
KARMA : A Secure Economic Framework for
Peer-to-Peer Resource Sharing

Vivek Vishnumurthy, Sangeeth Chandrakumar and Emin Gün Sirer
Department of Computer Science, Cornell University, Ithaca, NY 14853

Abstract

Peer-to-peer systems are typically designed around the
assumption that all peers will willingly contribute resources
to a global pool. They thus suffer from freeloaders, that
is, participants who consume many more resources than
they contribute. In this paper, we propose a general eco-
nomic framework for avoiding freeloaders in peer-to-peer
systems. Our system works by keeping track of the resource
consumption and resource contribution of each participant.
The overall standing of each participant in the system is
represented by a single scalar value, called theirkarma. A
set of nodes, called abank-set, keeps track of each node’s
karma, increasing it as resources are contributed, and de-
creasing it as they are consumed. Our framework is resis-
tant to malicious attempts by the resource provider, con-
sumer, and a fraction of the members of the bank set. We il-
lustrate the application of this framework to a peer-to-peer
filesharing application.

1 Introduction
Recent years have seen the introduction of peer-to-peer
systems, whose design relies centrally on exchange of re-
sources between peers. The utility of such systems is pro-
portional to the aggregate amount of resources that the peers
are willing to pool together. While many peer-to-peer sys-
tems have implicitly assumed that peers will altruistically
contribute resources to the global pool and assist others, re-
cent empirical studies have shown that a large fraction of
the participants engage in freeloading: 20 to 40% of Nap-
ster and almost 70% of Gnutella peers share little or no
files [1, 2]. This is not surprising, since there is little con-
crete incentive for peers to contribute resources.

This paper outlines the design of a peer-to-peer system
that incentivizes participating nodes to contribute resources
to a global pool, and illustrates how this economic frame-
work can be used in a filesharing system. Our system,
called KARMA, is economic, that is, it works by keeping
track of the resource purchasing capability of each peer. A
resourcein KARMA can be anything exchanged between
two peers, such as files, messages, or the result of a com-
putation. A single scalar value, calledkarma, captures the
amount of resources that a peer has contributed and con-

sumed, and represents the user’s standing within the global
system. Groups of nodes, calledbank-sets, keep track of the
karma belonging to the users. A user is initially awarded
a seed amount of karma when he joins the system. The
karma balance is adjusted upwards whenever the user con-
tributes resources, and downwards whenever he consumes
resources. A transaction is not allowed to proceed if the
resource-consumer has less karma than it takes to make the
payment for the resources involved. Thus, participants are
ultimately forced to achieve parity between the resources
they contribute and those they consume.

The economic framework presented in this paper pro-
vides the properties of non-repudiation, certification, and
atomicity. That is, KARMA protects against malicious
providers that promise a resource but do not deliver it com-
pletely, against malicious consumers that receive a resource
but claim that they did not, and against transient states of the
system where participants can observe intermediate states
in the process of transferring karma from one account to
the other. KARMA uses an atomic transaction scheme that
provides the resource consumer with the key to decrypt the
resource simultaneously as it provides the provider with a
certificate of receipt. Also, KARMA limits the effects of
large-scale inflation and deflation by applying periodic cor-
rections to the outstanding karma in the system.

2 Overview
In this section, we describe the basic operation of KARMA
in the context of a file-sharing application. While file-
sharing is useful as a tangible example, we note that the
basic transfer protocols in KARMA can be used equally
well with other kinds of resources, such as file blocks in-
stead of whole files, messages in a publish-subscribe sys-
tem, or the results of a computation in a grid computing
system. KARMA maintains its internal state in p2p fash-
ion, distributed across the participants, and employs the se-
cure routing primitive [4] for reliable delivery of messages.
While our prototype implementation is layered on top of
Pastry [3], our design can be extended to work on top of
any Distributed Hash Table(DHT) with the corresponding
secure routing property.

