
 1

DIFFERENTIATED ADMISSION FOR PEER-TO-PEER SYSTEMS:
INCENTIVIZING PEERS TO CONTRIBUTE THEIR RESOURCES

H. T. Kung1 and Chun-Hsin Wu2

Abstract
A peer-to-peer (P2P) system will starve from resources if
every user is a freeloader who only takes resources from
the system but never contributes any. It is useful to de-
velop a scheme that can incentivize users to contribute re-
sources such as content, CPU, storage and network band-
width. This paper describes an admission control system
capable of providing differentiated services to users based
on their past contributions or reputations. A user desiring a
certain level of service will need to make a comparable
level of contributions to the P2P system. The admission
system uses a distributed eigenvector-based method to
compute user reputations, a sampling heuristic to reduce
computation and communication costs, and a distributed
trust-enhancement scheme to provide system security.

1 Introduction
A well-known issue in P2P systems concerns the fair con-
tribution of resources by participating users (see, e.g., [1],
[2]). In particular, it is important to avoid the situation that
none of the users will contribute resources. In this paper,
we present an admission system aimed at solving this free
riding problem and demonstrate simulation results.

The admission system embodies five main ideas:

• A reputation-based, differentiated admission control
that allows a node to receive a level of service based on
its reputation or contributions in the past. (In this paper,
we use the terms “nodes” and “users” interchangeably.)

• An eigenvector-based method that derives service and
usage reputations of nodes by computing the largest
eigenvalue/eigenvector pairs of the credit matrix
associated with past transactions.

• An adaptation system that allows a node to take care of
its own interest by contributing resources at a level just
sufficient for its desired level of service.

• A sampling technique that uses top service and usage
nodes, as well as benchmark nodes, to reduce the cost
of computing service and usage reputations of nodes.

• A distributed trust-enhancement scheme that uses third-
party nodes to manage and store credits required by
reputation computations.

2 Eigenvector-based Reputation System
We give a brief overview of the eigenvector-based reputa-
tion system used in our admission control. We will use the
formulations and notations introduced in this section
throughout this paper.

We consider a P2P system for providing content service.
Denote the nodes in the P2P system as P1, …, Pn. We de-
fine a transaction as the transport of a piece of content
from a node to another, possibly through some other
intermediate nodes.

We define the service credit matrix S associated with a set
of transactions as follows. The entry at position (Pi, Pj) of
S is the amount of service credits node Pi receives in pro-
viding or transporting content for node Pj. Figure 1 (b)

1Harvard University
Division of Engineering and Applied Sciences

Cambridge, Massachusetts, USA

2Academia Sinica
Institute of Information Science

Taiwan, ROC

P1

P2

P3

P4

P5

P6

P7

P8

45P8

43P7

41P6

18P5

22P4

34P3

45P2

47P1

Usage
Reputation

Service
Reputation

45P8

43P7

41P6

18P5

22P4

34P3

45P2

47P1

Usage
Reputation

Service
Reputation

00021100

00031200

00042000

00000002

00040000

00031000

00021100

00001100

00021100

00031200

00042000

00000002

00040000

00031000

00021100

00001100

(a) Transaction paths

(b) Service credit matrix

(c) Eigenvector-based rankings

P8

P7

P6

P5

P4

P3

P2

P1

P8

P7

P6

P5

P4

P3

P2

P1

P8P7P6P5P4P3P2P1

Figure 1: (a) A set of transactions, each represented by a
dotted arrow. An arrow from Pi to Pj represents a
transaction of sending content from Pi to Pj. (b) The
corresponding service credit matrix. (c) Eigenvector-based
rankings of nodes in service and usage reputations.

 2

shows the service credit matrix associated with the 8-node
transaction example of Figure 1 (a). In this example, we
assume that for each transaction a node will receive 2 cred-
its for providing content and 1 credit for transporting con-
tent.

We define the usage credit matrix U to be ST, the trans-
pose of S. The entry at position (Pi, Pj) of U represents the
amount of usage credits node Pi receives in receiving con-
tent or in using transporting service provided by node Pj.
Thus by defining U = ST we assume that whenever Pi re-
ceives service credits in providing or transporting content
for Pj, Pj will receive usage credits in the same amount.

