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Abstract

A fundamental consideration in designing successful trust
scores in a peer-to-peer system is the self-interest of indi-
vidual peers. We propose a strategyproof partition mech-
anism that provides incentives for peers to share files, is
non-manipulable by selfish interests, and approximates trust
scores based on EigenTrust[5]. The basic idea behind the
partition mechanism is that the peers are partitioned into peer
groups and incentives are structured so that a peer only down-
loads from peers in one particular peer group. When peers
are myopic, we show that thetotal error in the trust values
decreases exponentially with the number of peer groups, but
when peers plan for the future, the total error decreases lin-
early with the number of peer groups. There is a direct trade-
off here between approximating EigenTrust well and keeping
the trust values we are approximating useful.

Introduction
Peer-to-peer networks have been a focus of much interest in
the distributed systems community, due to their advantages
in scalability and robustness over traditional client-server ar-
chitectures. However, the openness and symmetry that gives
P2P systems their advantages results in their vulnerability
to attacks and manipulations, as well as to free-riders. De-
ployed P2P file-sharing networks today have problems with
malicious peers who share inauthentic files and free-riding
peers who download files but do not share them.

There is a considerable amount of recent research that fo-
cuses on the design and development of systems which rate
peers on their likelihood of giving authentic files [5][2][1].
In these works, it is assumed that there are two types of
peers. On the one hand, there are honest peers who, though
they might free-ride unless rewarded for sharing, will never
share inauthentic files or cheat the trust system. On the other
hand, there are malicious peers who attempt to minimize the
number of successful downloads in the network by any pos-
sible means. These reputation systems succeed at isolating
malicious peers from the network and encouraging honest
peers to share files by rewarding them with high trust values
and with a better quality of service.

Unfortunately, honest peers, who had no desire to manip-
ulate the system before the introduction of trust, now have
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an incentive to lie to the system in order to improve their
trust. A selfish peer will naturally submit the recommenda-
tion, true or false, that will maximize its trust and therefore
its quality of service. Unlike malicious peers, these self-
ish peers do not wish to disrupt the network but merely to
maximize their own utility. Nonetheless, if each peer pro-
vides false recommendations, the trust system as a whole
will be unable to discriminate between honest and malicious
peers. The gaming of real-world reputation systems such as
Amazon [11] and Kazaa demonstrate that this concern is not
merely theoretical.

We address this problem by creating a trust system in
which a peer’s recommendation does not affect its own
score. Thus, the peer will have no incentive to manipulate
its recommendation to increase its trust. We will proceed by
approximating EigenTrust [5], an existing trust system sim-
ilar to PageRank [12], with a system in which no peer can
unilaterally manipulate its trust score.

In our trust system, time is divided into rounds, with
downloads in one round determining trust in the next. A
trust score ismyopically non-manipulableif a peer cannot
submit falsely to improve its trust score for the next round;
it is strongly non-manipulableif he cannot submit falsely to
improve its score in any future round.

Before we discuss our positive results, we note a nega-
tive result: if, given some joint set of legal downloads by all
peers, some peer can gain an amount2δ by altering its re-
port of its downloads, then there exists no myopically non-
manipulable trust score that approximates EigenTrust with
error less thanδ. We must thus restrict the possible joint sets
of downloads so that a non-manipulable trust score which
closely approximates EigenTrust exists. In our results, we
restrict the query topology by dividing peers into colors ar-
ranged in a directed cycle. We only allow peers to query and
download from their successor color.

Our positive results are as follows:

1. We show a myopically non-manipulable trust score that
approximates EigenTrust with error decreasing exponen-
tially in the number of colors.

2. We show a strongly non-manipulable trust score that ap-
proximates EigenTrust, but with error that decreases only
linearly in the number of colors.



