KARMA : A Secure Economic Framework for
Peer-to-Peer Resource Sharing

Vivek Vishnumurthy, Sangeeth Chandrakumar and Eniin Sirer
Department of Computer Science, Cornell University, Ithaca, NY 14853

Abstract sumed, and represents the user’s standing within the global
system. Groups of nodes, callednk-setskeep track of the

Peer-to-peer systems are typically designed around #srma belonging to the users. A user is initially awarded
assumption that all peers will willingly contribute resource® seed amount of karma when he joins the system. The
to a global pool. They thus suffer from freeloaders, thk@&rma balance is adjusted upwards whenever the user con-
is, participants who consume many more resources tHERutes resources, and downwards whenever he consumes
they contribute. In this paper, we propose a general ed§sources. A transaction is not allowed to proceed if the
nomic framework for avoiding freeloaders in peer-to-peé@source-consumer has less karma than it takes to make the
systems. Our system works by keeping track of the resol@gment for the resources involved. Thus, participants are
consumption and resource contribution of each participattimately forced to achieve parity between the resources
The overall standing of each participant in the systemtfey contribute and those they consume.
represented by a single scalar value, called theirma A The economic framework presented in this paper pro-
set of nodes, called bank-setkeeps track of each node'vides the properties of non-repudiation, certification, and
karma, increasing it as resources are contributed, and dgomicity. That is, KARMA protects against malicious
creasing it as they are consumed. Our framework is regigoviders that promise a resource but do not deliver it com-
tant to malicious attempts by the resource provider, copletely, against malicious consumers that receive a resource
sumer, and a fraction of the members of the bank set. Webilt claim that they did not, and against transient states of the
lustrate the application of this framework to a peer-to-pesystem where participants can observe intermediate states
filesharing application. in the process of transferring karma from one account to
the other. KARMA uses an atomic transaction scheme that
p%regrvides the resource consumer with the key to decrypt the

resource simultaneously as it provides the provider with a

sources between peers. The utility of such systems is cr%r_nﬁcate of receipt. Also, KARMA limits the effects of

portional to the aggregate amount of resources that the p %e-scale inflation and_ deflation t_’y applying periodic cor-
are willing to pool together. While many peer-to-peer Syrse_ctlons to the outstanding karma in the system.

tems have implicitly assumed that peers will altruistical® Overview

contribute resources to the global pool and assist others|mehis section, we describe the basic operation of KARMA
cent empirical studies have shown that a large fractioninfthe context of a file-sharing application. While file-
the participants engage in freeloading: 20 to 40% of Nagiraring is useful as a tangible example, we note that the
ster and almost 70% of Gnutella peers share little or basic transfer protocols in KARMA can be used equally
files [1, 2]. This is not surprising, since there is little corwell with other kinds of resources, such as file blocks in-
crete incentive for peers to contribute resources. stead of whole files, messages in a publish-subscribe sys-

This paper outlines the design of a peer-to-peer systé@f, or the results of a computation in a grid computing
that incentivizes participating nodes to contribute resour&§tem. KARMA maintains its internal state in p2p fash-
to a global pool, and illustrates how this economic framin, distributed across the participants, and employs the se-
work can be used in a filesharing system. Our systefH!e routing primitive [4] for reliable delivery of messages.
called KARMA, is economic, that is, it works by keepindVhile our prototype implementation is layered on top of
track of the resource purchasing capability of each peerPAstry [3], our design can be extended to work on top of
resourcein KARMA can be anything exchanged betweedny Distributed Hash Table(DHT) with the corresponding
two peers, such as files, messages, or the result of a cdfgLre routing property.
putation. A single scalar value, callkdrma captures the The design of our system is guided by three fundamental
amount of resources that a peer has contributed and qmoperties stemming from the peer-to-peer domain. First,

