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1 Introduction

Many peer-to-peer (P2P) systems rely on cooperation among
self-interested users. For example, users of file-sharing sys-
tems who do not share their own resources cause long de-
lays or download failures. When non-cooperative users ben-
efit from free-riding on others’ resources, the “tragedy of the
commons” [10] is inevitable. Avoiding this problem requires
incentives for cooperation.

To model this problem, we use the Evolutionary Prisoner’s
Dilemma (EPD) [3] to capture the tension between individ-
ual and social utility. In the situations that EPD characterizes,
cooperation requires repetition and reputation. Both tech-
niques increase familiarity between entities (either directly
or indirectly), thereby reducing the probability of interac-
tions with strangers and consequently enhancing coopera-
tion. The context of P2P applications, however, imposes new
challenges. First, the large scale of these systems makes it
less likely that repeat interactions will occur with the same
entity. Second, reputation assumes that players maintain per-
sistent identities, but the existance of zero-cost identities in
many P2P systems allows entities to continuously change
identities. Both of these issues increase the probability of in-
teracting with a stranger.

In this paper, our contributions are to generalize from the
traditional symmetric EPD to the asymmetric transactions of
P2P applications, map out the design space of EPD-based in-
centive techniques, and simulate a subset of these techniques.
Our findings are as follows:

� Incentive techniques relying on private history (where
entites only use their private histories of entities’ ac-
tions) fail as the population size increases.

� Shared history (where entities share their histories of
other entities’ actions) scales to large populations, but
requires a supporting infrastructure and is vulnerable to
collusion.

� Incentive techniques that adapt to the behavior of
strangers can cause systems to converge to complete
cooperation despite the existance of zero-cost identities
and without centralized identity allocation.

2 Model

2.1 Requirements and Assumptions

We have a variety of requirements for modeling coopera-
tive applications like peer-to-peer (P2P) systems. In such a
model, universal cooperation should result in optimal overall
utility. However, in the absence of incentive mechanisms, in-
dividuals who exploit the cooperation of others while not co-
operating (defecting) should benefit more than users who do
cooperate. For example, a P2P file sharing user who down-
loads from others, but does not share files avoids paying per
byte fees to his Internet service provider (ISP) and slowing
his own downloads.

Moreover, we assume that all individuals are strategic. i.e.,
they are rational users, who will change their behavior
(evolve) to maximize their own benefit. In reality, there may
be other types of individuals, but we concentrate on the
strategic majority. The combination of universal cooperation
leading to optimal overall utility, an individual incentive to
defect, and rational behavior provide the essential tension
that results in the tragedy of the commons.

A model should have the flexibility to be applied to a variety
of peer-to-peer applications. Different applications have dif-
ferent definitions of cooperation and defections and different
benefits and costs (the payoffs) for users. In the applications
we consider, transactions are always between two individu-
als. In some applications (e.g., P2P file sharing), only one
individual (the server) has the choice of cooperating, while
the other (the client) can only receive the cooperation. Fur-
thermore, in many P2P applications, the client cannot trace
defections to a particular server. For example, a client in a
file sharing network cannot trace his inability to download
a file to a specific server who has the file and is refusing to
serve it.

Finally, we assume that all individuals have the same pay-
offs. This is unlikely to be the case in reality since users
will value the benefits and costs of services differently. Also,
payoffs are likely to change over time as the popularity of
services wax and wane. However, we assume homogeneity
for the sake of more understandable simulation results. Un-
derstanding incentive techniques without heterogeneity is a
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Figure 1: This is general form of a payoff matrix the evolutionary
Prisoner’s Dilemma. � , � , � , and � stand for reward, sucker, temp-
tation, and punishment, respectively. Each of � , � , � , and � can
be positive or negative. ��� , ��� , ��� , and ��� are the client’s payoff
and �	� , ��� , �
� , and ��� are the server’s payoff.

first step towards understanding them with heterogeneity and
other complexities.

2.2 Evolutionary Prisoner’s Dilemma

The traditional evolutionary Prisoner’s Dilemma (EPD)
model [3] assumes that entities are symmetric: there is no
difference between the client and the server in a transaction.
These qualities do not satisfy the requirements given above,
so, in this section, we describe a generalized form of EPD
that allows asymmetry in transactions. This generalized EPD
(henceforth referred to as EPD) encompasses the traditional
EPD as a special case.

