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DIFFERENTIATED ADMISSION FOR PEER-TO-PEER SYSTEMS: 
INCENTIVIZING PEERS TO CONTRIBUTE THEIR RESOURCES 

 
H. T. Kung1 and Chun-Hsin Wu2 

 

Abstract 
A peer-to-peer (P2P) system will starve from resources if 
every user is a freeloader who only takes resources from 
the system but never contributes any. It is useful to de-
velop a scheme that can incentivize users to contribute re-
sources such as content, CPU, storage and network band-
width. This paper describes an admission control system 
capable of providing differentiated services to users based 
on their past contributions or reputations. A user desiring a 
certain level of service will need to make a comparable 
level of contributions to the P2P system. The admission 
system uses a distributed eigenvector-based method to 
compute user reputations, a sampling heuristic to reduce 
computation and communication costs, and a distributed 
trust-enhancement scheme to provide system security.  

1 Introduction 
A well-known issue in P2P systems concerns the fair con-
tribution of resources by participating users (see, e.g., [1], 
[2]). In particular, it is important to avoid the situation that 
none of the users will contribute resources. In this paper, 
we present an admission system aimed at solving this free 
riding problem and demonstrate simulation results.  

The admission system embodies five main ideas:  

• A reputation-based, differentiated admission control 
that allows a node to receive a level of service based on 
its reputation or contributions in the past. (In this paper, 
we use the terms “nodes” and “users” interchangeably.) 

• An eigenvector-based method that derives service and 
usage reputations of nodes by computing the largest 
eigenvalue/eigenvector pairs of the credit matrix 
associated with past transactions. 

• An adaptation system that allows a node to take care of 
its own interest by contributing resources at a level just 
sufficient for its desired level of service.   

• A sampling technique that uses top service and usage 
nodes, as well as benchmark nodes, to reduce the cost 
of computing service and usage reputations of nodes. 

• A distributed trust-enhancement scheme that uses third-
party nodes to manage and store credits required by 
reputation computations. 

2 Eigenvector-based Reputation System 
We give a brief overview of the eigenvector-based reputa-
tion system used in our admission control. We will use the 
formulations and notations introduced in this section 
throughout this paper.  

We consider a P2P system for providing content service. 
Denote the nodes in the P2P system as P1, …, Pn. We de-
fine a transaction as the transport of a piece of content 
from a node to another, possibly through some other 
intermediate nodes. 

 

We define the service credit matrix S associated with a set 
of transactions as follows. The entry at position (Pi, Pj) of 
S is the amount of service credits node Pi receives in pro-
viding or transporting content for node Pj.  Figure 1 (b) 
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Figure 1:  (a) A set of transactions, each represented by a 
dotted arrow. An arrow from Pi to Pj represents a 
transaction of sending content from Pi to Pj. (b) The 
corresponding service credit matrix. (c) Eigenvector-based 
rankings of nodes in service and usage reputations.
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shows the service credit matrix associated with the 8-node 
transaction example of Figure 1 (a).  In this example, we 
assume that for each transaction a node will receive 2 cred-
its for providing content and 1 credit for transporting con-
tent.  

We define the usage credit matrix U to be ST, the trans-
pose of S. The entry at position (Pi, Pj) of U represents the 
amount of usage credits node Pi receives in receiving con-
tent or in using transporting service provided by node Pj. 
Thus by defining U = ST we assume that whenever Pi re-
ceives service credits in providing or transporting content 
for Pj, Pj will receive usage credits in the same amount. 

Let vectors s and u denote the service reputations and us-
age reputations of nodes in the P2P system. That is, the i-
th component of s or u is the service or usage reputation of 
node Pi, respectively.  

We define s to be the converged value computed itera-
tively by s(i+1) = Su(i) and u(i) = Us(i), with initial u(0) and s(0) 
being any values.  Note that s(i+1) = SUs(i), or equivalently 
s(i+1) = SSTs(i). We can view the latter iteration as the power 
method [3] of computing the largest eigen-
value/eigenvector pair of SST. This means that s is the ei-
genvector of SST corresponding to the largest eigenvalue 
of SST.  Similarly, we define u to be the converged value 
computed iteratively by u(i+1) = Us(i) and s(i) = Su(i).  Thus, u 
is the eigenvector of STS corresponding to the largest ei-
genvalue of STS. This matrix formulism parallels to that of 
the HIT algorithm [4] for identifying influential articles 
from webpage hyperlink structures. As discussed in [5], 
such kinds of algorithms give stable rankings under certain 
perturbations to the hyperlink patterns. 