1 Introduction
Recent years have seen the introduction of peer-to-
systems, whose design relies centrally on exchange of

Epoch : 23 _ sequence — number, which is part of the message sent by
N/fde} Belinee } %";{2‘;2“;} Sor a node authorizing its bank-set to transfer karma from its
account to the account of some other member, and (ii) the

current epoch number. Each epoch spans a fixed length of

local store
filel, file2

/

Bank A

time, typically several months, and at the end of each epoch,
currency adjustments are made so that the per-capita karma
File-set of filel in the system is constant, thereby eliminating the effects

of inflation and deflation (see Section 2.3). The sequence
number used by a node is incremented after each transac-
File-set of file2 tion, and eliminates the possibility of replay attacks. Figure

1 shows a snapshot of KARMA.

2.2 Maintenance of file information
Figure 1: Overview of system statBank. storesd’s account: For each file in the §ystem,the files_haring application uses
A has a balance of $15 karma, and has recently e for file file3; the DHT to store a list of nodes which have a copy of that
A’s sequence number is 16765, and the current epoch number is 23. particular file under thefileld of the file. The fileld is
sets of filel and file2 store the list of nodes that store the respectivgerived by taking the MD5 hash of the file name, and the
files. file information is replicated at a set of nodes called the
file—set of the file. We define the file-set as the set consist-
since KARMA is designed to complement peer-to-peer sysg of thek /2 nodes closest to the fileld in either direction
tems, the system itself needs to be completely distributedhe DHT. Again, as earlier, this is only one possible def-
and require no centralized functionality or trust. Secoridition of the file-set. When a nod# joins the network, it
since there are no failure-proof components in a loosepends messages to the file-sets of each of its files; nodes that
organized network of peers, account data needs to be rapiieive these messages atid nodeld to the list of nodes
cated, possibly extensively, to insure against loss and tdhat store the fileA’s name is dropped from this list after a
pering. Third, since a transaction system needs to perfarentain period of time; it is up tel to renew its files’ regis-
well, the coordination among the replicas must be kept ttrations at the different file-sets. Arrival of new nodes into
minimum. Karma’s design strives to achieve these goalsa file-set and departure of nodes from a file-set are handled
KARMA relies principally on replication to deter nodegasily because of the periodic file refresh messages.
that might try to subvert the protocol. It assumes that ther®@ Offsetting Inflation and Deflation

are at least nodes in the system at all times, and uses pKgyith time, the per-capita karma, i.e., the total karma divided
tocols to ensure that the system will operate correctly uniggsthe number of active users varies. It inflates when nodes
a substantial fraction of these nodes are malicious. use up their money and go down, and deflates when nodes
2.1 Maintenance of bank-set information accrue karma and go down. If uncontrolled, the value of a
The bank-set of a node maintains the karma balanceunit of karma could go out of bounds. To prevent this, the
the node, and updates the account after each upload @udtanding karma in the system is periodically re-valued so
download. We define the bank-sBank, of a nodeA that the per-capita karma is maintained at a constant level.
as the leaf-set of the node closest in the nodeld-spacd e Correction Factof p) applied to the karma is computed
HASH (nodeld(A)); all nodes in the bank-set are equallgt the end of every epoch, accordingte- %#W
responsible for maintaining the required information. It HBere Karma,y is the total karma at the beginning of this
critical that this assignment of nodes to a bank-set be se@pech andV,;, is the total active nodes at the beginning of
against targeted attacks to take over the bank-set. While tigyepoch. At the end of an epoch, each node in a bank-set
other mapping scheme can be used, this particular apprasghsmits to all nodes a message containing (i) the number
allows us to layer our implementation on top of an existira nodes in the bank-set that went inactive in this epoch and
DHT like Pastry [3], using the secure routing primitive sugheir unused karma balance, (ii) the number of new nodes
gested in [4]. We usé to denote the size of the leaf-sethat joined the system in this epoch.
andbank-rootto denoteH AS H (nodeld(A)). When a node receives these messages from all nodes in
Each member oBank, stores the amount of karma irthe system, it computes the current number of nodes in
A’s account, and information regarding all recent paymetite system §,..,,) and the current total karma in the sys-
A has made to other nodes for files. This extra inform@m (K armaney). Using the previously stored values of
tion acts as proof ofd’s payment, and comes into playarma,q and N4, the node computes the adjustment to
when the other party in the transaction has not séntbe applied, applies it to accounts for which it is part of the
the file for which the payment was made. The bank-detnk-set and increments the epoch number. Because of the
corresponding to each node also stores (i) the last udesdributed nature of the correction, nodes could be in differ-

