## Keeping Peers Honest In EigenTrust

Robert McGrew

Joint work with Zoë Abrams and Serge Plotkin

## Roadmap

- Incentive problems in P2P systems
- Trust systems and manipulation
- Requirements for a truthful trust system
- A negative result
- A positive result
  - two truthful trust systems based on EigenTrust

# **P2P Systems Incentive Problems**

- P2P systems face two kinds of problems
- Malicious peers
  - RIAA on Kazaa
  - A malicious collective answering queries with fake files
- Free-riders
  - Most other users on Kazaa
  - Individual users selfishly maximizing their own utility by downloading without sharing

## **P2P Trust Systems**

- Attempt to solve malicious peer and freerider problems
- Peers make recommendations based on successful downloads received
- Recommendations are used to calculate a trust score
- Trusted peers are chosen to serve files
- Trusted peers are rewarded with better quality of service

## **Keeping Them Honest**

- Trust systems resolve the malicious peers problem and the free-rider problem
- Are we done?

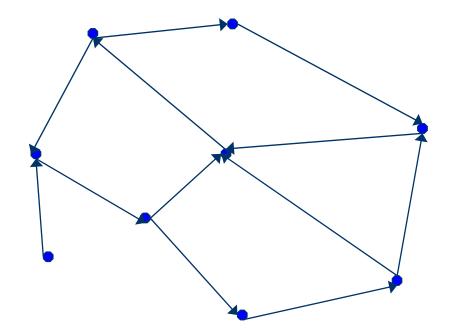
## **Keeping Them Honest**

- Trust systems resolve the malicious peers problem and the free-rider problem
- Are we done?
- Unfortunately, honest peers that previously had no reason to cheat now will lie to improve their trust
- Recommendations won't reflect downloads
- Our contribution: we seek a *truthful* trust system

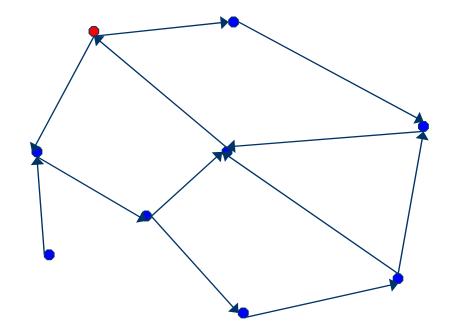
#### EigenTrust (Kamvar, Schlosser, Garcia-Molina 03)

- Recommendations form a directed graph
- Calculates PageRank on recommendation graph
- Recommendations from trusted nodes are worth more
- Malicious peers who recommend each other still won't receive high trust scores

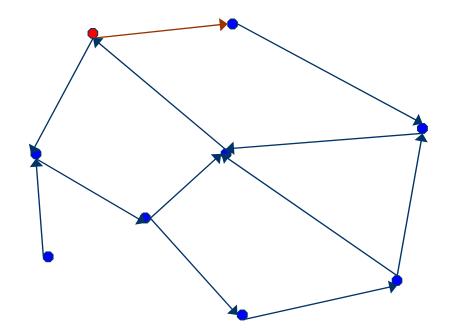
## **Malicious and Selfish Agents**


- Malicious agents attempt to spread bad files
  - EigenTrust alienates these peers in simulations
  - Our new trust system should retain this property
- Selfish agents seek to maximize own utility
  - EigenTrust makes selfish agents wish to maximize their trust by sharing many files
  - Selfish agents now also lie about downloads
  - Trust system should make selfish agents truthful

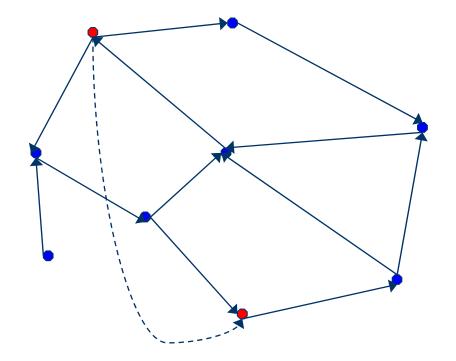
# **EigenTrust Model**


- Time is divided into rounds
- During the round
  - each agent makes queries q 5 Q<sub>i</sub>
  - servers are chosen based on their trust scores
- At end of round
  - agents report downloads d<sub>i</sub> to center
  - center calculates trust score T<sub>i</sub>(d<sub>i</sub>, d<sub>-i</sub>) for next round

