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Abstract— In a P2P free-market resource economy a client peer
may want to select multiple server peers for either downloading a
file or streaming a stored audio or video object. In general, multiple
server peers will make the object available, with each peer offering
a different price. The optimal peer selection problem is to select
from a subset of the peers those peers that can provide the service
at lowest cost. In this paper we formulate and solve the problem
of optimally selecting a subset of peers for parallel downloading
and for parallel streaming.

I. I NTRODUCTION

Today many peer computers participate in peer-to-peer file
sharing applications in which the computers contribute storage
and bandwidth resources. File sharing, however, is not the only
application that can exploit resources made available by vast
numbers of peer computers. Other important applications that
could exploit a vast pool of peer resources include peer-driven
content distribution networks [1], globally distributed archival
storage [5], [6], [12], and massively parallel computation [13].

Of course, applications can only harness the resource pool if
peers make available their surplus resources to them. It is widely
documented, however, that the P2P systems are havens for “free
riders”: a significant fraction of users do not contribute any
resources, and a minute fraction of users contribute the majority
of the resources [3], [4]. Clearly, to improve the performance
of existing P2P file sharing systems, and to enable new classes
of P2P applications, a compelling incentive system needs to be
put in place.

Now suppose the existence of an online market place where
entities - such as peers, companies, users and so on - buy
and sell surplus resources. In this market place, a peer might
purchase storage and bandwidth from a dozen other peers for
the purpose of remotely backing up its files; a content publisher
might purchase storage and bandwidth from thousands of peers
to create a peer-driven content distribution network; a biotech-
nology company might purchase CPU cycles from thousands of
peers for distributed computation. If such a flourishing resource
market existed, individual peers would be incited to contribute
their resources to the market place, thereby unleashing the
untapped resource pool.

We envision a free market in which peers buy and sell
resources directly from each other [1]. In this free market,
selling peers are free to set the prices of their resources as

they please. A client peer, interested in purchasing a specific
resource, is permitted to “shop” the different server peers and
choose the peers that best satisfy its needs at the best prices.
The “money” paid by the client peers and earned by the server
peers may be real money, such as US dollars, or may be some
pseudo-money akin to frequent flyer miles. After a seller earns
money, it can later spend the money in the resource market,
obtaining resources from other seller peers. For example, a peer
Alice may earn money by transferring a portion of a video file
to some peer Bob. Peer Alice may then use this earned money
to purchase a different video file from a different peer Claire.
Or peer Bob may use the money to purchase a different type
of resource, such as backup storage or CPU cycles, from peer
Claire.

In the context of this free-market P2P resource economy, this
paper considers the problem of optimal server peer selection.
Specifically, we consider the following problem. A client peer
wants to obtain an object, such as a specific video file, directly
from other peers attached to the Internet. The client may obtain
different portions of the object in parallel from different server
peers (as is currently the case with KaZaA and other file sharing
systems). In this resource economy, the server peers charge
client peers when they send files (or portions of files) to the
client peers. We suppose a free market economy, that is, server
peers may price their services as they wish.

More specifically, when a client peer wants to obtain a
specific object, the following steps are taken:

1) The client first uses a look-up service to discover server
peers that have a copy of the object. KaZaA is an example
of such a lookup service; structured DHTs could also be
used to create a lookup service.

2) The client then queries the server peers for their prices.
3) The client may also use a reputation service to determine

the reliability of each of the server peers. (Reputation
services are beyond the scope of this paper; see [9], [10].)

4) From the subset of reputable server peers offering the
object, the client peer selects the server peers from which
it will obtain the object. The client obtains different
portions of the object from each of the selected server
peers. The client peer will naturally choose the server
peers to minimize cost.

5) Money is transferred from the client peer to the server



peers. A protocol for transferring money in a P2P resource
market is described in [1].

In this paper we explore the optimal peer selection problem
for two delivery schemes:(i) streaming, in which case the
portions of the object must arrive in a timely manner, so that
the client peer can render the object without glitches during
downloading;(ii) downloading, in which case the client wants
to receive the file as quickly and inexpensively as possible, but
does not render the file while downloading. We will see that
this two delivery schemes lead to different formulations of the
problem.

For both schemes, a content publisher may also be an active
component of the system. For example, CNN.com may contract
with a large number of peers to store chunks of video files.
When another peer Alice asks CNN to see a video, CNN may
select the peers on Alice’s behalf. The selected peers would
then either stream or download the video, depending on the
delivery scheme.

