
Addressing the Non-Cooperation Problem in Competitive P2P
Systems

Sepandar Kamvar Beverly Yang Hector Garcia-Molina

Abstract
Large-scale competitive P2P systems are threatened by the non-
cooperation problem, where peers do not forward queries to po-
tential competitors. While non-cooperation is not a problem in
current P2P free file-sharing systems, it is likely to be a problem
in such P2P systems as pay-per-transaction file-sharing systems,
P2P auctions, and P2P service discovery systems, where peers
are in competition with each other to provide services. Here, we
motivate why non-cooperation is likely to be a problem in these
types of networks and present an economic protocol to address
this problem. This protocol, called the RTR protocol, is based
on the buying and selling of the right-to-respond (RTR) to each
query in the system.

1 Introduction

While peer-to-peer networks have risen to promi-
nence due to the success of free file-sharing networks
like Napster and Kazaa, increasing emphasis is being
placed on new applications of P2P, including pay-
per-transaction networks, P2P auctions, and P2P ser-
vice discovery systems. The problems in these net-
works are likely to be different than the problems
encountered in free file-sharing networks. In this
work, we argue that, while the freeriding problem is
common in today’s peer-to-peer networks, the non-
cooperation problem is likely to be a bigger problem
in future peer-to-peer networks.

In the context of free file-sharing, the freeriding
problem has become a central issue: peers acting
in their own best interest conserve their resources
(i.e. bandwidth) by sharing no files, and hence, only
a small fraction of altruistic users offer almost all
the available content. For example, in the Gnutella
file-sharing system [2], over 70% of the content was
provided by just 5% of the users [1]. As a result,
much existing work on incentives in P2P systems
have been focused on solving the problem of freerid-
ing (e.g., [3, 4]).

However, in applications where peers gain from
answering queries, freeriding is unlikely to be a prob-
lem, since the necessary incentives are inherent. For

example, in a pay-per-transaction file-sharing system
where peers get paid for uploading files, peers will
want to share files, because this generates income. In
an auction system, where the auction advertisement
is analogous to a query and bids analogous to query
responses, peers will want to submit bids. Even
in a free file-sharing system where users share their
original music or artwork, users have an incentive to
share the files in order to increase their publicity.

In each of the systems described above, not only
are peers eager to provide services (e.g. share files),
but they are in competition with other peers to pro-
vide their services. Competition is a problem in
P2P frameworks that rely on peers to forward queries
(e.g., Gnutella [2], DHTs like [7], etc.),1 because
a peer acting in its own best interests will not for-
ward queries to potential competitors. For exam-
ple, a peer providing a car rental service might not
forward a query for car rental services. Instead, it
could answer the query and then drop it, so as to
improve its chances of gaining business. Therefore,
P2P systems will no longer operate correctly due to
non-cooperation, even though abundant services are
available.

In this paper, we propose an economic protocol to
ensure that peers cooperate in the operation of P2P
systems in the face of competition. We present this
protocol in Section 2, where we discuss how our pro-
posed system will not only assure proper operation,
but can also improve the efficiency and effectiveness
of the search mechanism as well. In Section 3, we
present a high-level attack analysis of the protocol,
including a discussion of potential attacks and pit-
falls, and how these issues are countered. Finally, in
Section 5 we present a list of important areas requir-
ing further investigation.

In this work, we illustrate our protocol on top of
the Gnutella protocol for P2P search running a pay-

1The exceptions are systems that require no forwarding, such
as Napster (http://www.napster.com).

1

per-transaction file-sharing application. Important
items for future work include extending these ideas
to architectures other than Gnutella, such as DHTs
(see Section 5). The following discussion assumes
the existence of an efficient micropayment scheme
for P2P systems, such as that described in [8].

1.1 Preliminaries

The basic Gnutella search protocol works as follows:
each user runs a client (or peer), which is connected
to a small number of other peers (known as neigh-
bors) in an overlay network. When a user submits a
query, her peer will send the query message to all its
neighbors, who will in turn forward the query to their
neighbors, and so on. A peer that receives a query
and finds that it can answer will send a response to
the querying peer.2 The querying peer will wait a pe-
riod of time for responses to arrive, and then it will
select one or more responding peers from which to
buy services. In a pay-per-transaction application,
the service offered is the download of a file, and the
querying peer will pay the selected peer(s) for each
download transaction. The price per download may
vary depending on the file. Further details of the
Gnutella protocol can be found in [2]. Clearly, if
peers do not forward queries, the search mechanism
will fail.