Related Work
The self-interest of individual peers has been recognized in
previous work as a fundamental consideration in designing
successful P2P systems. Dutta et al. [8] discuss issues of
self-interest in the design of trust rating schemes, includ-
ing the free-rider problem and the challenge of designing
collusion-proof systems. In [3], Ng et al. outline guiding
principles for a vision of strategyproof computing in P2P
systems. Buragohain et al. [7] study the interaction of strate-
gic and rational peers from a game theoretic perspective, and
propose a differential service-based incentive scheme to en-
courage file-sharing participation. Finally, in [9], a simple
Selfish Link-based Incentive mechanism (SLIC) is presented
for P2P file sharing systems, where the amount of service a
peer receives depends on the amount of service it provides.

Model
In this section, we outline our interaction model, the strate-
gic model of the agents, and the requirements that a non-
manipulable trust system must satisfy.

As in EigenTrust, our model is divided into rounds in
which peers interact by making queries and downloading
files. At the end of each round, the record of authentic and
inauthentic downloads is used to calculate the trust values
for the next round. In order to simplify the model, we as-
sume the existence of a non-strategic third-party known as
the centerwhich is available to calculate peers’ trust. In
practice, our mechanism is capable of operating in a dis-
tributed environment using either the algorithm in [6] or the
efficient algorithm which we will describe in the Distributed
Implementation section.

Strategic Model
Instead of merely considering honest and malicious peers,
we assume that the objective of each peer is to selfishly max-
imize its utility function. In this work, we assume that the
utility of a selfish peer is its trust score. We distinguish be-
tween two types of agents:myopicagents who only consider
their utility in the next round, andstrongly rationalagents
who we assume for concreteness discount their future util-
ities with some discount factorγ. The extension to other
means of weighing utilities over time is straightforward.

We model peers as trust-score maximizers because Eigen-
Trust rewards peers for having a high trust score in order to
incent peers to share. While we do not fully generalize this
argument here, any well-designed system that prevents free-
riders should reward peers for increasing the number of files
they upload to other peers in the network, and the primary
means for a peer to increase the number of files uploaded to
other peers is by increasing its own trust score.

We define the action space of a peeri in roundr as the set
of all possible downloadŝdr

i ∈ D that i may report to the
center. Although there are many strategic behaviors which a
peer could adopt that do not depend on the trust score sys-
tem, such as misreporting its trust score to querying nodes
or cheating during the distributed computation of the trust
scores, these forms of cheating can be prevented or mitigated
using previously studied techniques [5][1], and the methods

described in these papers can be used in conjunction with
the mechanism we propose. Therefore, as we are primarily
interested in creating a non-manipulable trust score system,
rather than in creating a secure computing environment, we
do not consider other forms of manipulation in the strategy
space of selfish peers.

Formally, at the beginning of each roundr, each peeri
makes a set of queriesQr

i . From these queries, the peer re-
ceives a set of authentic and inauthentic downloads, which
we denote bydr

i . The entire set of downloads received by
all peers we denote asdr, while we refer to the set of down-
loads received by all agents other thani asdr

−i. We refer to
the set of all possible downloads asD. At the end of each
round, each peer submits its reportd̂r

i of the downloads re-
ceived. These reports are used to calculate the trusttr+1

i for
each peer in the next round according to the trust function
Ti(d̂i, d̂−i). We sometimes omit the superscriptr in our no-
tation when the round is clear from context.

Solution Concepts
Although each peer knows the set of downloads which it
made during the round, this information is unknown the to
the mechanism designer. We cannot use the standard tech-
niques of mechanism design to induce revelation of this in-
formation, however, because this private information does
not affect the peer’s preferences over outcomes. This fact
also implies that the strategy space of an agent is not, as is
standard, a mapping from its private information to its re-
port, because a peer’s utility from its report is independent
of its private information. Instead, each action is simply a
declaration. Furthermore, although we will not prove this
statement here, if we attempt to obtain this information from
the other peers, we will only induce peers to make unneces-
sary downloads for the sake of increasing their trust values.
We must therefore require that each possible report of each
peer is as good for that peer as any other report; thus no peer
has any incentive to lie.