Let vectors s and u denote the service reputations and us-
age reputations of nodes in the P2P system. That is, the i-
th component of s or u is the service or usage reputation of
node Pi, respectively.

We define s to be the converged value computed itera-
tively by s(i+1) = Su(i) and u(i) = Us(i), with initial u(0) and s(0)
being any values. Note that s(i+1) = SUs(i), or equivalently
s(i+1) = SSTs(i). We can view the latter iteration as the power
method [3] of computing the largest eigen-
value/eigenvector pair of SST. This means that s is the ei-
genvector of SST corresponding to the largest eigenvalue
of SST. Similarly, we define u to be the converged value
computed iteratively by u(i+1) = Us(i) and s(i) = Su(i). Thus, u
is the eigenvector of STS corresponding to the largest ei-
genvalue of STS. This matrix formulism parallels to that of
the HIT algorithm [4] for identifying influential articles
from webpage hyperlink structures. As discussed in [5],
such kinds of algorithms give stable rankings under certain
perturbations to the hyperlink patterns.

Figure 1 (c) shows the service and usage reputation rank-
ings of nodes based on the computed largest eigen-
value/eigenvector pairs of SST and STS, respectively. Note
that the eigenvector-based rankings in Figure 1 (c) are
what one would expect. Consider, e.g., P5 in Figure 1 (a),
which receives content from six other nodes, but only
sends content to one node and does not provide any con-
tent transport. We see from Figure 1 (c) that P5 has a high
usage ranking (ranking: 1) and low service ranking (rank-
ing: 8). In contrast, P6 sends content to two other nodes
and provides content transport for two transactions, while
not receiving any content. We see that P6 has a high ser-
vice ranking (ranking: 1) and low usage ranking (ranking:
4).

3 Reputation-based, Differentiated Admission
When a node X receives a request for content from a node
Y, X will determine whether to send its content to Y based
on Y’s service and usage reputations. For the rest of the

paper, let u or s denote, respectively, the usage or service
reputation-ranking percentile of the node in question. Sup-
pose that Y’s u is above A% while its s is below B%,
where A and B, with A > B, are certain preconfigured sys-
tem-wide parameters. (For example, A and B can be 80
and 20, respectively.) Then X will deny Y’s request. This
denial represents a reasonable scenario in view of fact that
Y has had a relatively high usage of services but has only
made relatively low contributions in serving others. While
being denied of receiving content, Y can continue provid-
ing content and transport services, thereby improving its
service reputation. This makes it possible for Y to receive
content in the future.

Note that admission decisions allow or disallow certain
transactions to take place. After an allowed transaction is
complete, the participating nodes that request, provide or
transport the content will update their credits to reflect
their roles in the transaction. Thus, the service and usage
credit matrices will change accordingly. These changes
will in turn affect future reputation rankings of the nodes.

In this reputation-based admission system, a node desiring
to receive content from other nodes will need to contribute
to the P2P systems at a certain level. A freeloader, which
has a low service reputation and a high usage reputation,
will be denied of service. The node will need to either pro-
vide an increased level of service or reduce its content us-
age in order to be readmitted again.

4 Nodes’ Adaptation in Willingness to Serve
The admission control allows a node to be greedy by
searching for a minimum level of contribution it needs to
provide in order to receive a desired level of service from
other nodes. For this purpose, the node monitors its suc-
cess rate σ, which is the percentage of its content or trans-
port requests that are granted by requested nodes. Based on
the σ value, the node adjusts its willingness-to-serve prob-
ability ρ, which is the probability at which the node will
accept arriving requests. Note that a node using a higher
value of ρ means that the node is more willing to provide
service. When a node finds that its σ is above a desired
level C for a certain period T of time, it will decrease its ρ.
On the other hand, when the node finds that its σ is below
C for a period T of time, it will increase its ρ.