2 RTR Protocol

At the core of our protocol is the concept of a right to
respond, or RTR. An RTR is simply a token signify-
ing that a peer has a right to respond to a query mes-
sage. We choose this name (“right to respond”’) in
order to emphasize that a query is really a commod-
ity. Peers should pay to receive the query, because
that in turn brings in potential business. If a peer
never receives any queries, then it can never provide
its service to anyone. An analogous concept in real-
life markets are companies that buy lists of emails or
referrals from other companies, so that they have a
new pool of potential customers.

Once a peer buys an RTR for a given query, it may
do one or both of the following: (a) respond to the
query and hope that it is chosen to upload its services,

2In Gnutella, response messages are actually forwarded
along the reverse path traveled by the query. In systems that do
not require anonymity, sending responses directly to the query-
ing peer is more efficient.

and (b) sell the RTR to other peers.3 Peers can buy
and sell RTRs with their neighbors only.

In this framework, selling an RTR is equivalent to
forwarding a query. Hence, there is built-in incentive
to forward queries, since peers get paid to do so. Of
course, some peers may still choose to not forward
any queries in order to increase the probability that
they will be chosen to provide the service. However,
their actions will be offset by those peers who hedge
their risk by selling a few RTRs, and by those peers
who speculate in RTRs (buying RTRs simply to re-
sell them).

2.1 Basic Implementation

An RTR has the following format:

��� � ��� ��� ���	
���� (1)

where � is the identity of the querying peer, �� is
the timestamp at which the query was first issued,
and ���	
 is the actual query string. These three
values are signed by the querying peer’s secret key
���, so that RTRs cannot be forged. Hence, each
query requires a single signature generation, and one
verification per forward.

When a peer forwards a query to a neighbor �,
it will first send the offer containing partial RTR in-
formation and a price:

Offer � �	������ ��� ���	
� �	���� (2)

where 	����� is the reputation of the querying peer
(described below). The subject of pricing is dis-
cussed in the next section. The offer contains enough
information for � to determine whether to purchase
the RTR, and whether the RTR is a duplicate � has
seen before. However, because the identity of � is
not revealed, � can not actually answer the query
without purchasing the full RTR. If � decides not
to purchase the RTR, he will simply drop the offer.
Otherwise, � will send a purchase request to , and
peer will forward the full RTR to �.

To prevent being spammed by useless offers, each
time a peer connects to a new neighbor, it can specify
the following “flow control” parameters:
� The desired rate (e.g., messages/day) of RTRs

that will be delivered.

3If a peer sells an RTR, it may still respond to the query cor-
responding to the RTR. That is, a peer does not lose the right to
respond to a query when it sells the RTR for that query.

2

� Filters that specify the “content” and “quality” of
the desired RTRs.

Filters can be set on any of the three fields of an
RTR: the query string, the reputation of the query-
ing peer 	�����, or the timestamp. Filters on the
query string specify the content of the RTR, and af-
fect the probability that the purchaser can respond to
the query. Content filters may have varying levels
of restrictiveness. For example, a content filter may
specify that the RTRs should only contain queries for
a particular genre of music files. Or, a content filter
may specify exactly what RTRs (i.e., for which exact
files) will be purchased.4 At the other extreme, the
filter can be null, meaning all queries qualify. Such
a setting is appropriate for peers who wish to make
money by speculating on RTRs. Filters on the rep-
utation of querying peer � and the age of the query
(indicated by the timestamp) specify the quality of
the RTR, and affect the probability that a responding
peer will be chosen and paid for its services.

If a peer receives too many RTRs that violate con-
tent or quality filters, then that peer can disconnect
from its neighbor. It is therefore in each seller’s inter-
est to provide high-quality, relevant RTRs to its best
ability – otherwise, it may lose potential customers
(see Section 2.3).

At the same time, if a peer never buys any RTRs,
even if the RTRs fit the filters and have high quality,
the seller may disconnect from that peer as well. The
seller can instead direct its time and resources on a
different customer who is more willing to buy. In
order to continue receiving RTRs, then, a peer must
show that it is a good customer. Either the peer must
set its filters properly (but this comes at a cost, de-
scribed in the next section), or it must occasionally
speculate on RTRs that it can not use directly, but
that it might be able to resell.

In terms of overhead, 3 messages are exchanged
for every query forward, as opposed to 1 in the
Gnutella protocol. However, we believe that fewer
messages will be exchanged in the RTR protocol
overall; due to filters, queries can be routed more ef-
ficiently to the peers that want them (Section 2.3). In
addition, in Section 4 we discuss the possibility of
RTR subscriptions. Peers bulk-order RTRs through
subscriptions, thereby reducing the overhead of ne-
gotiation.