Formally, we define the single-round gameG(D, T ) as
〈N,D, T 〉, the game with playersN , actions ofi asd̂i ∈ Di,
and payoff fori asTi(d̂i, d̂−i). A dominant strategy equi-
librium (DSE) of this game is a profilêd∗ ∈ D of actions
such that for every playeri ∈ N we haveT (d̂∗i , d̂−i) ≥
T (d̂i, d̂−i) for all d̂ ∈ D. In other words,d̂∗i is a best re-
sponse to any strategŷd−i of the other players. We wish to
design a reputation system in which peers will honestly re-
port the downloads they received, no matter what those were
and no matter what other peers choose to report; that is, for
everyd̂ ∈ D, d̂ is a DSE. As discussed above, this is equiv-
alent to making each peer indifferent between its actionsd̂.

We define the gameH(D, T ) as the multi-round game in
which each playeri has payoff

∑
r γrTi(d̂r). A DSE in this

multi-round game is defined analogously to the single-round
game above, except considering extended strategies over the
games rather than single-round actions. If multi-round-game
strategyσ is a DSE ofH, σi must be a best response to any
arbitrary reporting strategy of the other peers. For instance,
σi must be a best response to the following strategy:i rec-



ommends a particular peerk in roundr, each peerj 6= i
will recommendi in every round followingr. Clearly, the
only best response to this strategy is fori to recommendk
in round r. To avoid these situations, we make the natu-
ral restriction that each peerj’s strategy for choosinĝdr

j be
dependent only on the history of actions of peers who can
affect j’s trust score. This restriction allows the possibil-
ity of Tit-for-Tat-style collusive strategies between peers but
disregards the possibility of collusion in which one party has
nothing to gain.

If we can assume that our peers have a myopic utility
function, we need only require that any joint report of down-
loads be a DSE in the single-round gameG; if, on the other
hand, the peers are strongly rational, we must require that
honest reporting be a DSE in the multi-round gameH.

Formally, we define two notions of non-manipulability:

1. Myopic Non-Manipulability: For everyd ∈ D, d̂ = d is
a DSE of the single-round gameG(D, T ). This is equiv-
alent to the condition that∀d̂ ∈ D : T r+1

i (d̂r
i , d̂

r
−i) is

independent of̂dr
i . This corresponds to a myopic player

being indifferent between its recommendations at the cur-
rent round.

2. Strong Non-Manipulability: For every(d1, d2, ...) ∈ D∗,
(d̂1, d̂2, ...) = (d1, d2, ...) is a DSE of the multi-round
gameH(D, T ). This is equivalent to the condition that
∀σ ∈ Σ,∀r′ > r : T r′

i (σr′
) is independent ofσr

i ; that
is, each peer’s trust is independent of all of its previous
recommendations. This corresponds to a strongly rational
playeri being indifferent between its recommendations at
r, given any joint future strategy of itself and the other
players.

Clearly, strong non-manipulability implies myopic non-
manipulability, but the converse does not hold.

We note that, although peers have no incentive to lie, they
also have no incentive to tell the truth. However, since a
peer’s utility is independent of its private information, it
is not possible to make a peer have a strict preference for
truthtelling. Moreover, we note that players already discover
whether their files are authentic or inauthentic as a normal
part of the download process and it is a simple matter to re-
port this to their implementation of the protocol. Since the
default implementation of the protocol reports this informa-
tion truthfully, there is no reason for anyone to program a
lying version of this protocol. In practice, we would expect
to see truthtelling behavior in any system with these non-
manipulability properties.

Of course, a non-manipulable trust score system would
be of no use if it did not alienate malicious peers. Our
approach will be to show that we do not give more than
a certain amount of additional trust to the set of malicious
peers above and beyond what EigenTrust gives. If Eigen-
Trust alienates malicious peers and our system closely ap-
proximates the trust scores given by EigenTrust, we will be
satisfied that our system alienates malicious peers.

The EigenTrust Algorithm
The EigenTrust algorithm is intended to compute a trust
score for agents which indicates how likely a peer is to be
malicious. We choose EigenTrust to approximate because
it has been shown in simulations to be successful at alienat-
ing malicious peers and also because theoretical analysis of
PageRank[4] can be applied to EigenTrust to show a bound
on manipulability

As we will present a modified version of EigenTrust in our
work, we will briefly describe the EigenTrust trust score.