EPD consists of players who meet for games. Each player
has a score which is initialized to 0. In each game, one player
is the client and one player is the server. A player can be a
client in one game and a server in another. The client se-
lects the server using a strategy (which also decides actions,
see below). The simplest selection algorithm is to select uni-
formly randomly from the available servers. The client and
server each have the choice of cooperating or defecting. As
a result of the client and server’s actions, the payoff from a
payoff matrix (Figure 1) is added to their scores.

The payoff matrix models the benefits and costs of a game,
and should meet the following requirements and associated
inequalities:

1. Mutual cooperation should lead to higher payoff than
mutual defection ( ������������������� ).

2. Mutual cooperation should lead to higher payoff than
one player suckering the other ( ��������������
�� ! and
��"�#�����$����% �� ).

3. Defection dominates cooperation at the individual level
for at least one of the players (  &	����'�(�)	�$�� or
 ��*���������)������� ).

For example, to model a P2P application like file sharing
or overlay routing, we use the specific payoff matrix val-
ues shown in Figure 2. This fits the restrictions described
above, with the modification that only the server can choose

Request File

Don't Request 0/0
7/-1 0/0
0/0

Allow Download Ignore Request

C
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Figure 2: This figure shows the payoff matrix for an application
like P2P file sharing or overlay routing.

between cooperating and defecting. In addition, for this par-
ticular payoff matrix, client are unable to trace server defec-
tions. This is the payoff matrix that we use in our results in
Section 4.

Players decide whether to cooperate or defect using a strat-
egy. Players observe each other’s actions, but not their strate-
gies. A player may maintain a history of other players’ ac-
tions, which strategies may use. Some typical strategies that
exist in current P2P systems are 100% Cooperate and 100%
Defect. Given the payoff matrix restrictions described above,
the system requires many 100% Cooperators to drive the sys-
tem to high overall utility, but the 100% Defectors gain more
benefit from the system than the 100% Cooperators.

A round consists of one game by each player as a client
and as a server. If there are + players, then one round has
+ games. A generation consists of , rounds. At the end of
a generation, all history is cleared and players evolve from
their current strategies to higher scoring strategies in propor-
tion to the difference between the average scores of the two
strategies. Let - be a strategy, ,/.0 the frequency of - in gener-
ation 1 , and 23.0 the average score of players using - in genera-
tion 1 . We compute the frequency of strategy - in generation
1 as , .54*60 7 , .0	8 2 . 0 . In the context of P2P applications, this
models users switching to higher performance P2P clients or
an agent in the P2P client changing the way it cooperates
with the rest of the network to optimize performance for its
user.

3 Design Space

Our goal is to design incentive strategies that both drive the
system to high overall utility (like 100% Cooperate), while
providing more benefit to their players than any defector
strategy (like 100% Defect). In this section, we describe the
design space of incentive strategies.

Decision function. A decision function takes a history of a
player’s actions and decides whether to cooperate or defect
with that player. Our requirements for a decision function
are that it can use shared and subjective history (described
below), it can deal with untraceable server defections, and it
is robust against different patterns of defection. Previously
proposed decision functions (e.g., Tit-for-Tat [3] and Image
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[13]) do not satisfy this criteria. The Reciprocative decision
function, where

�����������
	3,�� 1 -�� +� - 1������ 7
������� ��������	3,�� 1 -�� +�� �!�#"#	�������
	3,�� 1 -�� +�� ,�	���	3-$"%	'&)(�*,+.-

meets the criteria described above. We use a more complex
version of this function in our simulations, but we omit the
details for space reasons.

Private vs. shared history. Private history is player A’s
record of player B’s actions towards A. Shared history is a
record of B’s actions towards everyone. Private history does
not scale to large population sizes or high turnover because
it is only useful when two players have repeat games, but
this becomes less likely as population size or turnover in-
creases. Shared history scales better because it only requires
that someone has interacted with a particular player. One ad-
vantage of private history is that a decentralized implementa-
tion is straightforward. However, shared history can also be
implemented in decentralized way using a peer-to-peer stor-
age system [5] [11] or by disseminating information to other
players in a similar way to routing protocols.

Strangers. History assumes that players maintain persistent
identities. However, in most P2P systems, identities are zero-
cost. This allows the system to grow quickly, but also allows
users to continuously change identities to escape the conse-
quences of their past actions. A stranger in the system could
either be a legitimate newcomer or one of these whitewash-
ers. We deal with whitewashers by varying a strategy’s pol-
icy towards strangers.