The design of our system is guided by three fundamental
properties stemming from the peer-to-peer domain. First,

1

local store
file1, file2

A

B

Bank A

Epoch : 23

file2 : A

File-set of file1

File-set of file2

Node Balance Operations Seq#

 A $15 B file3 $5 16765

file1 : A

Figure 1: Overview of system state:BankA storesA’s account:
A has a balance of $15 karma, and has recently paidB $5 for filefile3;
A’s sequence number is 16765, and the current epoch number is 23. File-
sets offile1 andfile2 store the list of nodes that store the respective
files.

since KARMA is designed to complement peer-to-peer sys-
tems, the system itself needs to be completely distributed
and require no centralized functionality or trust. Second,
since there are no failure-proof components in a loosely-
organized network of peers, account data needs to be repli-
cated, possibly extensively, to insure against loss and tam-
pering. Third, since a transaction system needs to perform
well, the coordination among the replicas must be kept to a
minimum. Karma’s design strives to achieve these goals.

KARMA relies principally on replication to deter nodes
that might try to subvert the protocol. It assumes that there
are at leastk nodes in the system at all times, and uses pro-
tocols to ensure that the system will operate correctly unless
a substantial fraction of these nodes are malicious.

2.1 Maintenance of bank-set information
The bank-set of a node maintains the karma balance of
the node, and updates the account after each upload and
download. We define the bank-setBankA of a nodeA
as the leaf-set of the node closest in the nodeId-space to
HASH(nodeId(A)); all nodes in the bank-set are equally
responsible for maintaining the required information. It is
critical that this assignment of nodes to a bank-set be secure
against targeted attacks to take over the bank-set. While any
other mapping scheme can be used, this particular approach
allows us to layer our implementation on top of an existing
DHT like Pastry [3], using the secure routing primitive sug-
gested in [4]. We usek to denote the size of the leaf-set,
andbank-rootto denoteHASH(nodeId(A)).

Each member ofBankA stores the amount of karma in
A’s account, and information regarding all recent payments
A has made to other nodes for files. This extra informa-
tion acts as proof ofA’s payment, and comes into play
when the other party in the transaction has not sentA
the file for which the payment was made. The bank-set
corresponding to each node also stores (i) the last used

sequence− number, which is part of the message sent by
a node authorizing its bank-set to transfer karma from its
account to the account of some other member, and (ii) the
current epoch number. Each epoch spans a fixed length of
time, typically several months, and at the end of each epoch,
currency adjustments are made so that the per-capita karma
in the system is constant, thereby eliminating the effects
of inflation and deflation (see Section 2.3). The sequence
number used by a node is incremented after each transac-
tion, and eliminates the possibility of replay attacks. Figure
1 shows a snapshot of KARMA.

2.2 Maintenance of file information
For each file in the system,the filesharing application uses
the DHT to store a list of nodes which have a copy of that
particular file under thefileId of the file. The fileId is
derived by taking the MD5 hash of the file name, and the
file information is replicated at a set of nodes called the
file−set of the file. We define the file-set as the set consist-
ing of thek/2 nodes closest to the fileId in either direction
in the DHT. Again, as earlier, this is only one possible def-
inition of the file-set. When a nodeA joins the network, it
sends messages to the file-sets of each of its files; nodes that
receive these messages addA’s nodeId to the list of nodes
that store the file.A’s name is dropped from this list after a
certain period of time; it is up toA to renew its files’ regis-
trations at the different file-sets. Arrival of new nodes into
a file-set and departure of nodes from a file-set are handled
easily because of the periodic file refresh messages.

2.3 Offsetting Inflation and Deflation
With time, the per-capita karma, i.e., the total karma divided
by the number of active users varies. It inflates when nodes
use up their money and go down, and deflates when nodes
accrue karma and go down. If uncontrolled, the value of a
unit of karma could go out of bounds. To prevent this, the
outstanding karma in the system is periodically re-valued so
that the per-capita karma is maintained at a constant level.
TheCorrection Factor(ρ) applied to the karma is computed
at the end of every epoch, according toρ = Karmaold.Nnew

Karmanew.Nold
.