We describe a method of controlling the increase and de-
crease of ρ. As depicted in Figure 2, a node will be in the
“Deny” state when its u is above A% while its s is below
B%. The node will increase ρ when in states “Deny” and
“Admit & More”, and decrease ρ when in state “Admit &
Not More”. Note that when in the “Deny” state, a node can
get out of the state by increasing ρ. A node can also raise
its σ value by increasing ρ. Moreover, when a node in-

 3

creases ρ, it will improve its ranking in service reputation.
This will, in turn, cause some of the other nodes to drop
their rankings in service reputation. If these nodes have
sufficiently high usage reputations, then they will enter the
“Deny” state. These nodes will then increase their ρ,
thereby allowing the current node to improve its σ.

When a node is in the “Admit & Not More” state with σ ≥
C, it will decrease ρ until reaching a point when σ is less
than C or the node enters the “Deny” state.

In summary, a node will adapt its willingness-to-serve
probability ρ based on the observed success rate σ. If σ is
less than the desired level C, the node will try to raise σ by
increasing ρ. When σ has reached C, the node will try to
reduce the level of service it provides by decreasing ρ.
Thus this is a feedback control system parameterized by
the desired service level C.

The desired service level C is constrained by the system-
wide parameters A and B. Suppose, for example, that
nodes in the P2P system make uniform requests to other
nodes. Then it is easy to see that each node has the prob-
ability of B*(1-A) being in the “Deny” state. This means
that C should not be set to exceed 1 - B*(1-A).

Note that it is important to have separate “Admit & Not
More” and “Admit & More” states rather than a single
combined “Admit” state, in order to avoid a scenario
which we call the “poor man's equilibrium”. This is the
scenario when many nodes are in this combined “Admit”
state with small σ and zero or very low ρ. These nodes are
expected to have low u values since many of their peers
themselves are likely also in the same situation, i.e., hav-
ing small σ and zero or very low ρ. This means that these
nodes will never be able to increase their ρ since they can-
not enter the “Deny” state due to their u being below A%.

We have indeed seen this deadlock scenario in our simula-
tion.

5 Convergence of Nodes’ Adaptation
We demonstrate by simulation that nodes’ adaptation con-
verges in the sense that when the desired level of service C
changes, the success rate σ will converge to C’s new value.
Figure 3 depicts the simulation result showing the adapta-
tion of σ and the willingness-to-serve probability ρ in re-
sponse to changes in C over time for a randomly chosen
node.

The simulation configuration is as follows. There are 128
nodes in the P2P system, each constantly making content
requests to other nodes. The requesting and requested
nodes as well as intermediate nodes used in transporting
contents and their numbers are all uniformly distributed.
The simulation uses the following parameters: A = .8, B
= .2 and the number of transactions per round = 10,000.
For all nodes, C changes its value from .8 to .4 or vice
versa every 100 rounds. When a node is in the “Admit &
Not More” state, it decreases ρ using ρ ← .95 * ρ, else it
increases ρ using ρ ← max (ρ + . 05, 1). Note that except
when ρ = 1, the decreasing rate is smaller than the increas-
ing rate. Figure 3 depicts the adaptation of ρ and the ob-
served σ, in response to changes in C. We note that σ gen-
erally tracks changes in C. There are short periods when
the node is in the “Deny” state, as shown by sharp down-
ward spikes in σ.

The admission system can bootstrap itself out from the
initial state when all the nodes or most of them are new
nodes. The initial state of a new node is set to be “Admit
& More” with the initial value of ρ being 0. That means it
can request services without providing services initially. If
a new node requests too many services such that its u is
above A and its s is below B, it will enter the “Deny” state.
Otherwise, if its success rate σ does not reach its desired

Admit
& Not
More

Deny

Admit
& More

u>A & s<B

(u≤A or s≥B)
& σ≥C

σ<C

σ≥C u>A & s<B
(u≤A or s≥B)
& σ<C

Increase ρ

Increase ρDecrease ρ

Figure 2: The three states of a node and state transitions.
Depending on its state, a node may increase or decrease
its willingness-to-serve probability ρ.

1 101 201 301 401
Round #

Desired Level of Service C

Success Rate σ

Willingness ρ

.8

.4

1

0
1

0
1 101 201 301 401

Round #

Desired Level of Service C

Success Rate σ

Willingness ρ

.8

.4

1

0
1

0

Figure 3. Adaptation of willingness-to-serve probability ρ
and the observed success rate σ, in response to changes in
the desired service level C.