2

T functioning as a bank node for all nodes whose bank-sets
e R now includeN. In order to receive account updates from
all relevant bank-nodesy sends messages to the— 1
nodes that are above and below it in the identifier space and
informs them of its entrance to the system. In response, the
nearby nodes report the karma balances they are holding
Figure 2: New nodeV joining the systen gets the required for each node that maps to a bank-set that includesV
account information by querying the — 1 nodes above and below it, .
i.e.. the leaf-sets oP andQ). analyzes all reported bank balances correspoang to an ac-
count, and picks the value supported by the majority of the
k nodes in that bank-set. Note that non-malicious members
ent epochs at the same time. When two such nodes engdgbe bank-set engaged in simultaneous karma transfers
in a transaction, appropriate currency conversion is madeial are at different stages of the protocol may legitimately
maintain consistency. This scheme ne€d#'?) messages disagree on the current value of the account balance. Hence,
to be transmitted at the end of each epoch, wiérie the if a majority consensus is not reached, the newly joining
number of nodes in the system, but since each epoch tyymee waits a period of time before selectively polling that
cally spans several months, the cost of the global correctamtount value, until a majority consensus is established. A
is acceptable. similar majority voting protocol is used to establish the se-

3 Initialization quence number. _
This section describes how a new node becomes part drf@andling of a change in the bank-set due to a bank-node
KARMA. When a node enters the overlay, it has to be Jailure is similar to the case when a new bank-node comes
signed a bank-set. This assignment has to be performedre-When a bank-nodé goes down, a new nod& be-
curely, as manipulating the bank-set assignment may allgnes part of the bank-set. The underlying DHT detects
a node to adjust its karma balance at will. A cryptograph’%s failure, andR initiates a similar gllscovery mechanism
puzzle [5] ensures that the assignment is random, and IfRi-&ccounts whose bank-sets now incluee
its the rate at which a given node can join the system. 40 The Karma-File Exchange
join KARMA, each new node selects a randdfy,;;; and The karma for file exchange forms the heart of our system.
Kprivate key pair, and a value such thatM/ D5(K ;) This exchange has to be karma-conserving and fair, i.e., the
equalsM D5(x) in the lowern digits, wheren is a param- file-receiver’'s(sayd) account has to be decremented by the
eter that can be used to limit the difficulty of the puzzléarma-amount and the file-sender’s(say account incre-
The nodeld is then set td D5(K upiic,), and the node mented by the same amount if and onlyHfsendsA the
certifies that it completed this computation by encryptiigquired file. This is ensured by first makingpeovable
challenges provided by its bank-set nodes with its priva@rma-transfer fron¥’s account toB’s account, and then
key. Thus each node is assigned an id beyond its immediagking a provable file-transfer frof to A.
control, and acquires a public-private key pair that can bé/Vhen nodeA wishes to download a fil¢", it submits a
used in later stages of the protocol without having to redpwnload query td*’s file-set, and starts a set of auctions
on a public-key infrastructure. for the file. The root-node of the file-set forwards the query
When nodeA enters the system, its potential bank-st& all nodes that store the required file(say nodeand
members check to seedfwas already a member of the sys~). When B and C' receive the query, they submit bids
tem by looking for an entry for in their databases. Eachn the auction, andi chooses one of the bids, say the one
bank-set node sends to every other member of the bankssémitted by node3, and the karma-for-file exchange is
()a message witt's account information if it finds4’s initiated. First karma is transferred from’'s account to
entry (ii) a message indicating thdtis a new member if B’S account, which is followed by the file chunk transfer.
it does not find an entry. These messages are signed byAtetions are continued to be held for each chunk of the
private keys of the corresponding bank-set members, &gl till the entire file has been downloaded.
therefore cannot be forged. If a majority of the bank-sétl Karma Transfer
indicates thatA is a new node, then each node initializes karma transfer from a payer to a payee entails the deduc-
A’s account with a system-wide constant amount, and asen of a given karma amount from the payer’s account, and
quence number of zero. Otherwise, each bank-node usesdeposit of exactly the same amount to the payee’s ac-
the balance and sequence number values supported by acoat. This section describes how this is done securely, and
jority of the bank-set. Consequently, the karma assignmeatisfying other properties required by KARMA.
is persistent, and previous solutions to the cryptographicThe initialization procedures described in Section 3 re-
puzzle cannot be reused to acquire new karma. quire that a majority of the bank-nodes agree on the ac-
When a new nodéV comes up (Fig.2), it has to startount value of each node. This requirement is satisfied by