For someq ∈ Qi, j ∈ serveri(q) signifies thatj re-
sponded affirmatively toi’s query. If in a roundr a peeri has
hadsat(i, j) satisfactory downloads fromj andunsat(i, j)
unsatisfactory downloads, letsij = max(sat(i, j) −
unsat(i, j), 0) anddij = sij∑

k sik
. In words,dij is a normal-

ized measure of how muchi trustsj. EigenTrust assumes
the existence of a distributionp overpre-trusted peerswhich
is commonly known in the system. DefinêD as the matrix
[d̂ij ] andP as the matrix[pij = pj ]. We define a probabil-
ity ε, known as theteleport probabilityfor historical reasons,
which measures how much trust the pre-trusted peers receive
due to their pre-trusted status. In practice,ε is usually set to
0.2.

The EigenTrust value of each nodei is computed asi’s
share of the stationary distribution of a Markov chain with
transition matrixM = (1 − ε)D̂T + εP . Soti = Ti(d̂) can
be calculated as the principal right eigenvector ofM .

We now define the EigenTrust algorithm:

Initialization Initialize the trust uniformly, assigning every
peeri trustt0i = 1

n .
Run TransactionsUntil the end of the current roundr, each
peeri successively makes its queriesq ∈ Qr

i . From the peers
serveri(q), a single peerj is selected to serve the file with
probabilitytrj/

∑
k∈serveri(q)

trk.
Compute Trust Values At the end of roundr, each peer
i sends the entire report̂dr

i of all its downloadsdr
ij to the

center.tr+1
i = Ti(d̂r

i ) = eigi((1 − ε)D̂r
T

+ εP )

The EigenTrust Algorithm has the attractive property that
it is upload maximizing: a peer’s decision to share an au-
thentic filealwaysresults in an increase in that peer’s trust
value, and therefore a selfish peer will want to maximize the
number of uploads it performs.

Approximate Trust and δ-Equilibria
As shown in [5], EigenTrust is effective in simulations at
alienating malicious peers from the network. In addition,
the matrixD can be viewed as the link matrix for a graph in
which one’s downloads correspond to outgoing links in the
graph, and EigenTrust is exactly the application of PageR-
ank to that graph. Therefore, we can apply analysis of the
susceptibility of PageRank to perturbations [4] to give the-
oretical arguments for the effectiveness of EigenTrust. By
a trivial extension of this work, we can show that a selfish
peer cannot increase its trust by more than a factor of(1+ε)

ε



Figure 1:Manipulation Example
Part (a) shows the actual download graph; in part (b), the
dotted line is a manipulation by the middle node to increase
its trust score.

by manipulating its report to the center. Since a typical set-
ting for ε in real systems is0.2, this implies that no peer can
increase its trust by more than a factor of 6. If a malicious
peer’s true trust score is already low, even this worst-case
manipulation will not give it enough additional trust to dis-
rupt the network.

While a manipulation to gain a factor of 6 may not disrupt
the network, it is certainly enough to incent a selfish peer
to lie about its recommendation. To maximize its trust, a
peer ought always to recommend a peer that recommended
it. Consider the download graph of Figure 1, and assume a
uniform distribution for pre-trusted peers over alln peers:
if the middle node reports a download from the right node
as in Figure 1(a), it will have trust(2 − ε)ε/n. If, on the
other hand, it reports a download from the left node as in
Figure 1(b), it will have trust1/n. Scenarios of this sort
with a node that has only one incoming link may arise often
in real systems and the ratio of increase is independent of
the number of peers.

As we will see, some classes of download graphs such as
acyclic graphs or graphs without tight loops prevent any peer
from gaining much trust by unilaterally manipulating its out-
going links. We can define the notion of anδ-equilibrium:
an action profilêd∗ ∈ D is aδ-equilibrium ofG(D, T ) if for
every playeri ∈ N we haveT (d̂i, d̂

∗
−i) ≤ T (d̂∗i , d̂

∗
−i) + δ

for all d̂i ∈ D.
We wish to approximate our chosen trust scoreT with

a non-manipulable trust scorẽT . Ideally, we would find a
non-manipulablẽT which approximatesT on every down-
load graphd. In fact, the existence of a non-manipulable
trust score that approximates EigenTrust over a set of down-

load graphsD requires every action profile inD to be aδ-
equilibrium.