Objective vs. subjective reputation. While shared history
is scalable, it is vulnerable to collusion. For example, de-
fecting players can claim that other defecting players coop-
erated with them. This subverts any strategy in which ev-
eryone in the system agrees on the reputation of a player
(objective reputation). An example is to use the Reciproca-
tive decision function with shared history to count the to-
tal number cooperations a player has given to and received
from all players in the system. Instead, to deal with collu-
sion, players should compute reputation subjectively, where
player A weights player B’s opinions based on how much
player A trusts player B. One example of a subjective algo-
rithm is max-flow [12] [14], which computes the maximum
flow between any pair of nodes in a graph.

Selection. In addition to deciding actions, strategies select
players for games. By selecting carefully, a strategy can
avoid strangers and known defectors. However, in many P2P
systems, a client can only obtain the desired service from a
subset of the available servers, thus limiting the benefit of
selection.

4 Results

In this section, we use simulation to explore part of the de-
sign space described in the previous section. Our simula-
tor implements the model described in Section 2. In all of
the simulation scenarios, we start with equal numbers of
100% Cooperators and 100% Defectors and varying num-
bers of discriminating players using the Reciprocative deci-
sion function. In addition, we vary the population size (from
24 to 3000) and the number of games per round. We use 50
generations, which is long enough for one strategy to domi-
nate the system in the simulation scenarios we consider. We
use the file sharing payoff matrix described in Section 2. Re-
sults using other payoff matrices are similar.

4.1 Model Dynamics
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Figure 3: The evolution of strategy populations over time. “Time”
the number of elapsed rounds. “Population” is the number of play-
ers using a strategy.
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Figure 4: The mean overall score / round over time.

The dynamics of the EPD model are well-known; we only
review them here to validate our simulator and familiarize
readers. Figures 3(a) (100 players) and (b) (200 players)
show the evolution of players to higher score strategies over
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time in two separate runs of the simulator. There are 200
games per round in these simulations. Figures 4(a) and (b)
show the corresponding mean overall score per round. This
measures the degree of cooperation in the system: 6 is the
maximum possible and 0 is the minimum. From the file shar-
ing payoff matrix, a net of 6 means everyone is able to down-
load a file and a 0 means that no one is able to do so. We use
this metric in all later results to gauge the effectiveness of
our incentive techniques.

Figure 4(a) shows that the Reciprocative strategy using pri-
vate history causes a system of 100 players to converge to a
cooperation level of 5, but drops to 0 for 200 players. One
would expect the 100 player system to reach the optimal
level of cooperation (6) because all the defectors are elim-
inated from the system. It does not because private history
causes Reciprocative players to incorrectly think that other
players are defectors. For example, player A may happen to
ask for service from player B twice in succession without
providing service to player B in the interim. Player B does
not know of the service player A has provided to others, so
player B will reject service to player A.

We describe the reason for Reciprocative failing to converge
to cooperation in the 200 player system in the next section.

4.2 Private vs. Shared History
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Figure 5: Private vs. Shared History. The x-axis is the number
players in a scenario. The y-axis is the mean overall score / round.
The initial strategy positions of the reciprocatives, cooperators, and
whitewashers in the left and right columns are 16%, 42%, and 42%
and 46%, 27%, and 27%, respectively. The rounds / generation in
the top and bottom rows are 50 and 400, respectively.

Figure 5 compares the effectiveness of the Reciprocative de-
cision function using shared history to using private history.
Unlike in Figures 3(a) and (b), each data point in Figure 5 is
the result of one run of the simulator. The score shown is for
the last generation.

For all the parameter variations shown in Figure 5, the Re-
ciprocative strategy using shared history causes the system to

converge to optimal cooperation and performance, regardless
of the size of the population. However, the convergence of
Reciprocative using private history varies depending on the
population size, the initial mix of the population and the rate
at which players are making transactions (the rounds / gen-
eration). A higher initial percentage of the population (right
column) or a higher rate of transactions (bottom row) allow
Reciprocative with private history to converge at larger pop-
ulation sizes. However, Reciprocative with private history in-
evitably fails at some point as the population increases.

This occurs because it is less likely that a Reciprocative
player will have repeat games with the same player as the
population size increases. Therefore, such a player using pri-
vate history is more likely to be taken advantage of by a de-
fector. This allows the defectors to dominate the system and
drive cooperation to zero. In contrast, shared history allows
players to leverage off of the experiences of others and does
scale to large population sizes.

For the large ( � 100,000 nodes) P2P systems that are com-
mon on the Internet, private history is not sufficient. Shared
history is expensive to maintain and vulnerable to collusion,
but these results show that it is worthwhile to explore meth-
ods of reducing the cost and shielding the vulnerability.