3

and less thak /2 NACKs, it proceeds with the transfer. If it
receives less thak/2 ACKs, it aborts the transaction. @
receives more thakh ACKs and NACKSs, it means that spu-
rious nodes that are not currently part of the bank-set are
trying to influence the outcome of the transaction. To filter
out such spurious responséssends to eacBanky, mem-
ber a random challenge, and authemanks members re-
spond with the challenge decrypted with their private keys,
along with the §, z, nodeld) tuple used during the nodeld
generation (see Section 3). From the valid responses to the
challenges(' picks those that are sent from nodeld’s that
are among thé /2 closest toA’s bank-root in either direc-
Figure 3: Karma-File exchange tion. Bankg nodes now allow the transaction if the valid
responses contain at ledst2 ACKs.

In the third phaseBanks nodes informB of the transfer.
ensuring that the required property is maintained wheneygverifies that a majority quorum exists using a mechanism
the account values change, i.e., at the end of each kasinzilar to the one described abové? proceeds with the
transfer, through the use of a simple synchronization mefite-transfer toA if the verification succeeds.
anism. To maintain the requirement of a majority agreement

A feature of the karma transfer protocol described bel@wver the account values at the end of the karma transfer,
is that throughout the protocol, each bank set node decidesnbers of each of the two involved bank-sets synchro-
whether to proceed with the transfer independently of alke themselves by sending account values to one another
other nodes in the same bank set. KARMA takes advamd choosing the value suggested by a majority of the bank-
tage of the properties of the credit/debit interface to toleset. If this synchronization is not done as part of each karma
ate temporary inconsistencies between bank-set membeasisfer, a chain of transfers with some message losses will,
This obviates the need for expensive Byzantine consenaith high probability, result in correct bank-nodes disagree-
protocols. ing over account values, and the property of majority agree-

A karma-transfer from a nodd to nodeB involves A, ment being violated.

B, Bank s and Bankp. The transfer can be broadly split At every stage of the protocol, bank nodes independently
into three phases of communication between different padecide whether to proceed with the transaction. To prevent
of entities: (14 and Banks, (2)Banks and Bankz, and malicious nodes from exploiting the lack of complete syn-
(3)Banks and B (see Fig.3).A first sendBank, a request chronization among different bank nodes, we incorporate
to transfer a given amount of karma®s accountBank, the following features into the first phase of the protocol:
then deducts this amount frodis account, and communi-(i)Automatic deduction of karma from the account, whether
cates withBankz. Bankgs credits the same amount #8's or not the node has enough karma to pay for the transfer.
account and inform® of the karma-transfer, so th&tcan (This means that the account balance could fall below zero.)
proceed with the file-transfer td. For security, the proto- (ii) An attempt to ensure that every other bank-node in the
col has to take care to see that every one of these messhgek-set gets the transfer request: Randomly pick another
is authenticated. We now explain how this authenticatiorbiank-node in the bank-set and forward the request to it.
carried out at each step of the protocol. These features make the transfer process commutative in