4Indeed, such a filter results in a super-peer relationship in
which a query is only forwarded from super-peer to client if the
client can definitely answer the query.

2.2 Pricing

In this section, we discuss a simple pricing model for
RTRs. We note that, like the pricing of any commod-
ity in the real world, the pricing of RTRs will involve
the estimation of many parameters. The purpose of
the model is not to provide a straightforward price
for the RTR, but to help us understand the factors
that influence price, and pinpoint the parameters that
need to be estimated.

Model. An RTR has value for two reasons:
� The peer holding the RTR may respond to the

query and be selected to upload the file (for
which she is paid).

� The peer holding the RTR may resell the RTR to
some or all of its neighbors.

Let RTR� denote an RTR corresponding to a query
for file � . We assume any file � has a well-known
price �	������. Let �� be the random variable de-
noting the income generated by the RTR for peer ,
if owns RTR� . The income generated for by
holding RTR� is given by:

�� � �� ��� (3)

where �� is the random variable denoting the in-
come gained for selling file � to the querying peer,
and �� is the random variable denoting the income
gained from reselling the RTR. The value of RTR�
for peer is simply �����, the expected value of
��.

If responds to the query and is selected to upload
the file, �� � �	������. Otherwise, �� � �. Let ��
be an indicator variable denoting whether owns
file � (�� � �) or not (�� � �). We assume that
if owns the file, then will respond to the query.
Let �� denote the probability that peer is picked to
upload the file, given that responded to the query.
The expected value of �� is then:

����� � �� � �� � �	������ (4)

Let �� be the indicator variable denoting whether
neighbor � buys the RTR from (�� � �), or not
(�� � �). Note that the price at which the peer sells
the RTR may be different from the price at which it
bought the RTR, and it may differ on a per-neighbor
basis. Assuming a peer � pays the expected value
��RTR� � �� for RTR� , the income �� generated by
reselling the RTR is:

3

����� �
�
���� ���� ���RTR� � ���

� ��RTR� � �� (5)

where �� denotes the set of neighbors of .
Combining equations 3, 4 and 5, we can get the

following formula for the cost of an RTR:

����� � ����� ������

� �� � �� � �	������ �
�

����

���� ���RTR� � ���

� ��RTR� � �� (6)

We will now discuss the matter of estimating terms
in the above equation.

Parameter Estimation. Parameter ��, indicating
whether peer owns file � , is known to – no es-
timation is needed. The probability that will be
picked to upload the file, ��, can be estimated in two
simple ways. First, can learn �� over time by re-
membering how often it responded to a query for that
file, and how often it was chosen to upload. Second,
we note that �� can be estimated as the inverse fre-
quency of � across peers. Peer can get an estimate
of the frequency of its files through sampling, or per-
haps statistics offered through a third party.

Estimating how many times an RTR can be resold,
and at what price, can be aided by filters. If knows,
via content filter, that neighbor � owns file � , then
can guess with fair confidence that � will purchase
the RTR. Furthermore, the lower bound for the RTR
should be �����. If knows that � is a speculator
who buys many RTRs, then may also assume that
� will buy RTR� , but at a wholesale price. If the
RTR does not fit � ’s filters, can assume � will
not purchase the RTR.

Note that by setting content filters, a peer � is
“giving away” information about its preferences that
can make it a target for higher prices. When a peer
decides to set filters, it is generally placing a pre-
mium on its load, over its cost. However, also recall
that in order to be a “good customer”, a peer can not
specify very general filters and then rarely buy any-
thing.

2.3 Impact of Buyer/Seller Expectations

Recall that peers can disconnect from their neigh-
bors if they receive too many useless RTRs; hence,
it is in a peer’s interest to forward only high qual-
ity, relevant RTRs to its best ability – otherwise, it

loses business. At the same time, peers can discon-
nect from their neighbors if they never buy any RTRs
that they “should” be interested in. Here, we dis-
cuss how allowing peers to choose neighbors based
on the expectation of “good behavior” can result in
good system performance.

Good Sellers. First, let us focus on the effect of
peers connecting to sellers based on the quality and
relevance of the RTRs received from them. Note that
even if a peer does not explicitly set filters, they can
still selectively connect to sellers who happen to pro-
vide the RTRs that peer is interested in. Hence, peers
always have incentive to forward RTRs of high qual-
ity, regardless of its neighbors’ filters. Here we dis-
cuss the potential impact of each quality metric on
overall effectiveness of the system.