 4

level of service C, it will stay at the “Admit & More” state
and increase its ρ to raise σ. When its σ reaches C, it will
enter the “Admit & Not More” state and try to minimize
its ρ. While bootstrapping the system, the service or usage
credit matrix is initially a zero matrix and the success rate
of every node is zero, since there have not been any trans-
actions. Before the success rate σ of each node reaches C,
it will increase its ρ to raise σ. That means a node will try
to receive desired level of service by providing more ser-
vices. As illustrated in Figure 3, within about 16 rounds, a
new node will be able to adapt its ρ to respond to its de-
sired level of service C.

6 Top-node Sampling and Benchmark Nodes
We describe an efficient heuristic for determining the cur-
rent state of a node X. There are two ideas in the method.
First, we only compare X to two benchmark nodes in us-
age and service reputations. Second, in computing reputa-
tion, we only use a set of top nodes, consisting of top us-
age nodes and top service nodes, together with node X and
the two benchmark nodes.

We select two benchmark nodes, PA and PB, as follows: PA
has its usage-reputation ranking percentile at A%, whereas
PB has its service-reputation ranking percentile at B%.
Next, we define a sampling set consisting of top nodes,
node X, and the two selected benchmark nodes PA and PB.
Considering only transactions involving nodes in this sam-
pling set, we compute the reputations of PA, PB and X.
Based on the computed reputations, X is compared with PA
in usage reputation and with PB in service reputation. Fi-
nally, X’s state is determined based on the state transitions
depicted in Figure 4. Periodically, the set of top nodes and
the two benchmark nodes are updated. We only need to
perform these updates relatively infrequently.

To quantify the effectiveness of the top-node sampling
heuristic, we consider error rates in two categories: Fal-
seDeny and FalseAdmit. FalseDeny or FalseAdmit means
that the method incorrectly classifies a node to be in the
state “Deny” or one of the two “Admit” states, respectively.
Figure 5 depicts simulation results on error rates as a func-
tion of the number of top nodes used in the sampling. The
configuration and parameters used in this simulation are
the same as those for Figure 3, except that this time we use
Laplace distributions rather than uniform distributions to
model transaction sources and destinations. In particular,
nodes requesting content follow a distribution with three
peaks, formed by a mixture of three Laplace distributions.
The use of such Laplace distributions allows increased
variations in usage and service reputations among nodes,
thereby being able to take advantage of the top-node sam-
pling heuristic.

We have simulated this sampling heuristic. The simulation
results, e.g., those shown in Figure 5, suggest that it gener-
ally suffices to use a small number of top nodes such as ten
top nodes. That is, we can use a small service matrix cor-
responding to just the top nodes, the two benchmark nodes
and the current node in computing reputations, Thus this
sampling approach reduces the computation and commu-
nication costs.

As one would expect, the heuristic is effective when there
are large “hub nodes” present which have dominant usage
or service reputations. It appears that real-world P2P sys-
tems do often exhibit the hub nodes phenomenon [6].

Admit
& Not
More

Deny

Admit
& More

• usage reputation higher than PA
and service reputation lower than PB

σ < C
σ ≥ C

Increase ρ

Increase ρDecrease ρ

• usage reputation not higher than PA

or service reputation not lower than PB
• σ < C

• usage reputation not higher than PA
or service reputation not lower than PB

• σ ≥ C

Figure 5: Error rates in FalseDeny and FalseAdmit
decrease rapidly as top nodes used in the sampling
increase.

FalseAdmit

0

10

20

30

40

50

0 10 20 30
Number of Top Nodes

Er
ro

r R
at

e
(%

)

FalseDeny

0

10

20

30

40

50

0 10 20 30

Number of Top Nodes

Er
ro

r R
at

e
(%

)

Figure 4: Node state transitions using the top-node
sampling heuristic and benchmark nodes PA and PB.
Compare this diagram with that in Figure 2 which uses
no sampling heuristics.