Figure 1 (c) shows the service and usage reputation rank-
ings of nodes based on the computed largest eigen-
value/eigenvector pairs of SST and STS, respectively. Note 
that the eigenvector-based rankings in Figure 1 (c) are 
what one would expect. Consider, e.g., P5 in Figure 1 (a), 
which receives content from six other nodes, but only 
sends content to one node and does not provide any con-
tent transport.  We see from Figure 1 (c) that P5 has a high 
usage ranking (ranking: 1) and low service ranking (rank-
ing: 8). In contrast, P6 sends content to two other nodes 
and provides content transport for two transactions, while 
not receiving any content.  We see that P6 has a high ser-
vice ranking (ranking: 1) and low usage ranking (ranking: 
4). 

3 Reputation-based, Differentiated Admission 
When a node X receives a request for content from a node 
Y, X will determine whether to send its content to Y based 
on Y’s service and usage reputations. For the rest of the 

paper, let u or s denote, respectively, the usage or service 
reputation-ranking percentile of the node in question. Sup-
pose that Y’s u is above A% while its s is below B%, 
where A and B, with A > B, are certain preconfigured sys-
tem-wide parameters. (For example, A and B can be 80 
and 20, respectively.) Then X will deny Y’s request.  This 
denial represents a reasonable scenario in view of fact that 
Y has had a relatively high usage of services but has only 
made relatively low contributions in serving others. While 
being denied of receiving content, Y can continue provid-
ing content and transport services, thereby improving its 
service reputation. This makes it possible for Y to receive 
content in the future. 

Note that admission decisions allow or disallow certain 
transactions to take place. After an allowed transaction is 
complete, the participating nodes that request, provide or 
transport the content will update their credits to reflect 
their roles in the transaction. Thus, the service and usage 
credit matrices will change accordingly. These changes 
will in turn affect future reputation rankings of the nodes. 

In this reputation-based admission system, a node desiring 
to receive content from other nodes will need to contribute 
to the P2P systems at a certain level. A freeloader, which 
has a low service reputation and a high usage reputation, 
will be denied of service. The node will need to either pro-
vide an increased level of service or reduce its content us-
age in order to be readmitted again. 

4 Nodes’ Adaptation in Willingness to Serve 
The admission control allows a node to be greedy by 
searching for a minimum level of contribution it needs to 
provide in order to receive a desired level of service from 
other nodes. For this purpose, the node monitors its suc-
cess rate σ, which is the percentage of its content or trans-
port requests that are granted by requested nodes. Based on 
the σ value, the node adjusts its willingness-to-serve prob-
ability ρ, which is the probability at which the node will 
accept arriving requests. Note that a node using a higher 
value of ρ means that the node is more willing to provide 
service. When a node finds that its σ is above a desired 
level C for a certain period T of time, it will decrease its ρ. 
On the other hand, when the node finds that its σ is below 
C for a period T of time, it will increase its ρ. 

We describe a method of controlling the increase and de-
crease of ρ. As depicted in Figure 2, a node will be in the 
“Deny” state when its u is above A% while its s is below 
B%. The node will increase ρ when in states “Deny” and 
“Admit & More”, and decrease ρ when in state “Admit & 
Not More”. Note that when in the “Deny” state, a node can 
get out of the state by increasing ρ. A node can also raise 
its σ value by increasing ρ. Moreover, when a node in-



 3

creases ρ, it will improve its ranking in service reputation. 
This will, in turn, cause some of the other nodes to drop 
their rankings in service reputation. If these nodes have 
sufficiently high usage reputations, then they will enter the 
“Deny” state. These nodes will then increase their ρ, 
thereby allowing the current node to improve its σ.  

When a node is in the “Admit & Not More” state with σ ≥ 
C, it will decrease ρ until reaching a point when σ is less 
than C or the node enters the “Deny” state. 