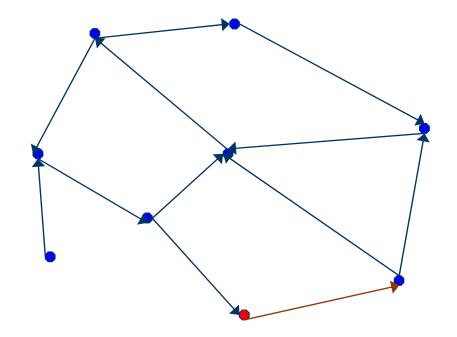
- Trust is defined as the stable distribution over a "random surfer" Markov chain
  - Each recommendation by a peer is a probability distribution over nodes it has downloaded from
  - Follow links or teleport a la PageRank


• Consider the Markov chain defined as random walk over the download graph

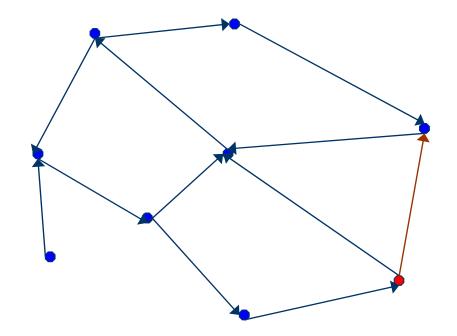



• First, choose a peer at random.

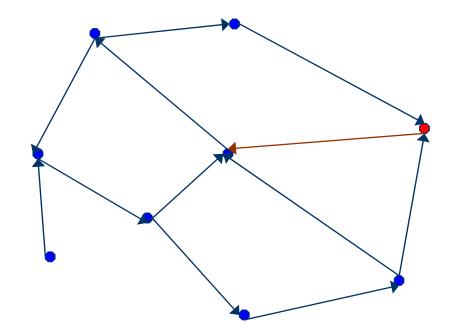



 $\bullet$  With 1-  $\epsilon$  probability, follow a recommendation from that peer to another peer.



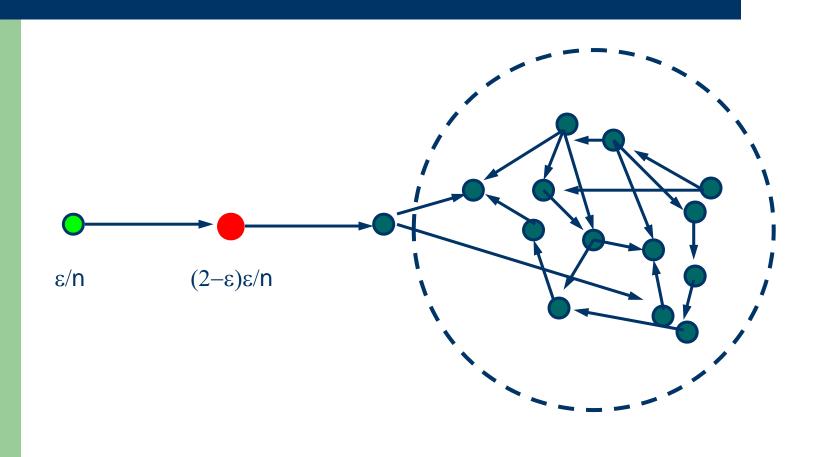

 $\bullet$  Or with  $\epsilon$  probability, teleport to a random peer.