(1) Age. Newer queries are preferred over older
queries because they increase the chance that one
can reply before the querying peer “closes” the
query (e.g., closing the auction, selecting someone to
download from, etc). Furthermore, a lower age de-
creases the chance that the RTR is a duplicate (i.e.,
received earlier from a different neighbor). Hence,
peers should not forward an RTR with an age be-
yond a given threshold (otherwise, again, its neigh-
bor will drop the connection due to the low quality
RTRs). Like the time-to-live construct in Gnutella,
the effect of dropping old RTRs will limit the size of
the network that receives the query. This effect is im-
portant in order to prevent inefficient flooding of the
network.

(2) Reputation. The goal of reputation systems is
to allow users to avoid dealing with other users that
are malicious (e.g., return corrupt files) or provide
poor service (e.g., often die before a transaction is
completed). In our scheme, by not forwarding RTRs
belonging to low-reputation querying peers, we are
ensuring that those who provide bad service are pe-
nalized with fewer results for their own queries.
Global reputations in P2P systems can be managed,
for example, by a system like EigenTrust [5]. Note
that a reputation system is not necessary for the RTR
protocol. In the absence of a reputation system, the
quality of RTRs may be judged by age and relevance
only.

(3) Content. Peers will connect to other peers
who can provide them the RTRs that they want.
Thus, content filters (when specified) serve as “rout-
ing hints” by which queries can be routed to those

4

peers containing relevant data, thereby resulting in
more efficient search. Whether or not they specify
filters, peers will connect to those peers who can pro-
vide them queries to which they are able to respond.
Furthermore, perhaps a peer is unhappy with the
RTRs that its neighbor provides because, for exam-
ple, the RTRs are too often for hard rock and too
little for punk rock. In this case, can disconnect
and eventually find another neighbor who sells more
RTRs for punk. Hence, we hope that communities,
or “clusters” in the topology, will form around inter-
ests, which further lends itself to efficient, effective
search.

In summary, by simply acting out of self-interest,
peers in our scheme can form a forwarding policy
that enforces reputation, limits flooding, and pro-
motes intelligent routing/topology formation.

Good Buyers. Because servicing each customer
incurs overhead (e.g., communication, filtering), a
peer will not be interested in maintaining a customer
who rarely buys anything. If the customer has set
appropriate filters, then the fact that it rarely buys is
offset by the fact that it will pay a higher price for
the few RTRs it does buy. Hence, peers have an in-
centive to either set the appropriate filters on the in-
coming stream of RTRs, or else speculate on RTRs
more often (that is, buy RTRs for the sole purpose of
reselling them).

If a peer chooses to set its filters appropriately,
then it is contributing to the overall efficiency of the
system – only those queries it can directly use will be
forwarded to it. On the other hand, if a peer chooses
to speculate more frequently, then it improves the
economy and increases the forwarding of RTRs in
the system. A greater flow of RTRs will in general
result in more query responses, which is one of the
goals of the RTR protocol. Clearly, both types of
peers – those who wish to speculate and those who
wish to set filters – are both needed for the search
mechanism to be both efficient and effective. We
note that super-peer networks are an example of an
efficient search mechanism in which both types of
peers are present.

3 Attack Analysis

The main attack possible on the proposed incen-
tive system is that of greedy peers generating bogus

queries for services they do not really need. The mo-
tivation for doing so is to earn money by selling the
initial RTRs to its neighbors.

The primary counter to this type of attack are the
notions of reputation and past experience. That is,
if a peer is unsatisfied with the RTRs that are be-
ing sold by one neighbor, he may disconnect from
that peer and reconnect to a new peer. Furthermore,
peers are unlikely to buy large quantities of RTRs
from vendors with whom they have had no experi-
ence. Finally, if the peer gains a good reputation by
consistently providing RTRs that lead to uploads, it
will be able to charge a premium for its RTRs. There-
fore, there is significant incentive not to sell RTRs
for bogus queries to one’s neighbors, especially in
the presence of a global reputation system.

Another way to counter this attack is to make
users pay to submit new queries. If there exists
a lightweight centralized broker (which is probably
required for any system using real money for pay-
ment), then a peer can buy a “right to query” (RTQ)
token from the broker. An analogy to this idea is
paying the owner of a website or billboard to post an
advertisement. Each time that peer sends out a query,
it must include a new RTQ along with its RTR mes-
sages. If the peer reuses a token, then anyone who
receives two distinct RTRs (queries) with the same
RTQ (right to query), can report the RTRs to the bro-
ker as evidence of foul play.

If no centralized broker is available, we can still
limit queries via a distributed quota enforcement sys-
tem (e.g. [9]). Each peer is allotted a “quota” of
RTQs (e.g., one query per day). RTQs can accumu-
late over time if not used. A peer can choose to use
the RTQ (regardless of whether it really needs a ser-
vice), or else sell it to peers who wish to buy it.