4.3 Stranger Policies
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Figure 6: Different stranger policies. The x-axis is the number of
rounds per generation. The y-axis is the mean overall score / round.
The initial strategy positions of the reciprocatives, cooperators, and
whitewashers in the left and right columns are 4%, 48%, and 48%
and 11%, 44.5%, and 44.5%, respectively. The turnover rate in the
top and bottom rows are 0.0625 and 0.5, respectively.

Figures 6(a), (b), (c), and (d) compare the effectiveness of
different policies for dealing with strangers. For more than
20 games / generation, the cooperation level stays the same
as for 20 games. We use the Reciprocative decision func-
tion with shared history as the base strategy for dealing with
non-strangers while varying the stranger policy. The turnover
rate is the fraction of the population that is randomly chosed
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and replaced after each round by new players using the same
strategies as the old players. This simulates players entering
the system, performing a few transactions, and then leaving.
There are always 100 players.

The challenge in dealing with strangers is the existence of
whitewashers, who always defect and change their identity
after every game. The graphs in Figure 6 show that the
“100% Cooperate” stranger policy fails to encourage cooper-
ation in the presence of whitewashers. Whitewashers always
appear to be strangers and so can exploit the generosity of
the “100% Cooperate” stranger policy.

The “100% Defect” plots shows that always defecting with
strangers is effective in encouraging cooperation for a suffi-
ciently low turnover rate and high initial percentage of the
population. However, as Figure 6(c) shows, if the turnover
rate is too high and the initial percentage using Reciprocative
too low, then even “100% Defect” cannot encourage cooper-
ation.

The problem with “100% Defect” is that it raises the bar
for entry to the system. Legitimate newcomers must suffer
at least one initial defection before becoming trusted. These
initial defections lower the overall level of cooperation in the
system. In the figures, the “100% Defect” never reaches the
optimal cooperation score of 5.

In contrast, the adaptive stranger policy uses an exponen-
tial average to estimate stranger cooperativeness. When
strangers are cooperative, this policy cooperates with
strangers, and when strangers are not cooperative, it does
not cooperate with strangers. Let ��. � be the probability to
cooperate with a stranger at time 1 , and

�
. equal * if the

last stranger cooperated or � otherwise. Then the adaptive
stranger policy computes the exponential average as � .54*6� 7� * ��� ���#�
. � � � � � . . Figure 6 shows that the adaptive policy
reaches higher levels of cooperation than the “100% Defect”
policy.

We run the simulation only once for each point in these
graphs. This allows us to observe the high variability that
occurs under some scenarios (as in Figures 6(a) and (d)). In
these cases, the cooperation level follows a bimodal distribu-
tion, and is either very high (at least 4 / 5) or zero (no coop-
eration). Investigating this issue is part of our future work.

In general these results show that a system with zero-cost
identities does not require centralized allocation of identities
to encourage cooperation, even for high levels of turnover
and low numbers of discriminators.

5 Related Work

Previous work has examined the incentive problem for In-
ternet applications and specifically when applied to peer-to-
peer systems. The DAMD (distributed algorithmic mecha-
nism design) approach focuses on incentive compatibility so-
lutions to Internet problems in a decentralized manner [7].

Axelrod [3] introduces the Evolutionary Prisoner’s Dilemma
(EPD) as a model for understanding cooperation. In a sim-
ulation environment with many repeated games, persistent
identities, and no collusion, Axelrod shows that the Tit-for-
Tat strategy dominates.

Some researchers [4] [6] show that whitewashing and col-
lusion can have dire consequences for peer-to-peer systems
and are difficult to prevent in a fully decentralized system.
Our goal is to disincentivize these attacks instead of prevent-
ing them. Friedman and Resnick [8] state that punishing all
newcomers is inevitable in systems with zero-cost identities.
They show that such a system can converge to cooperation
only for sufficiently low turnover rates, which our results
confirm. To avoid entry fees, they propose the centralized al-
location of identities, which are free but unreplaceable. How-
ever, this authority is likely to be expensive to maintain, thus
shifting from cost for entry to cost for identity allocation.

Some commercial file sharing clients [1] [2] provide incen-
tive mechanisms which are enforced by making it difficult
for the user to modify the source code. These mechanisms
can be circumvented by a skilled user or by a competing
company releasing a compatible client without the incentive
restrictions. Also, these mechanisms are still vulnerable to
zero-cost identities and collusion.

Peers in the GNUnet [9] file sharing system deal with this
problem by keeping private history about transactions with
other peers. We show in Section 4.2 that this does not scale
to large numbers of peers.
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