HereKarmaold is the total karma at the beginning of this
epoch andNold is the total active nodes at the beginning of
the epoch. At the end of an epoch, each node in a bank-set
transmits to all nodes a message containing (i) the number
of nodes in the bank-set that went inactive in this epoch and
their unused karma balance, (ii) the number of new nodes
that joined the system in this epoch.

When a node receives these messages from all nodes in
the system, it computes the current number of nodes in
the system (Nnew) and the current total karma in the sys-
tem (Karmanew). Using the previously stored values of
Karmaold andNold, the node computes the adjustment to
be applied, applies it to accounts for which it is part of the
bank-set and increments the epoch number. Because of the
distributed nature of the correction, nodes could be in differ-

2

Figure 2: New nodeN joining the system:N gets the required
account information by querying thek − 1 nodes above and below it,
i.e., the leaf-sets ofP andQ.

ent epochs at the same time. When two such nodes engage
in a transaction, appropriate currency conversion is made to
maintain consistency. This scheme needsO(N2) messages
to be transmitted at the end of each epoch, whereN is the
number of nodes in the system, but since each epoch typi-
cally spans several months, the cost of the global correction
is acceptable.

3 Initialization
This section describes how a new node becomes part of
KARMA. When a node enters the overlay, it has to be as-
signed a bank-set. This assignment has to be performed se-
curely, as manipulating the bank-set assignment may allow
a node to adjust its karma balance at will. A cryptographic
puzzle [5] ensures that the assignment is random, and lim-
its the rate at which a given node can join the system. To
join KARMA, each new node selects a randomKpublic and
Kprivate key pair, and a valuex such thatMD5(Kpublic)
equalsMD5(x) in the lowern digits, wheren is a param-
eter that can be used to limit the difficulty of the puzzle.
The nodeId is then set toMD5(Kpublic, x), and the node
certifies that it completed this computation by encrypting
challenges provided by its bank-set nodes with its private
key. Thus each node is assigned an id beyond its immediate
control, and acquires a public-private key pair that can be
used in later stages of the protocol without having to rely
on a public-key infrastructure.

When nodeA enters the system, its potential bank-set
members check to see ifA was already a member of the sys-
tem by looking for an entry forA in their databases. Each
bank-set node sends to every other member of the bank-set
(i)a message withA’s account information if it findsA’s
entry (ii) a message indicating thatA is a new member if
it does not find an entry. These messages are signed by the
private keys of the corresponding bank-set members, and
therefore cannot be forged. If a majority of the bank-set
indicates thatA is a new node, then each node initializes
A’s account with a system-wide constant amount, and a se-
quence number of zero. Otherwise, each bank-node uses
the balance and sequence number values supported by a ma-
jority of the bank-set. Consequently, the karma assignment
is persistent, and previous solutions to the cryptographic
puzzle cannot be reused to acquire new karma.

When a new nodeN comes up (Fig.2), it has to start

functioning as a bank node for all nodes whose bank-sets
now includeN . In order to receive account updates from
all relevant bank-nodes,N sends messages to thek − 1
nodes that are above and below it in the identifier space and
informs them of its entrance to the system. In response, the
nearby nodes report the karma balances they are holding
for each node that maps to a bank-set that includesN . N
analyzes all reported bank balances corresponding to an ac-
count, and picks the value supported by the majority of the
k nodes in that bank-set. Note that non-malicious members
of the bank-set engaged in simultaneous karma transfers
and are at different stages of the protocol may legitimately
disagree on the current value of the account balance. Hence,
if a majority consensus is not reached, the newly joining
node waits a period of time before selectively polling that
account value, until a majority consensus is established. A
similar majority voting protocol is used to establish the se-
quence number.

Handling of a change in the bank-set due to a bank-node
failure is similar to the case when a new bank-node comes
in. When a bank-nodeP goes down, a new nodeR be-
comes part of the bank-set. The underlying DHT detects
P ’s failure, andR initiates a similar discovery mechanism
for accounts whose bank-sets now includeR.