Theorem 1 If some action profiled in the single-round-
game G(D, T ) is not a 2δ-equilibrium, then there does
not exist a myopically non-manipulable trust scoreT̃ s.t.∑

i∈N |Ti(d) − T̃i(d)| ≤ δ.

The proof is given in Appendix A.
In fact, we can find an infinite family of download graphs

in which a peer can increase its trust by an additive constant
slightly less than 1/2. Thus, if we wish to find even myopi-
cally non-manipulable trust score with small error, we must
restrict ourselves to classes of download graphs in which
players can manipulate their trust scores only to a small ex-
tent.

Cyclic Partitioning
We now consider modifications to the basic EigenTrust al-
gorithm such that our new trust score is myopically non-
manipulable. By the results of the previous section, we note
that, if a class of download graphs has a bad maximum ma-
nipulability, any non-manipulable trust score will have high
error on some graph. However, since we are designing the
P2P system, we can restrict the topology of the network in
a way that only allows download graphs with low manipu-
lability. This restriction is natural in that the upload maxi-
mizing propertyonly holds for the downloads the designer
desires, and thus there are no incentives for peers to share
files with peers other than those chosen by the designer.

Algorithm
We make changes to the EigenTrust algorithm as described
below, allowing peers to enter and leave at the end of each
round.
Initialization At the initialization of our algorithm, the cen-
ter partitions the peers evenly into colors, whereC =
{c1, c2, ...cm} is the set of partitions. Each color has ei-
therb n

mc or d n
me peers. The center arranges the colors into

a directed cycle chosen uniformly at random.∀c ∈ C, let
pred(c) be the color which is the predecessor ofc in the
cycle andsucc(c) the successor ofc. We restrict the distri-
butionp over pre-trusted peers to assign an equal amount of
pre-trusted weight to each color (i.e.sumj∈cpj = 1

m )
Run Transactions We restrict each peeri in every colorc
to query and download only from the peers insucc(c). We
thus note that for every queryq, serveri(q) contains only
peers insucc(c).
Compute Trust Values In order to compute the trust score
for nodes of a given colorc, we compute the stationary dis-
tribution of a modified Markov chain. We set the outgo-
ing links from colorc to be uniform oversucc(c), and then
calculate the trust values of the nodes inc in this modified
Markov chain as shown in Figure 3.

Formally, we compute the principal right eigenvector for
m different matrices̃Mc, one for each color in the partition.
For a particular colorc, let d̃ij = dij if i /∈ c andd̃ij = m

n

if i ∈ c. Let D̃c be the matrix[d̃ij ]. Instead of computing



Figure 2:Original Download Graph
Links in the Markov chain from matrixD: a link from u to
v signifiesu downloaded fromv successfully.

the principal right eigenvector ofM = (1 − ε)DT + εP
as in EigenTrust, we compute the trust of a nodei of color
c as theith component of the principal right eigenvector of
M̃c = (1− ε)D̃T

c + εP . Since the total trust in each color is
1
m in both the original and the modified Markov chain, the
trust values form a probability distribution, as desired.

Distributed Implementation

We now show how to compute them required eigenvectors
in a distributed manner. While one could use standard dis-
tributed PageRank algorithms [6], we give a simple and effi-
cient distributed algorithm which calculates all eigenvectors
in comparable time to that taken to compute the EigenTrust
scores. While our algorithm still computes an eigenvector, it
is of a special form that can be computed quickly.

First, notice that in the Markov chaiñMc the stationary
distribution of anyi ∈ succ(c) can be calculated immedi-
ately: ti = (1 − ε)/n + εpi. (1 − ε)/n comes from the
uniform links of the previous color, andεpi comes from the
teleports intoi. The stationary distribution ofsucc(succ(c))
is then just a linear combination of the stationary distribu-
tions of its parents, plus a term to account for the teleport
probability.