Note also that malicious users cannot send out a
bogus RTR that lists a different peer as the querying
peer, because each RTR is signed by the querying
peer.

4 Extensions and Alternatives

Subscriptions. In order to reduce the overhead of
the protocol, we can introduce the idea of subscrip-
tions, in which peers “bulk order” RTRs over time
from its neighbors rather than buying RTRs individ-
ually. As with the basic RTR protocol, peers can
specify content and quality filters on subscriptions,
as well as the volume of RTRs to be included. Sub-

5

scriptions can also be cancelled; therefore sellers still
have an incentive provide the best RTRs it can.

While subscriptions reduce overhead in terms of
system messages, they also involve considerably
more complex decision-making, such as how to price
subscriptions and how to decide which RTRs go in a
subscription.

Quality of Service. Several approaches to com-
batting the free-riding problem have been presented
(e.g., [3, 4]). Because the context of the problem is
different – a system where peers free-ride versus a
system in which peers compete to provide services
– the techniques presented in these papers cannot be
applied directly to solve our problem.

As an alternative to the RTR protocol, one can
imagine applying techniques that have been used to
combat the freerider problem to this problem. For
example, using the technique presented in [4], we
could assign reputations to peers based on the vol-
ume of queries they forward, and give them better
quality of service (e.g., faster downloads) if their
global reputation is high. As another example, peers
who forward many queries can connect to other peers
who also forward many queries. Therefore the topol-
ogy forms in such a way that peers who provide
many queries also receive many.

However, the first scheme requires that peers pro-
vide quality service, at a cost to themselves, to other
peers from whom they may not have directly ben-
efited. This goes against our principle of allowing
peers to act purely out of self-interest. Both schemes
also suffer from the drawback that they do not solve
the non-cooperation problem. Competitive peers can
continue to drop queries they want to answer, with-
out other peers noticing.

Push Model. In our current model, the willingness
of peers to pay for RTRs (because they represent po-
tential business) “pull” queries through the network.
A more conventional alternative is a “push” model
in which the querying peer pays others to route its
queries. An approach similar to the push model has
been used, for example, in routing packets at the net-
work level (e.g., [6]). However, these existing works
assume parties can be trusted to charge a fee only if
they actually do forward a message. In a system of
untrusted peers, we would need a way to prove the
path of a query message, which will likely incur very
high overhead.

5 Future Work

We plan to focus our future work on the RTR Proto-
col in two main areas.

First, we plan to run simulations to evaluate the
effectiveness of the protocol at promoting coopera-
tion. A peer in our system must weigh a number of
considerations, such as what types of RTRs it wants
to buy and whether it wants to make money by up-
loading files or selling RTRs. Our current work in-
volves defining a behavior model that is descriptive
enough to capture different preferences, while re-
maining practical enough for efficient simulation.

We also plan to address the non-cooperation
problem over different search mechanisms, such as
DHTs. DHTs pose new challenges because peers can
no longer choose their neighbors, nor do peers have
a choice as to which queries they forward. Due to
the rigid, deterministic topology and routing policy
of DHTs, the “push” model of forwarding queries
may be more appropriate in ensuring that messages
are properly routed.

In summary, we believe that the non-cooperation
problem will present a significant challenge to com-
petitive P2P systems. We present one possible proto-
col that gives peers the incentive to cooperate in the
operation of the system, even in the face of competi-
tion for providing services.

References
[1] E. Adar and B. Huberman. Free Riding on Gnutella.

http://www.firstmonday.dk/issues/issue5 10/-
adar/index.html, 2000.

[2] Gnutella website. http://gnutella.wego.com.
[3] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge.

Incentives for sharing in peer-to-peer networks. In Proc.
ACM Conference on Electronic Commerce, 2001.

[4] S Kamvar, M. Schlosser, and H. Garcia-Molina. Incen-
tives for Combating Freeriding on P2P Networks. In Proc.
EURO-PAR, 2003.

[5] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The Eigen-
Trust Algorithm for Reputation Management in P2P Net-
works. In Proc. WWW, 2003.

[6] T. Roughgarden. Pricing network edges for heterogeneous
selfish users. In Proc. STOC, 2003.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proc. ACM SIGCOMM, 2001.

[8] B. Yang and H. Garcia-Molina. PPay: Micropayments for
Peer-to-Peer Systems. Technical report, Stanford Univer-
sity, 2003.

[9] B. Yang, S. Kamvar, and H. Garcia-Molina. Secure Score
Management in P2P Systems. Technical report, Stanford
University, 2003.

6