 5

7 Distributed Trust-enhancement
We describe a distributed trust-enhancement scheme to
provide protection against possible cheating of the reputa-
tion system. To illustrate the idea, consider a transaction
that sends content from node Pi to Pj under a simplifying
assumption that nodes can receive credits only by provid-
ing content, not by transporting content. Note that if the
credits associated with the transactions are stored at Pi or
Pj, then these nodes could potentially alter the credit values
for their own benefit.

To enhance the trustworthiness of credits, our scheme will
store credits at a third-party node Ph determined by h =
hash (i, j) with hash being a hash function known to all
nodes. For example, we can use a distributed hash table
mechanism (DHT) such as Chord [7] to maintain the credit
matrix in a scalable manner. That is, the entry at position
(Pi, Pj) of the service matrix is stored at node Ph of the
DHT network.

In general, one can expect that Pi and Pj have no manage-
ment authority on altering credits stored at a third-party
node. Moreover, since reputations are based on credits as-
sociated with transactions involving potentially many dif-
ferent pairs of Pi and Pj and these credits are stored at dif-
ferent third-party nodes, even if some of these third-party
nodes are compromised, the impact to the integrity of the
overall reputation system can still be limited.

To make sure that the third-party node Ph will properly
increment Pi’s credit, Pi will encrypt content sent to Pj in a
session key k and send the key to Ph. Node Pj can only de-
crypt the content by requesting the session key k from Ph
and receiving it. This scheme, as depicted in Figure 6, en-
sures that Ph knows about the transaction and thus can
properly increment Pi’s credit stored at Ph to reflect Pi’s
contribution in the transaction.

In this scheme, we assume that it is to Pi’s advantage that it
will deliver the correct content to Pj as requested, for oth-
erwise in the long term others will eventually stop request-
ing content from Pi. This means that Pj cannot cheat by
falsely claiming that encrypted content it receives is incor-
rect and asking Ph to erase its usage credit.

8 Putting the Whole Thing Together
We give a brief overview of the entire reputation-based
admission system. To simplify the presentation, we con-
sider here only the simplified case where nodes can only
receive credits by providing content. It is straightforward
to extend the scheme here to cover the case where this
assumption is removed.

When node X receives a request from node Y for content,
X will trigger a series of steps:

a) X accepts the request from Y with a probability based
on X’s current willingness-to-serve probability ρ (see
Section 4). If X decides to accept Y’s request, then the
steps below take place.

b) X determines whether Y should be “admitted” or “de-
nied:
o Consider a sampling set, consisting the current top

nodes, two benchmark nodes, PA and PB (see Sec-
tion 6), and node Y.

o For each ordered pair of nodes (Pi, Pj) in the sam-
pling set, retrieve from Ph the credits of Pi in serv-
ing Pj, where h = hash (i, j) (see Section 7), and
form the service credit matrix S.

o Compute the largest eigenvalue/eigenvector pairs of
SST and STS to obtain the service and usage reputa-
tion rankings of nodes in the sampling set, respec-
tively.

o Y is “denied” if Y has higher usage reputation than
PA and lower service reputation than PB; otherwise
Y is “admitted”. For the latter case, the following
steps take place.

c) X sends Y the requested content encrypted in a session
key, and sends the session key to node Z, where X = Pi’,
Y = Pj’, Z = Ph’ and h’ = hash (i’, j’). (See Section 7.)

d) Y requests Z for the session key.
e) Z sends Y the session key and increments the credit of

X in serving Y.
f) Y uses the session key to decrypt the content received

from X.
In addition, each node computes periodically service and
usage reputation rankings of nodes in the current sampling
set. Based on its rankings relative to PA and PB, the node

Figure 6: Distributed trust-enhancement using third-party
nodes. For the transaction of sending content from Pi to Pj,
the associated service and usage credits are stored at a third
party node Ph, determined by h = hash (i, j) with hash being
a hash function.

Pi Pj

Ph

(2) k

(1) Content encrypted
in session key k

(4) k
(3) Request k

(5) Service and usage
credit update

 6

decides whether to increase or decrease its willingness-to-
serve probability ρ (see Figure 4).