II. PRICING MODEL

In this section we describe our pricing model. As mentioned
in the introduction, each server is free to set its own prices.
Consider a server peeri. As part of a delivery session, the
server peeri will transfer a portion of the bytes of some object
o to a client peer. For such a delivery, the server peer will fix
an appropriate price. This price should naturally depend on:

• The object itself: For example, for video content, recent
videos may be more expensive than older videos.

• The number of bytes transferred: The amount of band-
width resources consumed at the server is proportional to
the number of bytes transferred.

• Rate of transfer: The server may want to charge more
for transferring the bytes at a higher rate.

Let Ωi be the set of rates at which the server peer can transfer
the object portion;Ωi could consist of discrete values or could
be a continuous interval of values. For a particular objecto, we
consider pricing functions of the form

price = Ci(b, x)

whereb ∈ Ωi is the rate of the transfer andx is the number of
bytes transferred. Note that if a client obtainsx bytes at rateb
bytes/sec, then the transfer time isx/b seconds. Also note that
we are taking the natural assumption that all bits have the same
price.

Before proceeding, let us examine more carefully what it
means for a server to be able to transfer bytes at a specific rate
b. A serveri will have Internet access with some upstream rate
ui. At any given time, the server peeri could be transferring
files to multiple peers, with each file transfer taking place at
its negotiated rate. In order to meet its commitment, server
i, of course, must ensure that the sum of all the ongoing
transfer rates does not exceed its upstream access rateui. In
today’s Internet (and in the foreseeable future), the bottleneck
is typically in the access and not in the Internet core. In
most broadband residential connections today (including cable
modem and ADSL), the upstream rate is significantly less than

the downstream rate. Thus, it is not unreasonable to assume that
bandwidth bottleneck between server and client is the server’s
upload rate. Thus, it is reasonable to assume that a server
can provide an offered rateb, as long as the sum of server’s
committed ongoing rates is less thanui.

There will be situations, however, when the server will not
be able to honor its commitment due to unusual congestion or
service failures in the core. In this case, the client peer may
want some form of a refund. Furthermore, either the server
or the client may be dishonest and claim that service was
not received/rendered when indeed it was. Thus, some form
of arbitration - preferably lightweight - may be needed in a
P2P resource market [1]. In Section IV, we will describe a
client strategy that allows any one of the the contracted peers to
fail, either because of unforeseen problems beyond the server’s
control or because of dishonesty.

III. O PTIMAL PEER SELECTION FORDOWNLOADING

In this paper we explore the optimal peer selection problem
for two delivery schemes:(i) streaming, in which case the
portions of the object must arrive in a timely manner, so that
the client peer can render the object without glitches during
downloading;(ii) downloading, in which case the client wants
to receive the file as quickly and inexpensively as possible, but
does not render the file while downloading. In this section we
consider the downloading problem.

For the download problem, we introduce a simplification in
our pricing model. Specifically, we assume thatΩi = {bi},
that is, each serveri advertises a single download ratebi.
We also make the natural assumption that the server’s price
is proportional to the number of bytes transferred, that is, we
consider pricing functions of the form

price = cixi (1)

Thus, under this pricing model, a serveri advertises a specific
transfer ratebi and a specific cost per byteci.

Naturally, a client desiring a specific objecto would like to
obtain the object as quickly as possible and at least possible
cost. These two objectives will typically be conflicting, as
servers that provide high transfer rates will likely also demand
high per byte transfer costs. There are many ways to formulate
an optimization problem that takes into account these conflicting
goals. In this section, we consider one such natural formulation:
the client wants to select the peers in order to minimize the
total object download time subject to a budget constraint for a
download.

We can now describe the optimal peer selection problem.
Consider a client peer that wants to download a fileo. Let
F be the size of the file. As described in the Introduction, the
client peer uses a location service to find a set of peers, denoted
N = {1, · · · , I}, that have a copy of the file. Each server peer
i ∈ N offers the client peer a transfer ratebi and cost per
byteci. We suppose that the client peer has a budgetK for this
particular download, that is, the client peer is prepared to spend
up toK units on this download. Letxi be the number of bytes
that the client transfers from server peeri. Because the client
wants to obtain the entire file, we havex1 + · · ·+ xI = F .