4 The Karma-File Exchange
The karma for file exchange forms the heart of our system.
This exchange has to be karma-conserving and fair, i.e., the
file-receiver’s(sayA) account has to be decremented by the
karma-amount and the file-sender’s(sayB) account incre-
mented by the same amount if and only ifB sendsA the
required file. This is ensured by first making aprovable
karma-transfer fromA’s account toB’s account, and then
making a provable file-transfer fromB to A.

When nodeA wishes to download a fileF , it submits a
download query toF ’s file-set, and starts a set of auctions
for the file. The root-node of the file-set forwards the query
to all nodes that store the required file(say nodesB and
C). WhenB and C receive the query, they submit bids
in the auction, andA chooses one of the bids, say the one
submitted by nodeB, and the karma-for-file exchange is
initiated. First karma is transferred fromA’s account to
B’s account, which is followed by the file chunk transfer.
Auctions are continued to be held for each chunk of the
file, till the entire file has been downloaded.

4.1 Karma Transfer
A karma transfer from a payer to a payee entails the deduc-
tion of a given karma amount from the payer’s account, and
the deposit of exactly the same amount to the payee’s ac-
count. This section describes how this is done securely, and
satisfying other properties required by KARMA.

The initialization procedures described in Section 3 re-
quire that a majority of the bank-nodes agree on the ac-
count value of each node. This requirement is satisfied by

3

A
B

Bank A
Bank B

8. Transfer File / Transfer Receipt

1.
 T

ra
ns

fe
r

$1
5

to
 B

2. Deposit $15

3. Query / 4. Confirm

 5
. I

nf
or

m
 B

 o
f

tr
an

sf
er

File Transfer

P
H

A
SE

 1

PHASE 2

P
H

A
SE

 3

7.
 C

on
fi

rm
 /

6.
 Q

ue
ry

Figure 3: Karma-File exchange

ensuring that the required property is maintained whenever
the account values change, i.e., at the end of each karma
transfer, through the use of a simple synchronization mech-
anism.

A feature of the karma transfer protocol described below
is that throughout the protocol, each bank set node decides
whether to proceed with the transfer independently of all
other nodes in the same bank set. KARMA takes advan-
tage of the properties of the credit/debit interface to toler-
ate temporary inconsistencies between bank-set members.
This obviates the need for expensive Byzantine consensus
protocols.

A karma-transfer from a nodeA to nodeB involvesA,
B, BankA andBankB. The transfer can be broadly split
into three phases of communication between different pairs
of entities: (1)A and BankA, (2)BankA and BankB, and
(3)BankB andB (see Fig.3).A first sendsBankA a request
to transfer a given amount of karma toB’s account.BankA
then deducts this amount fromA’s account, and communi-
cates withBankB. BankB credits the same amount toB’s
account and informsB of the karma-transfer, so thatB can
proceed with the file-transfer toA. For security, the proto-
col has to take care to see that every one of these messages
is authenticated. We now explain how this authentication is
carried out at each step of the protocol.

The first transfer request sent byA is signed usingA’s
private key, and the request includes a unique sequence
number to avoid message replay. Also, after the first phase,
BankA nodes generate and store a log that contains details
about the transfer; this makes the karma-transfer provable.

In the second phase, each member ofBankA sends mes-
sages to all members ofBankB requesting that the given
amount be credited toB’s account. BankB nodes then
send out a query toBankA nodes, asking them to confirm
whether they sent the previous messages.BankA nodes re-
spond with positive acknowledgements(ACKs) if they did,
and with negative acknowledgements(NACKs) if they did
not. If aBankB node (sayC) receives more thank/2 ACKs

and less thank/2 NACKs, it proceeds with the transfer. If it
receives less thank/2 ACKs, it aborts the transaction. IfC
receives more thank ACKs and NACKs, it means that spu-
rious nodes that are not currently part of the bank-set are
trying to influence the outcome of the transaction. To filter
out such spurious responses,C sends to eachBankA mem-
ber a random challenge, and authenticBankA members re-
spond with the challenge decrypted with their private keys,
along with the (K, x, nodeId) tuple used during the nodeId
generation (see Section 3). From the valid responses to the
challenges,C picks those that are sent from nodeId’s that
are among thek/2 closest toA’s bank-root in either direc-
tion. BankB nodes now allow the transaction if the valid
responses contain at leastk/2 ACKs.

