)

Recall thatRi = λkiSi and the spaceRi provides a
buffer which helps maintain free space that is ap-
proximately uniformly distributed throughout the
network. It is clear that for a constantSi , a larger
buffer (or equivalently a largerλ ) lowers the failure
rate when storing objects in a p2p storage network.
Section 5 shows that the distributions of the reliabil-
ity function can be approximated by

pi(λ) = 1−e−tλ

for some fixed parametert, wheret depends neg-
atively on the average size of the files stored. As
the amount of free space in the system decreases,
larger files will become more difficult to store than
smaller files. Conversely, asλ increases, the prob-
ability of success will increase, but with diminish-
ing returns. Other variables will affect the general
reliability of the system, including the replication
factor ki and how many times a failed storage re-
quest might be retried before the system aborts the
request. As a general rule, additional reliability can
always be achieved at a cost of additional storage
and/or communication overhead.

3.3 Properties of the indirect utility function

Now that we have a model forpi(λ), we can exam-
ine the properties ofvi(λ) as in equation (5). We
wish to show that preferences with respect toλ are
single-peaked. That is,vi(λ) = (1− e−tλ )γ/(1+
ki(λ +1))β has a single maximum.

In Figure 2 we plotvi(λ) againstλ with differ-
ent parameters. It provides only visual evidence of
the single-peakedness ofvi(λ). A formal proof is
shown in Appendix A.

Figure 2 was plotted using varied parameter values,
but for most reasonable values, the peaks ofvi occur
for λ ∈ [0.3,1.5]. Whenγ was given an extraordi-
narily high value, the peak ofvi(λ) shifted well to
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Figure 2: The single-peakedness ofvi(λ) with dif-
ferent values of(ki , t,α,β ,γ).

the right. Sinceγ is the weight in the utility func-
tion for the probability of successfully storing a file,
it follows that the utility-maximizingλ for nodes
desiring high remote storage reliability would be
larger than theλ for nodes that primarily value hav-
ing more space available for local storage. We also
observe that the indirect utility function is always
strictly concave up to the peak, which means that
there is decreasing marginal utility ofλ .

4 Implications

In this section, we use our model to reason about ra-
tional behaviors for both agents and administrators
of p2p storage systems.

4.1 Agent participation

Assuming that several storage networks exist, each
with possibly differingλs values, agents will join
the storage network whose parameters best suit the
agent’s own preferences. It is unlikely that an agent
will find a λs which exactly equals its ownλ ∗, but
with several storage systems to choose from, agents
can evaluate and rationally choose to participate in
the system closest to their preferences. (The alter-
native, of course, is to refuse to participate.)

As a corollary to the above observation, agents with
similar preferences forλ will tend to band together.
By clustering in this fashion, agents contribute their
resources to form a system with the desired level of
reliability and, in effect, create a public good. For
example, an agent with a preference for low over-
head (and reliability) would not join a high reliabil-

ity network because the agent would rather allocate
its disk space for its private use rather than to the ex-
tra reserve space (i.e., reliability) mandated by the
higher λ . In other words, disutility is created by
joining a non-optimal network. If the disutility is
large enough the agent will refuse to participate at
all, thus creating a market for another storage sys-
tem that better suits the needs of that agent.

4.2 Administration

P2p systems are fundamentally designed to limit or
entirely remove the role of centralized administra-
tion. Regardless, the presence of such administra-
tion can help provide a rendezvous point for new
agents to determine which of many existing storage
networks best suit the agent’s preferences.

We also argue that a central administrator can con-
duct surveys of agent preferences, allowing for one
or more networks to be defined to best match the ex-
pressed preferences of individual agents. If only a
single system is to be established, economic voting
principles suggest that the median of the agents’ re-
vealed preference variables should be chosen by the
administrator, as this implies that no majority wants
to increase or decrease the chosen value [15, Sec-
tion 23.6]. Agents will truthfully reveal their pref-
erences if they know the administrator employs this
policy [16]. If the administrator finds that establish-
ing clusters would benefit participants, it can par-
tition the voting agents roughly according to their
preferences and choose the median of the revealed
preferences of the agents in each partition. Truthful
revelation increases the likelihood that the admin-
istrator will define a storage system closer to that
agent’s optimal preferences, whereas lying means
the agent might find itself assigned to a storage sys-
tem that actually increases its disutility.

Of course, once agents join a system and begin ex-
changing data with one another, a mechanism such
as the auditing described by Ngan et al. [8] becomes
necessary to guarantee that no agent is free riding.
The central administrator does not need to be in-
volved in this auditing process, except perhaps act-
ing as a “court” to which a node might bring evi-
dence of another node’s free riding behavior.
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Figure 3: Probability of successful object insertions
with different file sizes and varyingλ values. The
curves are of the form 1− e−tλ , fitting the data
points by varyingt. The percentage indicates the
size of the document to be inserted as a fraction of
the average storage capacity one agent contributes.