Our optimal peer selection problem is to determinexi, i ∈ N
that minimizes the total download time subject to the budget
constraint. Because the client is downloading from multiple
server peers in parallel, the total download time is the maximum
download time from each of the selected peers. Because the
download time from peeri is xi/bi, the total download time is
the maximum ofxi/bi, i = 1, . . . , I.
Thus, our goal is to determine optimum values ofxi, i =
1, . . . , I for

min max{x1

b1
,
x2

b2
, .....

xI

bI
} (2)

subject to

c1x1 + c2x2 + ... + cIxI ≤ K (3)

x1 + x2 + ... + xI = F (4)

xi ≥ 0 i = {1, · · · , I} (5)

We now proceed to solve this optimization problem. First, we
re-order the server peers so that

0 < c1 < · · · < cI (6)

Note that all of the parametersbi, ci, F and K are positive
constants. Write the above optimization problem as a linear
program (LP):

min y (7)

s.t.
∑

i

cixi ≤ K, (8)

∑

i

xi ≥ F, (9)

0 ≤ xi ≤ biy, ∀i. (10)

The dual of the above is as follows, with the dual variablesv
andw corresponding, respectively, to the two constraints in (8)
and (9), andzi corresponding toxi ≤ biy in (10):

min Fw −Kv (11)

s.t. w − zi − civ ≤ 0, (12)∑

i

bizi ≤ 1, (13)

v ≥ 0, w ≥ 0, zi ≥ 0, ∀i.

Below, we start with deriving a dual feasible solution, which
leads to a primal feasible solution via complementary slackness.
Once these are verified — dual and primal feasibility and
complementary slackness, the problem is completely solved.
To simplify notation, write

Bj :=
j∑

i=1

bi, βj :=
j∑

i=1

bici; (14)

and writeBI and βI simply asB and β. It is easy to verify
that βj/Bj is increasing inj, since

βj

Bj
≤ βj+1

Bj+1
iff βj ≤ Bjcj+1,

and the last inequality follows from (6).
Letting the constraints in (12) and (13) be binding, we get:

zi = w − civ, (15)

w =
1 + vβ

B
. (16)

Then, the dual objective becomes

Fw −Kv =
F

B
+

(Fβ

B
−K

)
v.

Since we want to maximize the above, w.r.t.v, there are two
cases:

(i) If β
B ≤ K

F , thenv = 0.
(ii) Otherwise, consider, for the time being,β

B > K
F ≥ βI−1

BI−1
.

Thenv = vI := 1/(cIB − β).
Note in Case (ii),cIB > β follows from (6); and for alli,

zi =
1
B

+
( β

B
− ci

)
vI ≥ 0

follows from

vI ≤ 1
ciB − β

, ∀i : ciB > β,

sincecn ≥ ci. Also note thatzn = 0.
In case (i), the dual feasible solution results in a dual objective
valueF/B. The corresponding primal feasible solution is:

xi =
Fbi

B
, ∀i. (17)

It is easy to verify that complementary slackness is satisfied:
all primal variables are positive, and all dual constraints are
binding; all dual variables exceptv are positive, and all primal
constraints except (8) are binding. Furthermore, note that the
primal objective value is alsoF/B.
For case (ii), the dual feasible solution results in a dual objective
value as follows:

F

B
+

(Fβ

B
−K

)
· 1
cIB − β

=
FcI −K

cIB − β
. (18)

For the corresponding primal solution, consider the following:

xi = biy, ∀i 6= I; xI = F − yBI−1; (19)

wherey is the primal objective value, obtained via substituting
the above solution into (8) and making the latter an equality:

yβI−1 + cI

(
F − yBI−1

)
= K,



from which we can obtain

y =
FcI −K

cIBI−1 − βI−1
=

FcI −K

cIB − β
, (20)

i.e., the primal objective value is equal to the dual objective
value in (18).
We still need to verify primal feasibility and complementary
slackness. First note thaty ≥ 0 follows from (18): both terms
on its LHS are positive. Thatxn ≥ 0 is equivalent to

F

BI−1
≥ F

B
+

(Fβ

B
−K

)
vI ,

which simplifies (with some algebra) toKF ≥ βI−1
BI−1

, the
assumed condition in

Case (ii). Other aspects of primal feasibility hold trivially.
Complementary slackness is readily verified: all primal vari-
ables are positive, and all dual constraints are binding; all
dual variables exceptzn are positive, and all primal constraints
exceptxI ≤ bIy, the I-th in (10), are binding.
Next, in Case (ii), supposeK/F falls into the following range:

βI−1

BI−1
>

K

F
≥ βI−2

BI−2
.