Using this idea, the following simple and efficient algo-
rithm can calculate the trust of every color and can be made
secure using the methods outlined in [5]. For every colorc,
i ∈ succ(c) initializes its distribution toti = (1−ε)/n+εpi

and sends this information to its childrenj, along withd̂ij .
Every other node waits to be sent the distribution of its par-
ents, then calculatestj = εpi + (1 − ε)

∑
k∈pa(j) tkd̂kj .

Whenc has calculated its trust, it stops.
This algorithm requires one linear combination per node

per color, resulting inO(m) linear combinations per node.

Figure 3:Cyclic Partition Modified Download Graph for
Computation of Color c

Links in the Markov chain from matrix̃Mc. Outgoing links
from c are replaced with uniform links (represented by the
dashed links).

Analysis
Clearly, the trust value of peeri in roundr+1 is independent
of its report in roundr, since that report is never used to
calculatei’s trust. This shows the following result:

Theorem 2 The trust score defined by cyclic partitioning is
myopically non-manipulable.

We can also show that the error on the trust values is
small, decreasing exponentially inm. The following corol-
lary is proven from Theorem 6 in Appendix B, whereti is
the trust calculated according to EigenTrust andt̃i is the trust
calculated by cyclic partitioning.

Corollary 1
∑

i∈N |ti − t̃i| ≤ 2(1 − ε)m

Now, if we wish to achieve an errorα given a particular
teleport probabilityε - that is, if we wish to allow the mali-
cious nodes to gain an amountα more trust than in Eigen-
Trust - we need only a number of colors logarithmic in1/α.

Cut Partitioning
Having shown in the previous section an algorithm which
achieves myopic non-manipulability, we now show an al-
gorithm which achieves strong non-manipulability. We will
achieve this by ”cutting the loop” so that no peer can be af-
fected by any peer whose trust it can affect. Unfortunately,
our cut partitioning algorithm will be less effective at ap-
proximating EigenTrust and thus possibly less effective at
alienating malicious peers. We make further changes only
in the initialization and trust calculation steps.

Initialization As before, the center partitions the graph into
m colorsC = {1...m}. Again, we restrict the distributionp
over pre-trusted peers to assign an equal amount of weight



Figure 4:Cut Partition Modified Download Graph
Links in the Markov chain from matrix̃M . Incoming links
to the start colors are replaced with uniform links (repre-
sented by the dashed links). The start colors ”cuts” the
cycle.

to peers in each color. In the cut partitioning, however, we
also choose astarting colors ∈ C.
Compute Trust Values In order to compute the trust score
for any peer, we modify the download graph by replacing all
outgoing edges ofpred(s) with uniform links to all peers in
s as shown in Figure 4. This fixes the trust of the nodes ins,
thereby making the trust ofs independent of its downloads.
In essence, this ”cuts” the download graph ats, preventing
influence from flowing across the cut.

We now need only compute the principal right eigenvector
for a single matrix. Let̃dij = dij if i /∈ s andd̃ij = m/n

if i ∈ s. Let D̃ be the matrix[d̃r
ij ]. Instead of computing

the principal right eigenvector ofM = (1 − ε)DT + εP as
in EigenTrust, we compute the principal right eigenvector of
M̃ = (1 − ε)D̃T + εP .

We can compute this stationary distribution by taking the
fixed trust values of the peers ins, and then propagating
these forward by taking linear combinations according to the
algorithm of the previous section. This is even more efficient
than the previous algorithm because it only requires one lin-
ear combination per node.

Analysis
We note that the trust of peers in a colorc depends on only
3 values: the trust values computed from the previous round
(for colors along the directed cycle starting froms until c),
the value of P, and random input (including in this the query
distributions and the random selection of a single peer from
among allserveri(q) of a query).

Of these three values, only the trust values from the pre-
vious round are vulnerable to manipulation. Theorem 7 in
Appendix C shows that the trust values from the previous

round are strongly non-manipulable by proving the stronger
claim that all the trust values for colors froms up to and in-
cluding c are independent of the reports of peers in colors
from c to s.