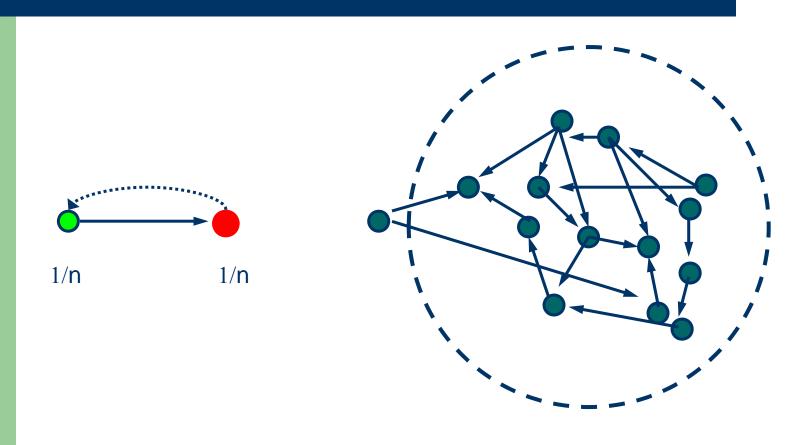

#### • Repeat



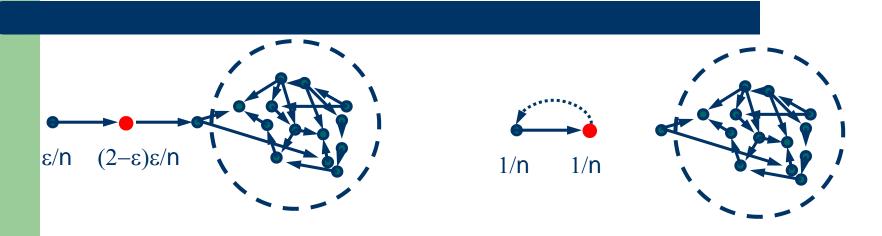
#### • Repeat




#### • Repeat




- Trust scores are the stable distribution over this Markov chain
- Can be calculated as the principal right eigenvector of the transition matrix


### **Manipulation Example**



## **Manipulation Example**



## **Manipulation example**



- The middle node can increase its trust from  $(2-\epsilon)\epsilon/n$  to 1/n by manipulating its recommendations
- This is nearly a factor of three, and independent of the number of peers
- This example is likely to be common in practice

## **One-round Strategic Model**

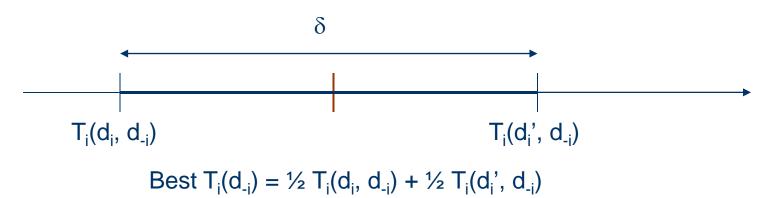
- Players: N
- Actions: report of downloads d<sub>i</sub>
- Payoff for i 5 N:  $T_i(d_i, d_{-i})$
- Dominant Strategy Equilibrium
  - For all  $d_{-i}$ ,  $d_i^*$ , and  $d_i$ ,  $T_i(d_i^*, d_{-i}) \ge T_i(d_i, d_{-i})$
  - Thus  $T_i(d_i, d_{-i})$  must be equal over all  $d_i$
  - No report of downloads can give greater utility than any other.

### Indifference

- Peers' private values are not preferences!
  - Preferences are commonly known
  - Everyone wants high trust
  - This means we cannot use standard mechanism design tricks
- We will have to make peers indifferent between their recommendations

## **Strategic Goals**

- Myopic non-manipulability
  - A peer cannot affect its score in round r+1 by manipulating its recommendations in round r
- Strong non-manipulability
  - A peer cannot affect its score in *any* future round by manipulating its recommendations in round r


### Goals

- We seek to achieve a trust system T' with the following three properties:
  - 1. T' is non-manipulable (myopic or strong)
  - 2. T' approximates EigenTrust
    - We use variational distance  $\sum_{i \in N} |t_i t_i'|$
    - This error is the maximum amount of trust malicious peers can gain over EigenTrust
  - 3. T' generates trust that sums to 1
    - We use T' to parcel out the quality of service in network.

## **A Negative Result**

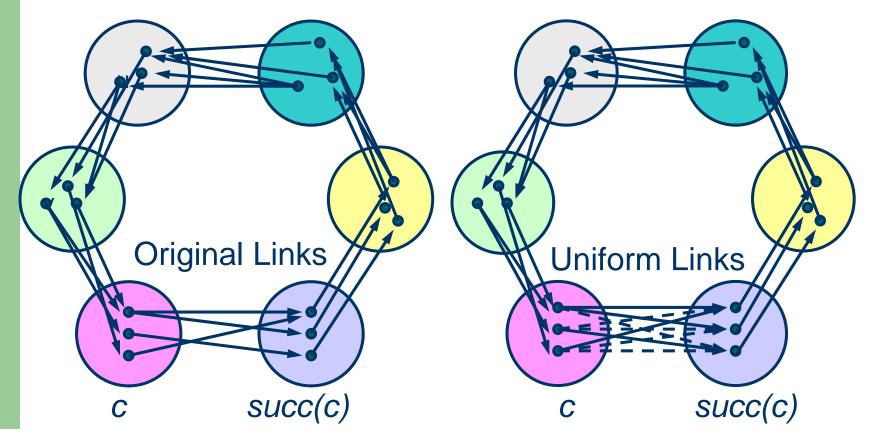
• Let *D* be a set of allowed downloads

- Let  $d_i$ ,  $d_i' \in D_i$  be download reports s.t.
  - $T_i(d_i', d_{-i}) \ge T_i(d_i, d_{-i}) + \delta$
- Then no T' can have error less than  $\delta/2$