Further, there are background processes that compute ser-
vice and usage reputation rankings of all nodes for updat-
ing the top nodes and the two benchmark nodes. The up-
date results are advertised to all nodes. The top and
benchmark nodes need relatively infrequent updates. In
our simulation for the results of Figure 5, these updates are
performed once each 10,000 transactions.

For a P2P system with a very large number of nodes, the
“link-state” style of computing reputation rankings, where
a node first forms a service credit matrix S and then com-
putes the largest eigenvalue/eigenvector pairs of SST and
STS as described in step b) above, can be prohibitively ex-
pensive. This is because in selecting the top nodes and the
two benchmark nodes, all nodes rather than just the sam-
pling nodes will need to be considered. In this case, we
may use a relaxation or “distance-vector” style of algo-
rithm that computes the largest eigenvalue/eigenvector
pairs in a distributed manner. Moreover, at any given time,
we may consider only a small number of randomly se-
lected nodes outside the top set for their possible replace-
ment of some of the current top nodes. This approximate
method could work because the top set is not expected to
change substantially over a short period of time.

9 Summary and Concluding Remarks
We have described a reputation-based P2P admission sys-
tem. It allows only those nodes that have made reasonable
service contributions to receive services from others. We
use eigenvector methods, similar to those that compute
webpage rankings, to compute the service and usage repu-
tations of nodes. We show how a node can adapt its will-
ingness-to-serve probability in order to find a minimum
level of services it needs to provide while still being able
to receive services provided by others. We give a sampling
technique that can substantially reduce the cost of reputa-
tion computations. Finally, we show a distributed trust-
enhancement scheme based on the use of third-party nodes.
Our approach differs from previous work in P2P reputation
such as [8], [9], [10], [11] in a number of aspects, includ-
ing our use of eigenvector methods and focus on reputa-
tions of content requesters rather than content providers.

There are several important issues beyond those presented
in this paper, on some of which we have already done ini-
tial investigation. These include schemes for reputation
caching and expiration, and methods that can tolerate net-
work partitioning. We have also found that it could be dif-
ficult to achieve convergence when the topology of the
P2P network is spare. For this, we may need to develop a
better feedback control system.

References
[1] Eytan Adar, and Bernardo A. Huberman, “Free Rid-

ing on Gnutella,” First Monday, Vol. 5, No. 10, Oc-
tober 2000.

[2] “Punishing Freeloaders Key to Cooperation?”
http://www.infoanarchy.org/story/2002/1/11/02517/7790.

[3] G.W. Stewart, Introduction to Matrix Computations,
Academic Press, New York, 1973.

[4] Jon M. Kleinberg, “Authoritative Sources in a Hyper-
linked Environment,” In Proc. the 9th ACM-SIAM
Symposium on Discrete Algorithms, 1998.

[5] Andrew Ng, Alice Zheng and Michael Jordan, “Link
Analysis, Eigenvectors and Stability,” in Proc. the
17th International Joint Conference on Artificial In-
telligence, 2001.

[6] Stefan Saroiu, P. Krishna Gummadi, and Steven D.
Gribble, “A Measurement Study of Peer-to-Peer File
Sharing Systems,” in Proc. Multimedia Computing
and Networking, 2002.

[7] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek and Hari Balakrishnany, “Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Appli-
cations,” in Proc. ACM SIGCOMM, 2001.

[8] Mao Chen and Jaswinder Pal Singh, “Computing and
Using Reputations for Internet Ratings,” in Proc. the
3rd ACM Conference on Electronic Commerce, 2001.

[9] Fabrizio Cornelli, Ernesto Damiani and Sabrina De
Capitani di Vimercai, “Choosing Reputable Servents
in a P2P Network,” in Proc. World-Wide Web Con-
ference, 2002.

[10] Richard Lethin, “Reputation,” in Peer-to-Peer: Har-
nessing the Power of Disruptive Technologies, Edited
by Andy Oram, O’Reilly and Associates, Inc., 2001,
pp. 341-535.

[11] Sepandar Kamvar, Mario Schlosser and Hector Gar-
cia-Molina, “EigenRep: Reputation Management in
P2P Networks,” in Proc. World-Wide Web Confer-
ence, 2003.