The first transfer request sent blyis signed usingd’s the presence of multiple requests: the account balance is the
private key, and the request includes a unique sequesame irrespective of which transfer request is seen first by a
number to avoid message replay. Also, after the first phasank node. The features prevent malicious users from try-
Bank, nodes generate and store a log that contains detaitsto have illegally high account balances by sending their
about the transfer; this makes the karma-transfer provablequests to exactly a majority of the bank-set, thus keeping

In the second phase, each membeBahk, sends mes- other bank nodes in the dark about the transaction. This
sages to all members d&ankz requesting that the givenallows us to execute a karma transfer without resorting to
amount be credited td's account. Banks nodes then expensive agreement protocols among bank nodes.
send out a query tBanks nodes, asking them to confirm An obvious observation that can be made from the pre-
whether they sent the previous messadgzmk, nodes re- ceding discussion is that the KARMA system requires the
spond with positive acknowledgements(ACKSs) if they digarticipating nodes to perform work on behalf of other
and with negative acknowledgements(NACKS) if they ditbdes, and KARMA itself may suffer from freeloaders who
not. If aBankz node (say”) receives more thak/2 ACKs keep accounts in the system without shouldering its load!

2. Deposit $15

3. Query / 4. Confirm
PHASE 2

PHASE 1
PHASE 3
5. Inform B of transfer

1. Transfer $15to B
7. Confirm/ 6. Qui

8. Transfer File/ Transfer Receipt

File Transfer

4

To prevent this, KARMA can compensate bank-set methe appropriate receipt. Sindg did not sendA the file,
bers for taking part in transactions by awarding them withwould not have the required receipt either; Bankg

a small amount of karma. However, care must be takeould transfer the karma back fromto A.

to avoid two potential problems. First, performing more Note that the use of this mechanism is not limited to file-
than one transaction in response to a single transaction shiring applications alone; it can be used in any scenario
create a chain reaction and grind the system to a halt.whAere the required resource can be expressed as a sequence
suitable dampening function, e.g. awarding nodes extfabytes. This sequence of bytes could be a file in a file-
karma only after a node has performéget transactions, sharing application, or the result of a computationally inten-
can address this problem. Second, providing extra karmaite function in a grid-computing system. The same mech-
participants will violate the zero-sum properties of karnamism can still be used to transfer the end-result after the
transactions and exacerbate inflation, so taxing the resokaena transfer. The use of a currency independent of any
provider, or consumer, or both, might be a simpler solutisingle type of resource means that KARMA can be imple-
that preserves the zero-sum property. mented to work with different resource sharing applications