Then, the dual solution is:

v = vI−1 :=
1

(cI−1BI−1 − βI−1)
, w =

1 + vI−1βI−1

BI−1
;

and
zi = w − civ, i ≤ I − 1; zI = 0.

The primal solution is:

x = biy, i ≤ I − 2; xI−1 = F − yBI−2, xI = 0;

and

y =
FcI−1 −K

cI−1BI−2 − βI−2
=

FcI−1 −K

cI−1BI−1 − βI−1
.

Feasibility (primal and dual) and complementary slackness can
be verified as earlier.
To summarize, we have

Proposition 1: The solution to the optimization problem in
(2) takes the following form (with the costs ordered in (6) and
the notationBj , βj , B, β defined in (14)).
If K/F ≥ β/B, then xi = biy for all i, wherey = F/B.
Otherwise, suppose for somej ≤ n,

βj

Bj
>

K

F
≥ βj−1

Bj−1
.

(If β1/B1 > K/F , i.e., K < Fc1, then there is no feasible
solution to the optimization problem in (2).)
Then,

xi = biy, i ≤ j − 1; xj = F − yBj−1

xj+1 = · · · = xn = 0;

where

y =
Fcj −K

cjBj − βj
.

In both cases,y is the optimal objective value.

IV. OPTIMAL SELECTION FORSTREAMING

In this section we consider streaming encoded (compressed)
audio or video. The delivery constraints are more stringent than
for downloading: in order to prevent glitches in playback, the
servers must continuously deliver segments of the object on or
before scheduled playout times.

An important parameter for the streaming delivery is the
object’s playback rate, denoted byr. For an object of sizeF
with playback rater, the viewing time isT = F/r seconds.
Suppose the user at the client begins to view the video at time
0. A fundamental constraint in the streaming problem is that
for all times t with 0 ≤ t ≤ T , the client must receive the first
r · t bytes of the object. We refer to this constraint as the “no-
glitch” constraint. Thus, when selecting the server peers and
the object portions to be obtained from each server peer, the
client must ensure that this no-glitch constraint is satisfied. A
natural optimization problem is, therefore, to select the peers in
order to minimize the total streaming cost subject the no-glitch
constraint.

For the streaming problem, it is critical that the service
continue even in one of the server peers fails to provide its
service. For this reason, we consider the problem of contracting
an additional peer in such a manner that if any one server
peer fails, the client can continue to render the object without
glitches. In future we will examine multiple peer failures.

In this section, we suppose that each server peer advertises
a set of ratesΩi, as described in Section I. To simplify
the analysis, we suppose thatΩi = [0,∞] for all i ∈ N .
However, more general rate sets can be handled as well. For
each advertised rateb ∈ Ωi, the server advertises an associated
cost rate ofci(b). Thus, serveri chargesci(b) · t to transfer
bytes at rateb for t seconds.

The client must not only select a subset of peer servers, but
it must also determine and schedule the specific portions of the
file it is to download. There are two broad approaches that can
be taken to solving this problem:time segmentationand rate
segmentation. In time segmentation, the video is partitioned
along the time axis in distinct segments, and each server is
responsible for streaming only one of the segments in the
partition. This approach requires client buffering. Furthermore,
in the optimal solution, the client will typically receive the video
from all the selected servers at the beginning of the video and
from only one of the selected servers at the end of the video.
This means that the client must be able to download (at the
beginning of the video) at a rate that is equal to the sum of the
server download rates, which will exceed the playback rate.
In rate segmentation approach, each of the selected servers
contributes bytes for each of the frames in the video, and at
any instant of time the client downloads at the playback rate.
In this paper we consider only rate segmentation.



A. Problem Formulation
For non-decreasing cost functionsci(·), i = 1, . . . , I, the

rate segmentation problem is

min c1(b1) + · · ·+ cI(bI) (21)

s.t.
∑
j 6=i

bj ≥ r, i = 1, . . . , I.

bi ≥ 0, i = 1, . . . , I.

Note that the rate constraint ensures that client continues
to receive at rate at leastr even when one of the servers
becomes unavailable. The above problem can be solved by
first solving the following problem: for any giveny: 0 ≤ y ≤ r,

min c1(b1) + · · ·+ cI(bI) (22)

s.t.
∑

j

bj ≥ r + y,

0 ≤ bi ≤ y, i = 1, . . . , I.

DenoteC(y) as the corresponding optimal value. Then, solve
the problemminy≤r C(y).