In the third phase,BankB nodes informB of the transfer.
B verifies that a majority quorum exists using a mechanism
similar to the one described above.B proceeds with the
file-transfer toA if the verification succeeds.

To maintain the requirement of a majority agreement
over the account values at the end of the karma transfer,
members of each of the two involved bank-sets synchro-
nize themselves by sending account values to one another
and choosing the value suggested by a majority of the bank-
set. If this synchronization is not done as part of each karma
transfer, a chain of transfers with some message losses will,
with high probability, result in correct bank-nodes disagree-
ing over account values, and the property of majority agree-
ment being violated.

At every stage of the protocol, bank nodes independently
decide whether to proceed with the transaction. To prevent
malicious nodes from exploiting the lack of complete syn-
chronization among different bank nodes, we incorporate
the following features into the first phase of the protocol:
(i)Automatic deduction of karma from the account, whether
or not the node has enough karma to pay for the transfer.
(This means that the account balance could fall below zero.)
(ii) An attempt to ensure that every other bank-node in the
bank-set gets the transfer request: Randomly pick another
bank-node in the bank-set and forward the request to it.

These features make the transfer process commutative in
the presence of multiple requests: the account balance is the
same irrespective of which transfer request is seen first by a
bank node. The features prevent malicious users from try-
ing to have illegally high account balances by sending their
requests to exactly a majority of the bank-set, thus keeping
other bank nodes in the dark about the transaction. This
allows us to execute a karma transfer without resorting to
expensive agreement protocols among bank nodes.

An obvious observation that can be made from the pre-
ceding discussion is that the KARMA system requires the
participating nodes to perform work on behalf of other
nodes, and KARMA itself may suffer from freeloaders who
keep accounts in the system without shouldering its load!

4

To prevent this, KARMA can compensate bank-set mem-
bers for taking part in transactions by awarding them with
a small amount of karma. However, care must be taken
to avoid two potential problems. First, performing more
than one transaction in response to a single transaction will
create a chain reaction and grind the system to a halt. A
suitable dampening function, e.g. awarding nodes extra
karma only after a node has performed104 transactions,
can address this problem. Second, providing extra karma to
participants will violate the zero-sum properties of karma
transactions and exacerbate inflation, so taxing the resource
provider, or consumer, or both, might be a simpler solution
that preserves the zero-sum property.

4.1.1 Karma Transfer Without Overlay Routing
The time required for a karma transfer can be greatly re-
duced if, instead of sending messages over the overlay, as
suggested earlier, the messages are transmitted directly be-
tween the communicating parties, bypassing the overlay.
To run the first phase of the transfer without resorting to
overlay routing, we would now need each node to explicitly
know the IP addresses of the members of its bank-set. This
is realized via a challenge-response protocol when a node
joins a bank, where each bank-node responds to a challenge
provided by the node, thereby proving its nodeId and its
membership in the node’s bank.

During the second phase, each node in payerA’s bank-
set proves to payeeB’s bank-set its nodeId by responding
to challenges. The failure test suggested in [4] is used by
B’s bank-nodes to ascertain that the communicating set of
nodes form the legitimate bank-set ofA. Once a node in
B’s bank-set is sure that it has received messages from a
majority ofA’s bank-set, it sends a message toB informing
it of the transfer.B knows that the transfer is successful
when it receives such messages from a majority of its bank-
set.

This strategy eliminates all transmissions over the over-
lay during a karma-transfer, at the cost of some computa-
tional burden at the participating nodes, and should lead to
a significant improvement over the earlier method.