In summary, a node will adapt its willingness-to-serve 
probability ρ based on the observed success rate σ. If σ is 
less than the desired level C, the node will try to raise σ by 
increasing ρ. When σ has reached C, the node will try to 
reduce the level of service it provides by decreasing ρ. 
Thus this is a feedback control system parameterized by 
the desired service level C. 

The desired service level C is constrained by the system-
wide parameters A and B.  Suppose, for example, that 
nodes in the P2P system make uniform requests to other 
nodes. Then it is easy to see that each node has the prob-
ability of B*(1-A) being in the “Deny” state. This means 
that C should not be set to exceed 1 - B*(1-A). 

Note that it is important to have separate “Admit & Not 
More” and “Admit & More” states rather than a single 
combined “Admit” state, in order to avoid a scenario 
which we call the “poor man's equilibrium”. This is the 
scenario when many nodes are in this combined “Admit” 
state with small σ and zero or very low ρ. These nodes are 
expected to have low u values since many of their peers 
themselves are likely also in the same situation, i.e., hav-
ing small σ and zero or very low ρ. This means that these 
nodes will never be able to increase their ρ since they can-
not enter the “Deny” state due to their u being below A%. 

We have indeed seen this deadlock scenario in our simula-
tion. 

5 Convergence of Nodes’ Adaptation 
We demonstrate by simulation that nodes’ adaptation con-
verges in the sense that when the desired level of service C 
changes, the success rate σ will converge to C’s new value. 
Figure 3 depicts the simulation result showing the adapta-
tion of σ and the willingness-to-serve probability ρ in re-
sponse to changes in C over time for a randomly chosen 
node.  

The simulation configuration is as follows. There are 128 
nodes in the P2P system, each constantly making content 
requests to other nodes. The requesting and requested 
nodes as well as intermediate nodes used in transporting 
contents and their numbers are all uniformly distributed. 
The simulation uses the following parameters: A = .8, B 
= .2 and the number of transactions per round = 10,000. 
For all nodes, C changes its value from .8 to .4 or vice 
versa every 100 rounds. When a node is in the “Admit & 
Not More” state, it decreases ρ using ρ ← .95 * ρ, else it 
increases ρ using ρ ← max (ρ + . 05, 1). Note that except 
when ρ = 1, the decreasing rate is smaller than the increas-
ing rate.  Figure 3 depicts the adaptation of ρ and the ob-
served σ, in response to changes in C. We note that σ gen-
erally tracks changes in C.  There are short periods when 
the node is in the “Deny” state, as shown by sharp down-
ward spikes in σ. 

 

The admission system can bootstrap itself out from the 
initial state when all the nodes or most of them are new 
nodes.  The initial state of a new node is set to be “Admit 
& More” with the initial value of ρ being 0. That means it 
can request services without providing services initially. If 
a new node requests too many services such that its u is 
above A and its s is below B, it will enter the “Deny” state. 
Otherwise, if its success rate σ does not reach its desired 
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Figure 2: The three states of a node and state transitions. 
Depending on its state, a node may increase or decrease 
its willingness-to-serve probability ρ. 
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level of service C, it will stay at the “Admit & More” state 
and increase its ρ to raise σ. When its σ reaches C, it will 
enter the “Admit & Not More” state and try to minimize 
its ρ. While bootstrapping the system, the service or usage 
credit matrix is initially a zero matrix and the success rate 
of every node is zero, since there have not been any trans-
actions. Before the success rate σ of each node reaches C, 
it will increase its ρ to raise σ. That means a node will try 
to receive desired level of service by providing more ser-
vices. As illustrated in Figure 3, within about 16 rounds, a 
new node will be able to adapt its ρ to respond to its de-
sired level of service C. 

6 Top-node Sampling and Benchmark Nodes 
We describe an efficient heuristic for determining the cur-
rent state of a node X. There are two ideas in the method. 
First, we only compare X to two benchmark nodes in us-
age and service reputations. Second, in computing reputa-
tion, we only use a set of top nodes, consisting of top us-
age nodes and top service nodes, together with node X and 
the two benchmark nodes.  