To justify that the problem outlined in (22) is equivalent to
the problem outlined in (21), letΦ1 be the set of all feasible
solutions (b1, b2, · · · , bI) to (21) andΦ2(y) be the set of all
feasible solutions(b1, b2, · · · , bI) to (22) for parametery. Also
let

Φ2 =
⋃

0≤y≤r

Φ2(y)

It is straightforward to show thatΦ1 = Φ2. Thus optimizing
c1(b1) + · · · + cI(bI) over Φ1 is equivalent to optimizing the
same function overΦ2. In particular, an optimal solution for
(22) (optimized for all0 ≤ y ≤ r) is also optimal for (21).

B. Convex Costs

Supposeci(.) is a convex function, for alli = 1, ..., n. Then,
given y, (22) is greedily solvable via the following algorithm:

Marginal Allocation:
• Start withS := {1, ..., I} andbi = 0 for all i ∈ S.
• Each step identify

i∗ = arg min
i∈S

{ci(bi + ∆)− ci(bi)},
where∆ > 0 is a pre-specified small increment (depending
on required precision), and resetbi∗ ← bi∗ +∆. Whenever
bi > y −∆, resetS ← S − {i}.

• Continue until the constraint
∑

j bj ≥ r + y is satisfied.
Note that the complexity of this algorithm is proportional to

n(r + y)/∆. To determine the besty, we can do a line search
on C ′(y) = 0, for y ∈ [ r

I−1 , r]. (If y < r
I−1 , then (22) is

infeasible.)
If C(y) is convex in y, then miny C(y) is itself greedily

solvable: we can start withy = r
n−1 ; increasey by a small

increment each time, and solve the problem in (22); stop when
C(y) ceases to decrease ory = r is reached.

In this algorithm, when we go from oney value to the next,
say,y + δ, we do not have to do the marginal allocation that

generatesC(y+δ) from scratch (i.e., starting from allxj values
being zero andS := {1, ..., I}). We can start from where the
previous round of marginal allocation — the one that generates
C(y) — first hits a boundary, i.e.,bj = y for some j, and
continue from there. Or, if nobj has hit the boundary in the
previous round, then simply start from where the previous round
ends (i.e., continue with the solution generated by the previous
round). [Recall,y ∈ [ r

I−1 , r]. As y increases, the number ofbj

values that can hit the boundary in the marginal allocation will
decrease. Specifically, wheny ∈ [ r

k−1 , r
k−2 ], for k = 3, ..., I,

the number ofbj values that can hit the boundary cannot exceed
k, since we haveky ≥ r + y.]

The convexity ofC(y), in turn, is guaranteed whenci(·)’s are
convex functions. To see this, let(bi(y))I

i=1 denote the optimal
solution to the problem in (22), and consider two such problems,
corresponding toy = y1 and y = y2, respectively. For any
α ∈ (0, 1), we have

αC(y1) + (1− α)C(y2)

= α
∑

j

cj(bj(y1)) + (1− α)
∑

j

cj(bj(y2))

≥
∑

j

cj(αbj(y1) + (1− α)bj(y2)),

where the inequality follows from the convexity of thecj ’s.
Next, consider a third version of (22), withy = αy1+(1−α)y2.
It is straightforward to verify thatαbj(y1) + (1 − α)bj(y2),
j = 1, ..., I, is a feasible solution to this problem. Therefore,
we have

∑
j

cj(αbj(y1) + (1− α)bj(y2)) ≥ C(y),

and hence

αC(y1) + (1− α)C(y2) ≥ C(y) = C(αy1 + (1− α)y2).

That is,C(y) is a convex function. To summarize, we have
Proposition 2: Suppose for eachi = 1, ..., I, ci(·) is a

convex function. Then, the optimal value in (22),C(y), is
convex in y. In this case, the streaming problem in (21) is
greedily solvable: each step increasey by a small increment
(starting from y = r

I−1 ), and apply the marginal allocation
algorithm to generateC(y); stop whenC(y) ceases to decrease
or y = r is reached.

V. CONCLUSION

We have formulated and solved several peer selection prob-
lems that arise in a free-market peer-resource economy. We
have examined two delivery models, namely, downloading and
streaming. For both models, the selected servers transfer the
object to the client in parallel. For the download problem, the
total download time is the maximum download time from each
of the selected servers. This gives rise to a min-max optimiza-
tion problem, for which we obtain an explicit solution. For the
streaming problem, we examine optimal rate partitioning for
which continuous playback is ensured even if one server fails.
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