4.2 File Transfer
We use the Certified Mail Scheme [6] for a provable file
transfer mechanism. The proof of delivery here is the re-
ceipt for the delivery of the file signed with the receiver’s
private key. Briefly, the sender first sends the receiver the
file encrypted with a secret DES key, and then the sender
and the receiver run the protocol, through which the re-
ceiver gets the key to decrypt the file if and only if the
sender gets the required receipt. This transfer is carried out
directly between the two nodes involved, and not over the
overlay.

If nodeA makes a payment to nodeB for a certain file,
but B does not sendA the file,A informsBankA of this;
BankA talks toBankB, andBankB asksB to produce

the appropriate receipt. SinceB did not sendA the file,
it would not have the required receipt either; soBankB

would transfer the karma back fromB to A.
Note that the use of this mechanism is not limited to file-

sharing applications alone; it can be used in any scenario
where the required resource can be expressed as a sequence
of bytes. This sequence of bytes could be a file in a file-
sharing application, or the result of a computationally inten-
sive function in a grid-computing system. The same mech-
anism can still be used to transfer the end-result after the
karma transfer. The use of a currency independent of any
single type of resource means that KARMA can be imple-
mented to work with different resource sharing applications
at the same time.

5 Possible Attacks
We now present a list of possible attacks that can be
launched against the system, and describe how our system
handles these attacks.

Replay Attacks: Replay attacks are ruled out by the use
of sequence numbers and signatures when a node authorizes
its bank-set to transfer karma in the first step of the karma
transfer protocol, and the verification mechanism employed
by any bank-set when some other bank-set wants to deposit
karma.

Malicious Provider: A provider that accepts payment
but fails to complete the transaction can be contested, and
the karma repaid back to the consumer.

Malicious Consumer: A malicious consumer who
fraudulently claims that he did not receive services even
though he did is thwarted by the use of certificates. The
provider simply provides the certificate to his bank-set
when the transaction is complete.

Corrupt Bank-set: The use of the secure entry algo-
rithm ensures that it is not feasible to target a bank-set. As-
sume that an attacker has compromised 10% of a106 node
network. Denoting byX the number of nodes controlled by
the attacker in agiven bank-set, we have:Exp(X) = 6.4,
and the probability of this attacker acquiring the major-
ity of a 64-member bank-set:P (X > 32) = P (X >

(1+4)6.4) < (e4

55)6.4 = 5.6×10−12 The probability that the
attacker controls the majority insome bank-set is less than
the above value multiplied by the total number of bank-sets,
i.e.,5.6× 10−6.

Attacks against DHT routing: Secure routing [4] , with
the use of appropriate signing of messages, ensures reliable
message delivery even when up to 25% of the nodes in the
system do not adhere to the prescribed routing protocol.

Denial of Service Attack: Malicious nodes that send
dummy NACKs to break a karma-transfer are thwarted by
the checks employed to see if the NACKs originate from
the authentic bank-set.

Sybil Attacks: In a peer-to-peer domain without external
identifiers, any node can manufacture any number of identi-

5

ties [7]. This is a fundamental problem in any P2P system.
The use of an external identifier, such as a credit card num-
ber or unique processor id, would address this problem at
the loss of privacy. We permit Sybil attacks but limit the
rate at which they can be launched through our secure entry
algorithm

Spurious Files: Malicious members could put up
dummy files giving them popular names, leading to down-
loads of the spurious files by unsuspecting users. While it is
inherently difficult to counter this attack, some security can
be achieved by generating the fileId based on the content
hash of the file as well as the name of the file. Users seek-
ing a particular file could then choose the most common
fileId associated with the file name.

6 Related Work
Fair-sharing of Resources in P2P Systems:Ngan et

al in [8] present a design that enforces fair-sharing in P2P
storage systems. Their goal is to ensure that the disk-space
a user is willing to put up for storing other users’ files is
greater than the space consumed by the user’s files on other
disks. Whether a user is really storing the files he says he is
storing is verified by random audits. This design makes use
of the fact that the resource in contention is spatial in nature:
any user’s claim that he is storing files for other users can
be verified after the claim is made. This design cannot be
extended to the scenario we are concerned with, namely the
contention for temporal resources like bandwidth; here the
resource contribution is not continuous across time.