We select two benchmark nodes, PA and PB, as follows: PA 
has its usage-reputation ranking percentile at A%, whereas 
PB has its service-reputation ranking percentile at B%. 
Next, we define a sampling set consisting of top nodes, 
node X, and the two selected benchmark nodes PA and PB. 
Considering only transactions involving nodes in this sam-
pling set, we compute the reputations of PA, PB and X. 
Based on the computed reputations, X is compared with PA 
in usage reputation and with PB in service reputation. Fi-
nally, X’s state is determined based on the state transitions 
depicted in Figure 4. Periodically, the set of top nodes and 
the two benchmark nodes are updated. We only need to 
perform these updates relatively infrequently. 

To quantify the effectiveness of the top-node sampling 
heuristic, we consider error rates in two categories: Fal-
seDeny and FalseAdmit. FalseDeny or FalseAdmit means 
that the method incorrectly classifies a node to be in the 
state “Deny” or one of the two “Admit” states, respectively. 
Figure 5 depicts simulation results on error rates as a func-
tion of the number of top nodes used in the sampling. The 
configuration and parameters used in this simulation are 
the same as those for Figure 3, except that this time we use 
Laplace distributions rather than uniform distributions to 
model transaction sources and destinations. In particular, 
nodes requesting content follow a distribution with three 
peaks, formed by a mixture of three Laplace distributions. 
The use of such Laplace distributions allows increased 
variations in usage and service reputations among nodes, 
thereby being able to take advantage of the top-node sam-
pling heuristic. 

We have simulated this sampling heuristic. The simulation 
results, e.g., those shown in Figure 5, suggest that it gener-
ally suffices to use a small number of top nodes such as ten 
top nodes. That is, we can use a small service matrix cor-
responding to just the top nodes, the two benchmark nodes 
and the current node in computing reputations, Thus this 
sampling approach reduces the computation and commu-
nication costs.  

As one would expect, the heuristic is effective when there 
are large “hub nodes” present which have dominant usage 
or service reputations. It appears that real-world P2P sys-
tems do often exhibit the hub nodes phenomenon [6]. 
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7 Distributed Trust-enhancement 
We describe a distributed trust-enhancement scheme to 
provide protection against possible cheating of the reputa-
tion system. To illustrate the idea, consider a transaction 
that sends content from node Pi to Pj under a simplifying 
assumption that nodes can receive credits only by provid-
ing content, not by transporting content. Note that if the 
credits associated with the transactions are stored at Pi or 
Pj, then these nodes could potentially alter the credit values 
for their own benefit.  

To enhance the trustworthiness of credits, our scheme will 
store credits at a third-party node Ph determined by h = 
hash (i, j) with hash being a hash function known to all 
nodes. For example, we can use a distributed hash table 
mechanism (DHT) such as Chord [7] to maintain the credit 
matrix in a scalable manner. That is, the entry at position 
(Pi, Pj) of the service matrix is stored at node Ph of the 
DHT network. 

In general, one can expect that Pi and Pj have no manage-
ment authority on altering credits stored at a third-party 
node. Moreover, since reputations are based on credits as-
sociated with transactions involving potentially many dif-
ferent pairs of Pi and Pj and these credits are stored at dif-
ferent third-party nodes, even if some of these third-party 
nodes are compromised, the impact to the integrity of the 
overall reputation system can still be limited.  

To make sure that the third-party node Ph will properly 
increment Pi’s credit, Pi will encrypt content sent to Pj in a 
session key k and send the key to Ph. Node Pj can only de-
crypt the content by requesting the session key k from Ph 
and receiving it. This scheme, as depicted in Figure 6, en-
sures that Ph knows about the transaction and thus can 
properly increment Pi’s credit stored at Ph to reflect Pi’s 
contribution in the transaction. 

 

In this scheme, we assume that it is to Pi’s advantage that it 
will deliver the correct content to Pj as requested, for oth-
erwise in the long term others will eventually stop request-
ing content from Pi. This means that Pj cannot cheat by 
falsely claiming that encrypted content it receives is incor-
rect and asking Ph to erase its usage credit. 

8 Putting the Whole Thing Together 
We give a brief overview of the entire reputation-based 
admission system. To simplify the presentation, we con-
sider here only the simplified case where nodes can only 
receive credits by providing content. It is straightforward 
to extend the scheme here to cover the case where this 
assumption is removed. 