4.1.1 Karma Transfer Without Overlay Routing at the same time.
The time required for a karma transfer can be greatly 8- Possible Attacks
duced if, instead of sending messages over the overlayys now present a list of possible attacks that can be
suggested earlier, the messages are transmitted directlyjdaeiched against the system, and describe how our system
tween the communicating parties, bypassing the overlagndles these attacks.
To run the first phase of the transfer without resorting toReplay Attacks: Replay attacks are ruled out by the use
overlay routing, we would now need each node to explicittf sequence numbers and signatures when a node authorizes
know the IP addresses of the members of its bank-set. Titidbhank-set to transfer karma in the first step of the karma
is realized via a challenge-response protocol when a nad@sfer protocol, and the verification mechanism employed
joins a bank, where each bank-node responds to a challdngany bank-set when some other bank-set wants to deposit
provided by the node, thereby proving its nodeld and Rarma.
membership in the node’s bank. Malicious Provider: A provider that accepts payment
During the second phase, each node in paysrbank- but fails to complete the transaction can be contested, and
set proves to payeB’s bank-set its nodeld by respondinghe karma repaid back to the consumer.
to challenges. The failure test suggested in [4] is used bWalicious Consumer. A malicious consumer who
B’s bank-nodes to ascertain that the communicating sefraludulently claims that he did not receive services even
nodes form the legitimate bank-set 4f Once a node in though he did is thwarted by the use of certificates. The
B’s bank-set is sure that it has received messages froprevider simply provides the certificate to his bank-set
majority of A’s bank-set, it sends a messagétimforming when the transaction is complete.
it of the transfer. B knows that the transfer is successful Corrupt Bank-set: The use of the secure entry algo-
when it receives such messages from a majority of its bankam ensures that it is not feasible to target a bank-set. As-
set. sume that an attacker has compromised 10%lé°anode
This strategy eliminates all transmissions over the ovaetwork. Denoting byX the number of nodes controlled by
lay during a karma-transfer, at the cost of some computide attacker in given bank-set, we haveExp(X) = 6.4,
tional burden at the participating nodes, and should leadhted the probability of this attacker acquiring the major-
a significant improvement over the earlier method. ity of a 64-member bank-setP(X > 32) = P(X >
4.2 File Transfer (14+4)6.4) < (&)5* = 5.6x 10712 The probability that the
We use the Certified Mail Scheme [6] for a provable filttacker controls the majority isome bank-set is less than
transfer mechanism. The proof of delivery here is the t&e above value multiplied by the total number of bank-sets,
ceipt for the delivery of the file signed with the receiverise., 5.6 x 1075,
private key. Briefly, the sender first sends the receiver theAttacks against DHT routing: Secure routing [4] , with
file encrypted with a secret DES key, and then the sentler use of appropriate signing of messages, ensures reliable
and the receiver run the protocol, through which the meessage delivery even when up to 25% of the nodes in the
ceiver gets the key to decrypt the file if and only if theystem do not adhere to the prescribed routing protocol.
sender gets the required receipt. This transfer is carried oubenial of Service Attack Malicious nodes that send
directly between the two nodes involved, and not over themmy NACKSs to break a karma-transfer are thwarted by
overlay. the checks employed to see if the NACKs originate from
If node A makes a payment to node for a certain file, the authentic bank-set.
but B does not sendl the file, A informs Bank 4 of this; Sybil Attacks: In a peer-to-peer domain without external
Bank 4 talks to Bankg, and Bankp asksB to produce identifiers, any node can manufacture any number of identi-

5

ties [7]. This is a fundamental problem in any P2P systeKARMA economy as well.
The use of an external identifier, such as a credit card numApplying Mechanism Design to P2P systemsShnei-
ber or unique processor id, would address this problendaan et al in [11] advocate the use of mechanism design
the loss of privacy. We permit Sybil attacks but limit thi® p2p systems to make users behave in a globally benefi-
rate at which they can be launched through our secure egignt manner. KARMA, by tracking each user’s resource
algorithm contribution, aims to do the same.

Spurious Files Malicious members could put up/ Conclusions
dummy files giving them popular names, leading to dowim this paper, we propose an economic framework for dis-
loads of the spurious files by unsuspecting users. While it@uraging freeloader-like behavior in a peer-to-peer system,
inherently difficult to counter this attack, some security camd provide the design of a file-sharing application based on
be achieved by generating the fileld based on the contig framework. In this framework, each node has an associ-
hash of the file as well as the name of the file. Users seated bank-set that keeps track of the node’s karma balance,
ing a particular file could then choose the most commuaich is an indicator of its standing within the peer com-
fileld associated with the file name. munity. The bank-set allows a resource consuming opera-
6 Related Work tion by the node only if the node has sufficient karma in its