Furthermore, we can still achieve small error in trust val-
ues with the strong non-manipulability condition, although
not as small as with the myopic condition:
Theorem 3

∑
i∈N |ti − t̃i| ≤ 2

εm .

Proof The total error is
∑

c∈C

∑
v∈c |tv(X) − tv(Y )| ≤∑

c∈C
2(1−ε)hc̄c

m , using Theorem 6 from Appendix B with
c̄ = pred(s). This is a geometric series sincehc̄c =
{1, 2, ..m} for all colorsc ∈ C. Thus,α ≤ 1

m

∑m
h=1 2(1 −

ε)h ≤ 2
εm . �

We note that, although the error in trust values is small,
it is concentrated ins, making the trust scores completely
useless forpred(s). This problem can be addressed by run-
ning several trust systems in parallel, though we reserve this
discussion to the full paper.

Conclusion
There is a trade-off between approximating EigenTrust well
and keeping the trust values we are approximating mean-
ingful. A peer selecting another peer as a download source
from a poorly-populated color has very little selection from
among the group of peers with the requested file. Therefore
the trust values will be of less use in preventing malicious
peers from uploading inauthentic files. Taken to an extreme,
if there is only one peer per color, trust values are useless.
These considerations argue for fewer colors with more peers
in each color. But the error in our trust values - that is, the
maximum amount of trust malicious peers could be assigned
over their trust in EigenTrust - decreases with the number of
colors. Thus, increasing the number of colors increases the
faithfulness of our trust values to EigenTrust but decreases
the usefulness of the EigenTrust values.

Exploring ways to quantify this tradeoff is an active area
of research. This includes developing an understanding of
theprice of distrust: how much worse off the overall system
is due to untrustworthy users. We are currently exploring
different metrics by which we can determine the usefulness
of the trust values and how to apply these metrics in choos-
ing parameters (such as the number of colors) so that the
trust values are most useful.
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Appendix A
We wish to prove the following theorem:
Theorem 4 If some action profiled in the single-round-
game G(D, T ) is not a 2δ-equilibrium, then there does
not exist a myopically non-manipulable trust scoreT̃ s.t.∑

i∈N |Ti(d) − T̃i(d)| ≤ δ.
We will proceed by proving lemma. First note that

T̃i(d̂i, d̂−i) is independent ofd̂i (because(̃T ) is non-
manipulable), so we abuse notation by writing it asT̃ (d̂−i).

Lemma 1 ∀i, d−i, Ti, T̃i,∃di s.t.

|Ti(di, d−i)−T̃i(d−i)| ≥
1
2
(max

d
T (d, d−i)−min

d
T (d, d−i))

Proof Given d−i, let t = maxd Ti(d, d−i) and t =
mind Ti(d, d−i). SupposeT̃i(d−i) ≤ 1

2 (t − t). Then
maxd |Ti(d, d−i)− T̃i(d−i)| = t− T̃i(d−i) ≥ t− 1

2 (t+t) =
1
2 t − 1

2 t = 1
2 |t − t|. The case wherẽTi(d−i) ≥ 1

2 (t − t) is
symmetric. �

Theorem 5 If some action profiled in the single-round-
game G(D, T ) is not a 2δ-equilibrium, then there does
not exist a myopically non-manipulable trust scoreT̃ s.t.∑

i∈N |Ti(d) − T̃i(d)| ≤ δ.

Proof
We show the contrapositive. Suppose that for somed, a

peer can increase its trust by at least2δ.

max
d∈D

∑
i

|Ti(d) − T̃i(d)|

≥ max
d∈D

max
i

|Ti(di, d−i) − T̃i(d−i)|

≥ max
d∈D

1
2
T (d, d−i) − min

d∈D
T (d, d−i)

≥ max
d∈D

1
2
T (d, d−i) − T (di, d−i) ≥ δ

Thus, the total error in approximation ond is at leastδ.
�

Appendix B
Consider a download graph which is partitioned intom col-
ors, and in which a peer in any colorc can only download
from a peer insucc(c). We wish to bound the error in trust
values which arises from altering the outgoing links from
some color̄c.