When node X receives a request from node Y for content, 
X will trigger a series of steps: 

a) X accepts the request from Y with a probability based 
on X’s current willingness-to-serve probability ρ (see 
Section 4).  If X decides to accept Y’s request, then the 
steps below take place. 

b) X determines whether Y should be “admitted” or “de-
nied: 
o Consider a sampling set, consisting the current top 

nodes, two benchmark nodes, PA and PB (see Sec-
tion 6), and node Y. 

o For each ordered pair of nodes (Pi, Pj) in the sam-
pling set, retrieve from Ph the credits of Pi in serv-
ing Pj, where h = hash (i, j) (see Section 7), and 
form the service credit matrix S.  

o Compute the largest eigenvalue/eigenvector pairs of 
SST and STS to obtain the service and usage reputa-
tion rankings of nodes in the sampling set, respec-
tively.  

o Y is “denied” if Y has higher usage reputation than 
PA and lower service reputation than PB; otherwise 
Y is “admitted”. For the latter case, the following 
steps take place. 

c) X sends Y the requested content encrypted in a session 
key, and sends the session key to node Z, where X = Pi’, 
Y = Pj’, Z = Ph’ and h’ = hash (i’, j’). (See Section 7.) 

d) Y requests Z for the session key.  
e) Z sends Y the session key and increments the credit of 

X in serving Y.  
f) Y uses the session key to decrypt the content received 

from X.  
In addition, each node computes periodically service and 
usage reputation rankings of nodes in the current sampling 
set. Based on its rankings relative to PA and PB, the node 

Figure 6: Distributed trust-enhancement using third-party 
nodes. For the transaction of sending content from Pi to Pj, 
the associated service and usage credits are stored at a third 
party node Ph, determined by  h = hash (i, j) with hash being 
a hash function. 
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decides whether to increase or decrease its willingness-to-
serve probability ρ (see Figure 4).   

Further, there are background processes that compute ser-
vice and usage reputation rankings of all nodes for updat-
ing the top nodes and the two benchmark nodes. The up-
date results are advertised to all nodes. The top and 
benchmark nodes need  relatively infrequent updates.  In 
our simulation for the results of Figure 5, these updates are 
performed once each 10,000 transactions.  

For a P2P system with a very large number of nodes, the 
“link-state” style of computing reputation rankings, where 
a node first forms a service credit matrix S and then com-
putes the largest eigenvalue/eigenvector pairs of SST and 
STS as described in step b) above, can be prohibitively ex-
pensive.  This is because in selecting the top nodes and the 
two benchmark nodes, all nodes rather than just the sam-
pling nodes will need to be considered. In this case, we 
may use a relaxation or “distance-vector” style of algo-
rithm that computes the largest eigenvalue/eigenvector 
pairs in a distributed manner. Moreover, at any given time, 
we may consider only a small number of randomly se-
lected nodes outside the top set for their possible replace-
ment of some of the current top nodes. This approximate 
method could work because the top set is not expected to 
change substantially over a short period of time. 

9 Summary and Concluding Remarks 
We have described a reputation-based P2P admission sys-
tem. It allows only those nodes that have made reasonable 
service contributions to receive services from others. We 
use eigenvector methods, similar to those that compute 
webpage rankings, to compute the service and usage repu-
tations of nodes. We show how a node can adapt its will-
ingness-to-serve probability in order to find a minimum 
level of services it needs to provide while still being able 
to receive services provided by others. We give a sampling 
technique that can substantially reduce the cost of reputa-
tion computations. Finally, we show a distributed trust-
enhancement scheme based on the use of third-party nodes. 
Our approach differs from previous work in P2P reputation 
such as [8], [9], [10], [11] in a number of aspects, includ-
ing our use of eigenvector methods and focus on reputa-
tions of content requesters rather than content providers. 

There are several important issues beyond those presented 
in this paper, on some of which we have already done ini-
tial investigation. These include schemes for reputation 
caching and expiration, and methods that can tolerate net-
work partitioning. We have also found that it could be dif-
ficult to achieve convergence when the topology of the 
P2P network is spare. For this, we may need to develop a 
better feedback control system.   
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