5 Reliability vs. overhead

In section 3, we modeled storage reliabilitypi(λ),
as a function of the overhead rateλ . This section
presents simulation results to determine the exact
shape ofpi(λ).

We constructed a PAST system with 10,000 nodes,
each contributing storage space chosen from a trun-
cated normal distribution from 2 to 200GB, with an
average of 50GB. First, each node stores as many
document as their quota permits. Then we attempt
to store additional documents into the overlay net-
work and record the probability of an eventual stor-
age success. The result, as well as the best fit curves
of the form 1−e−tλ , are shown in Figure 3. As ex-
pected, the figure shows thatpi(λ) increases with
smaller file sizes and higherλ . It also shows that
1−e−tλ is a close approximation ofpi(λ) measured
by our simulations.

6 Related work

The field of Mechanism Design (MD) has existed
formally for thirty years. It’s goal to design the
rules of interaction between agents so that their self-
ish, or self-interested, behavior produces some out-
come deemed desirable by the designer. Classically,
MD has been applied to auction theory, among other
economic systems. More recently, as the view of
computers as agents has become more prevalent,

MD has also been applied in computational set-
tings [16].

Nisan and Ronen [9] applied MD to solve some
problems that might arise from agents manipulating
algorithms to serve their own interest. Distributed
Algorithmic Mechanism Design [6] applies MD
specifically in a distributed setting and has as goals
both computational tractability and incentive com-
patibility. It has been used to solve network prob-
lems related to multicast transmissions [5], efficient
routing [4], and most recently p2p systems [14].

We described a voting process where agents reach
agreement on parameters for their shared system.
The game-theoretic aspect of voting is an active re-
search area for both economics and artificial intel-
ligence. Voting and decision-making of distributed
agents is discussed in Sandholm [13].

Golle et al. [7] modeled centralized p2p systems
with small incremental payments between agents.
They proposed several payment mechanisms and
analyzed how various user strategies reach equilib-
rium within a game theoretic model.

7 Conclusion

This paper presents an economic model of the re-
sources and preferences of agents in p2p storage
networks. By analyzing the model, specifically the
indirect utility function, we observe that an agent
has a single-peaked preference for the storage over-
head rateλ . This implies that agents with similarly
optimal λ values will have an incentive to cluster
together and to reveal their preferences to a central-
ized administrator who can orchestrate this cluster-
ing. We expect this clustering will also work for
other system parameters, including the degree of
object replication.
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Appendix A

In this appendix we prove the following theorem on
the single-peakedness ofvi(λ).

Theorem. For positive constants ki , t, β , andγ, the
function

vi(λ) =
(1−e−tλ )γ

(1+ki(λ +1))β

is single-peaked w.r.t.λ for λ ≥ 0.

Proof. We prove by showing that forλ ≥ 0, the sign
of the first derivative ofvi(λ) changes exactly once,
and it is from positive to negative. For notational
convenience, letz= ki +1. Then

vi(λ) =
(1−e−tλ )γ

(kiλ +z)β

dvi(λ)

dλ
=

1
(kiλ +z)2β

[

(kiλ +z)β γ(1−e−tλ )γ−1te−tλ

− (1−e−tλ)γ β(kiλ +z)β−1ki
]

=
(1−e−tλ )γ

(kiλ +z)β

[

γte−tλ (1−e−tλ )−1

−βki(kiλ +z)−1]

= vi(λ)
[

γt(etλ −1)−1−βki(kiλ +z)−1]

= vi(λ)(etλ −1)−1(kiλ +z)−1

·
[

γt(kiλ +z)−βki(e
tλ −1)

]

Let Φ(λ) = γt(kiλ +z)−βki(etλ −1). Sincevi(λ),
(etλ −1)−1, and(kiλ +z)−1 are all positive, we only
need to show thatΦ(λ) changes its sign exactly
once, and the sign changes from positive to nega-
tive. First we note thatΦ(0) = γtz> 0. The deriva-
tive of Φ(λ) is

Φ ′(λ) = kit(γ −βetλ ) .

SolvingΦ ′(λ) = 0 for λ , we obtainλ = 1
t ln( γ

β ). It

is easy to verify thatΦ ′(λ) > 0 for λ < 1
t ln( γ

β ), and

Φ ′(λ) < 0 for λ > 1
t ln( γ

β ). Thus,Φ(λ) is positive

at λ = 0, increasing untilλ = 1
t ln( γ

β ) (if γ > β ),
and then decreasing. In other words,vi(λ) is single-
peaked forλ ≥ 0.