## **A Negative Result**

- Let *D* be a set of legal downloads
- Let  $d_i$ ,  $d_i' \in D_i$  be download reports s.t.
  - $T_i(d_i^{'}, d_{-i}) \ge T_i(d_i, d_{-i}) + \delta$
- Then no T' can have error less than  $\delta/2$
- Thus, we must restrict the topology of the network so that no manipulation is too profitable


## **Achieving Myopic Non-manipulability**

- Cyclic partitioning
  - Partition the nodes into m colors of equal size
  - Arrange the colors randomly into a cycle
  - Peers are only allowed to download from peers of their successor color
- Modified eigenvector calculation
  - When calculating the trust of peers of color c, set all peers of color c to have uniform links to succ(c).

# **Cyclic Partitioning**

#### Actual Download Graph

#### **Trust Calculation Graph**



# **Cyclic Partitioning Properties**

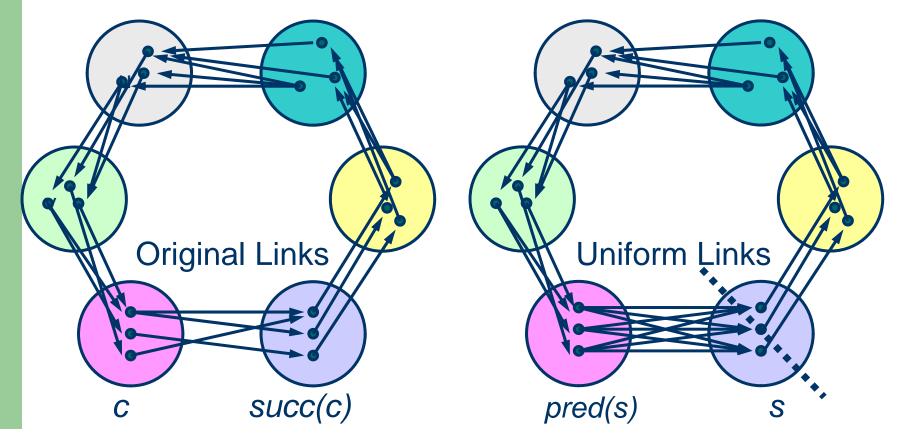
- T' sums to 1
  - Each color sums to 1/m
- T' is myopically non-manipulable
  - Each peer's recommendations are not used in calculating its trust
- T' approximates EigenTrust
  - $\sum_{i 5 N} |t_i t_i'| ‰ 2(1-ε)^m$
  - need only O(log(1/ $\alpha$ )) colors to bound error by  $\alpha$
  - proven by coupled Markov chain argument

### **Trade-offs**

- As the number of colors increases
  - the approximation improves
  - but the trust scores become less useful
  - if m = n, then each node has no choice in downloading, and the trust scores are useless
- Thus, there is a trade-off between fidelity to EigenTrust and the usefulness of the trust scores
  - With a logarithmic number of colors, we have the best of both worlds

#### **Achieving Strong Non-manipulability**

- We wish to prevent peers from manipulating their scores in every future round
- Thus, we require that the trust score of a peer *i* is independent of the recommendations of each peer *j* whose trust score *i* can affect
- Influence is a directed acyclic graph


# **Cut Partitioning**

- Choose a start color s
- Set nodes of the start color to have uniform trust
  - Equivalent to setting pred(s) to have uniform outgoing links
- Propagate trust forward around the cycle to pred(s)

## **Cut Partitioning**

#### Original Download Graph

#### Cut Download Graph



# **Cut Partitioning Properties**

- T' generates a trust score that sums to 1
  - Trust is calculated as a probability distribution
- T' is strongly non-manipulable
  - Influence is a directed acyclic graph
- T' approximates EigenTrust
  - $\sum_{i \leq N} |t_i t_i'| \ge 2/\epsilon m$
  - only linear decrease in error as m increases
  - strong non-manipulability is harder to achieve with EigenTrust

## Conclusions

- We have exhibited two truthful trust systems under different strategic models
- Our model and methods are applicable to a variety of trust systems, not just EigenTrust
- Future work:
  - Quantify trade-off between approximation and usefulness of trust
  - Specify the remaining policies of a truthful P2P system based on EigenTrust
  - Extend to other trust systems