Fair-sharing of Resources in P2P SystemsNgan et account to allow the operation. Safeguards protect the sys-
al in [8] present a design that enforces fair-sharing in P& against malicious nodes that may attempt to manufac-
storage systems. Their goal is to ensure that the disk-spi@ karma, acquire services from peers without providing
a user is willing to put up for storing other users’ files {em with karma, or acquire karma and refuse to provide
greater than the space consumed by the user’s files on o¥§éYices. Built on top of a peer-to-peer overlay, the pro-
disks. Whether a user is really storing the files he says h@@sed design can complement other peer-to-peer services
storing is verified by random audits. This design makes @ force nodes to achieve a parity between the resources
of the fact that the resource in contention is spatial in natuey provide and the resources they consume.
any user’s claim that he is storing files for other users c8n Acknowledgements
be verified after the claim is made. This design cannot 3 thank the referees for their helpful comments.
extended to the scenario we are concerned with, namelyReferences _ .
contention for temporal resources like bandwidth; here t S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-

I .) ment study of peer-to-peer file sharing systemsPloc.
resource contribution is not continuous across time. MMCN 2002 San Jose, Jan. 2002.

Micropayment Schemes: A number of micropayment [2] E. Adar and B. Huberman. Free riding on GnutellGirst
schemes [9] have been proposed to support lightweight Monday 5(10), Oct. 2000. o
transactions over the internet, such as making a small p@—AblRot"‘:Stmtr_‘ and z- D”tJ_SCh]f”- IPaS"W Slcalable,t distributed
ment for accessing a page at a restricted site. The primary OP/€Ct 'ocation and routing ior large-scaié peer-lo-peer sys-

. 9 p_ 9 _p ytems:.InProc. IFIP/ACM Middleware 200Heidelberg, Ger-
aim of these schemes is to enable a level of security com- many, Nov. 2001
mensurate with the value of the transaction, while havigg . Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.
almost negligible overhnead. Some schemes also provide wallach. Secure routing for structured peer-to-peer overlay
a degree of anonymity to the parties in a transaction via networks. InProc. OSDI02Boston, Dec. 2002. .
trusted common brokers. Unfortunately, almost all theEd S. Goel, M. Robson, M. Polte, and E. G. Sirer. Herbivore:
schemes require a trusted centralized server. Also many mi-# Scalable and Efficient Protocol for Anonymous Commu-

. ication.Cornell Univ. CIS Tech. RepTR2003-1890, Feb.

cropayment schemes assume the existence of brokers thaj
give out currency to users, and then handle_the deposit@f . SchneierApplied CryptographyJohn Wiley and Sons,
currency from the vendors. These assumptions of trusted 2nd edition, 1995.
parties do not translate well into a peer-to-peer domain. [7] J. Douceur. The Sybil attack. Proc. IPTPS 02Cambridge,

Microeconomic Models for Resource Allocation in Mar. 2002. . .

Distributed Systems: Various decentralized microeco-[S] T Ngan, D. S. Wallach, and P. Druschel. Enforcing Fair
. y ' Sharing of Peer-to-Peer Resources. Rroc. IPTPS 03

nomic schemes have been proposed to solve resource aI'BerkeIey Feb. 2003.

location problems such as load balancing and network flgyy p. Wayner.Digital Cash: Commerce on the NeMorgan

problems in computer systems [10]. The KARMA econ- Kaufmann, 2nd edition, Apr. 1997.

omy presented in our paper is similar to the pricing ecB.O]'E.). F. Ferguson, C. Nikolaou, J. Sairamesh, .and Y. Yem-

nomic models proposed in these systems. In these systems'n" Economic Models for Allocating Resources in Computer

. ystems. In S. Clearwater, editddarket Based Control of
different resource consumers and resource consumers a_c istributed SystemaVorld Scientific Press, 1996.

as independent agents in a selfish manner to maximize theif 3. shneidman, and D. Parkes. Rationality and Self-Interest
respective utility values. The proposed strategies that max- in Peer to Peer Networks. Proc. IPTPS 03Berkeley, Feb.
imize individual utility values can be overlaid on top of the 2003.

6