Micropayment Schemes:A number of micropayment
schemes [9] have been proposed to support lightweight
transactions over the internet, such as making a small pay-
ment for accessing a page at a restricted site. The primary
aim of these schemes is to enable a level of security com-
mensurate with the value of the transaction, while having
almost negligible overhead. Some schemes also provide
a degree of anonymity to the parties in a transaction via
trusted common brokers. Unfortunately, almost all these
schemes require a trusted centralized server. Also many mi-
cropayment schemes assume the existence of brokers that
give out currency to users, and then handle the deposit of
currency from the vendors. These assumptions of trusted
parties do not translate well into a peer-to-peer domain.

Microeconomic Models for Resource Allocation in
Distributed Systems: Various decentralized microeco-
nomic schemes have been proposed to solve resource al-
location problems such as load balancing and network flow
problems in computer systems [10]. The KARMA econ-
omy presented in our paper is similar to the pricing eco-
nomic models proposed in these systems. In these systems,
different resource consumers and resource consumers act
as independent agents in a selfish manner to maximize their
respective utility values. The proposed strategies that max-
imize individual utility values can be overlaid on top of the

KARMA economy as well.
Applying Mechanism Design to P2P systems:Shnei-

dman et al in [11] advocate the use of mechanism design
in p2p systems to make users behave in a globally benefi-
cient manner. KARMA, by tracking each user’s resource
contribution, aims to do the same.

7 Conclusions
In this paper, we propose an economic framework for dis-
couraging freeloader-like behavior in a peer-to-peer system,
and provide the design of a file-sharing application based on
this framework. In this framework, each node has an associ-
ated bank-set that keeps track of the node’s karma balance,
which is an indicator of its standing within the peer com-
munity. The bank-set allows a resource consuming opera-
tion by the node only if the node has sufficient karma in its
account to allow the operation. Safeguards protect the sys-
tem against malicious nodes that may attempt to manufac-
ture karma, acquire services from peers without providing
them with karma, or acquire karma and refuse to provide
services. Built on top of a peer-to-peer overlay, the pro-
posed design can complement other peer-to-peer services
and force nodes to achieve a parity between the resources
they provide and the resources they consume.

8 Acknowledgements
We thank the referees for their helpful comments.

References
[1] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-

ment study of peer-to-peer file sharing systems. InProc.
MMCN 2002, San Jose, Jan. 2002.

[2] E. Adar and B. Huberman. Free riding on Gnutella.First
Monday, 5(10), Oct. 2000.

[3] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems.InProc. IFIP/ACM Middleware 2001, Heidelberg, Ger-
many, Nov. 2001.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.
Wallach. Secure routing for structured peer-to-peer overlay
networks. InProc. OSDI02, Boston, Dec. 2002.

[5] S. Goel, M. Robson, M. Polte, and E. G. Sirer. Herbivore:
A Scalable and Efficient Protocol for Anonymous Commu-
nication.Cornell Univ. CIS Tech. Rep., TR2003-1890, Feb.
2003.

[6] B. SchneierApplied Cryptography, John Wiley and Sons,
2nd edition, 1995.

[7] J. Douceur. The Sybil attack. InProc. IPTPS 02, Cambridge,
Mar. 2002.

[8] T. Ngan, D. S. Wallach, and P. Druschel. Enforcing Fair
Sharing of Peer-to-Peer Resources. InProc. IPTPS 03,
Berkeley, Feb. 2003.

[9] P. Wayner.Digital Cash: Commerce on the Net., Morgan
Kaufmann, 2nd edition, Apr. 1997.

[10] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yem-
ini. Economic Models for Allocating Resources in Computer
Systems. In S. Clearwater, editor,Market Based Control of
Distributed Systems. World Scientific Press, 1996.

[11] J. Shneidman, and D. Parkes. Rationality and Self-Interest
in Peer to Peer Networks. InProc. IPTPS 03, Berkeley, Feb.
2003.

6