Let hc̄c indicate the number of hops along the directed cy-
cle, starting at̄c, and following the successor function from
c̄ until we reachc. If c is the successor of̄c, then ishc̄c is 1.

To prove this, we consider two coupled Markov chains:
an original Markov chainX using transition probabilities
from matrixM , lij = (1− ε)dij + εpj for all entries includ-
ing c̄, and a perturbed Markov chainY that differs fromX
only in the variablesdij , for all i ∈ c̄, j, affecting outgoing
links from the set̄c. The original trust will correspond to
the stationary distribution ofX; the trust after altering the
outgoing links will correspond to the stationary distribution
of Y .

Let Xt be the location of the random walk at timet using
Markov chainX and letYt be the symmetric notation forY .
Initially, the walk begins at two arbitrary nodes in̄c. Both
walks use the same random input, and therefore teleport at
exactly the same steps to exactly the same peer. Notice, the
walks are always in the same set along the cycle.

Lemma 2 When a teleport occurs, the walks will be cou-
pled (i.e. at the same nodes) until the walk visitsc̄ again.

Proof The decisions whether to teleport and where to tele-
port are determined by the random input. Since both walks
follow the same random input, when a teleport occurs they
will both go to the same node. Once they are at the same
place at the same time, the Markov chains are the same and
they are following the same random input so it is not pos-
sible for the paths to split unless they are leaving the setc̄.
�

With slight abuse of notation, we sayXt is also the node
that the random walk visits at timet, and thusXt, Yt ∈ c
signifies that at timet both random walks are inc.



Lemma 3 Pr(Xt 6= Yt|Xt, Yt ∈ c) ≤ (1 − ε)hc̄c .

Proof By previous lemma, no teleport occurred since the
most recent time step in which bothX andY were inc̄. Any
walk from c̄ to c that does not teleport must be at leasthc̄c

hops long, and at each hop there isε probability of teleport-
ing. Therefore the probability that no teleport occurs is at
most(1 − ε)hc̄c . Since any teleport will result inXt = Yt,
Pr(Xt 6= Yt|Xt, Yt ∈ c) ≤ (1 − ε)hc̄c . �

Lemma 4
∑

i∈c |ti − t̃i| ≤ 2(1−ε)hc̄c

m .

Proof The distribution over eventsX∞, Y∞|(X∞, Y∞ ∈
c) is a coupling over the eigenvectors for Markov chains X
and Y and therefore we can apply the Coupling Lemma of
Aldous [10]. The probability of event(X∞, Y∞ ∈ c) is 1

m ,
so the total error on these events is divided bym. �

Theorem 6 For any colorsc and c̄, the error on trust in
color c due to altercation of links out of̄c is less than
2(1−ε)hc̄c

m , assuming all peers are truth-telling.

Proof This result is immediate from the previous lemma.
�

We use Theorem 6 to show that the error in the stable
distribution of a particular colorc is less than2(1−ε)m

m by
settingc̄ = c, and thereforehcc = m.

Appendix C
We use[sc] to denote the links and colors along the directed
cycle starting at colors and ending at colorc. This includes
the links out ofs and the colors, and the links intoc and the
color c. The term[cs] is similarly defined except we start at
c and end at the colors. We use[sc) to indicate[sc] without
the colorc.

We use the subscript of a variable to denote the space
of peers over which the variable is defined, and the super-
script to denote the rounds over which the variable is de-
fined. Thus, lettr[sc] be the trust values of all peers in colors

betweens andc at time periodr andI<r+1
[cs) =

∑r
h=0 dh

[cs)

be all the transactions reported by peers in colors betweenc
and untils during or before roundr.

Theorem 7 tr[sc] is independent ofI<r
[cs).

Proof Base Case:t1[sc] is independent ofd0
[cs) becauset1[sc]

is based on links betweens andc, which are independent of
d0
[cs).

Inductive Step: Assumetr−1
[sc] is independent ofI<r−1

[cs) ,

thentr[sc) is independent ofI<r
[cs). tr[sc] is only vulnerable to

manipulation throughtr−1
[sc) . By inductive hypothesis,tr−1

[sc) is

independent ofI<r−1
[cs) . �


