
1

CompuP2P: An Architecture for Sharing of Computing Resources In
Peer-to-Peer Networks With Selfish Nodes

Rohit Gupta and Arun K. Somani
Dependable Computing and Networking Laboratory
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50011

E-mail:
�
rohit, arun � @iastate.edu

Abstract— CompuP2P is an architecture for sharing of comput-
ing resources in peer-to-peer (P2P) networks. It provide resources,
such as processing power, memory storage etc., to user applications
that might require them. CompuP2P creates dynamic markets for
different amounts of computing resources without relying on any
trusted centralized entity to monitor the activities of nodes in those
markets. Moreover, the pricing of computing resources takes into
account selfishness of network users and uses ideas from game
theory and microeconomics.

I. INTRODUCTION

CompuP2P is an architecture for sharing of computing re-
sources in peer-to-peer (P2P) networks. It provide resources,
such as processing power, memory storage etc., to user applica-
tions that might require them. For example, such a system can
perform compute intensive tasks on behalf of clients, such as
wireless devices (e.g. PDAs) with limited battery and processing
power. Applications, like scientific simulations and data mining,
requiring large processing requirements, can tremendously ben-
efit from potentially unlimited availability of compute power
provided by CompuP2P. Likewise, database applications, re-
quiring huge storage, can harness the disk capacity of virtually
millions of machines connected to the Internet.

At present, P2P networks, such as Napster [1], Gnutella [2]
etc., are used primarily for ”data sharing”. Although, it is widely
acknowledged that other resources, like compute power, can also
be shared using a P2P paradigm, research in this regard is still
underway. SETI@home [3] comes close to sharing computing
power (in the form of idle CPU cycles) of computers connected
to the Internet. However, the model employed is still quite
centralized. This is because SETI@home allows only a single
server to make requests and use idle processing power of other
computers in the network. The same capability is not available
to all the participants of the SETI@home network. On the
other hand, CompuP2P enables all the users to harness almost
unlimited processing power of the entire network.

CompuP2P builds and operates dynamic computing resource
markets, where sellers and buyers can come together to negoti-
ate transfer/usage of resources from buyer to seller nodes. The
lookup of such markets and the availability of resources are
robust even in the face of several nodes entering or leaving the
network at the same time. CompuP2P uses ideas from game

The research reported in this paper is funded in part by Jerry R. Junkins
Chair position at Iowa State University.

theory ([10]) and microeconomics ([11]) to utilize incentive-
based schemes for peers to share their idle computing resources
with each other. The pricing strategy is completely distributed
without requiring any centralized authority to govern nodes’
behavior. For concreteness, in this paper we use compute power
as the resource under consideration, however, the mechanism
for market creation and resource pricing is equally applicable
to any other kind of resource, such as disk space etc.

The rest of the paper is organized as follows. Section II
explains our system model. Section III shows how game theory
and microeconomics principles can be used to share computing
resources in CompuP2P. The potential fault-tolerance issues that
may arise in our distributed computation context are discussed
in Section IV. Our prototype implementation of CompuP2P,
which enables sharing of compute power is described in Section
V. Section VI discusses related work on other similar distributed
computing projects and we conclude in Section VII with a
discussion on future work.

II. NETWORK MODEL

The network model uses Chord [4] for addressing and nodes’
connectivity. We provide a brief description of the Chord
protocol in Section II-A. Although CompuP2P uses Chord as the
underlying protocol, its architecture is generalized enough such
that with little modifications it can also be employed in other
structured ([5]) as well as unstructured ([1], [2]) P2P networks.

The network is dynamic as peers join and leave at unpre-
dictable times. Typically in a network there are peers (called
processing nodes) that may have idle computing resources avail-
able to support computing tasks required by other peers (called
clients). We assume that nodes providing the resources get
suitably compensated by the clients. We assume the existence
of some electronic payment mechanism as in [6], [7] that is
used by clients to compensate the processing nodes.1

We assume peers to be selfish, but not malicious. Selfish
nodes are rational and strategic in a game theoretic sense, i.e.
their intent is to select actions so as to maximize their profits or
payoffs and not to cause harm to other nodes or the system in
general. The only way for nodes to maximize their payoffs is
by selling their idle resources to others that may require them.

1Both the terms ”nodes” and ”peers” are used interchangeably throughout
the paper.

2

A. Chord Overview

Chord [4] supports just one operation, i.e. given a key, it
returns the node responsible for that key. Each Chord node has
a unique m-bit identifier (Chord ID), obtained by say, hashing
the node’s IP address. Chord views the IDs as occupying a
circular identifier space. Keys are also mapped into this ID
space, by hashing them to m-bit key IDs. Chord defines the
node responsible for a key to be the successor of that key’s ID.
The successor of an ID j is the node with the smallest ID that
is greater than or equal to j (with wrap-around).

Every Chord node maintains a list of the identities and IP
addresses of its r immediate successors on the Chord ring.
The fact that every node knows its own successor means that
a node can always process a lookup correctly: if the desired
key is between the node and its successor, the latter node is
the key’s successor; otherwise the lookup can be forwarded
to the successor, which moves the lookup strictly closer to its
destination.

In a system with N nodes, lookups performed only with
successor lists require an average of ����� message exchanges.
To reduce the number of messages required to ���	��
����� , each
node maintains a finger table with m entries. The ����� entry
in the table at node j contains the identity of the first node
that succeeds j by at least ���	��� on the ID circle. A new node
initializes its finger table by querying an existing node.

III. MARKETS FOR SHARING OF COMPUTING RESOURCES

In this section we explain how nodes in CompuP2P, possibly
across different administrative domains, can share their idle
computing resources, specifically compute power. Each node
based on its current and past load estimates its average number
of CPU cycles that would remain idle in future.2 Suppose a
node determines that it has C cycles/sec available for the next
T time units (where T is some large enough time period) that it
can provide or make available to others for processing.3 These
available CPU cycles can be time shared across multiple tasks,
as long as the sum of the requirements of all the tasks does not
exceed C. For example, if C is equal to ����� cycles/sec, then
a node can execute a task that needs at most � �!� cycles/sec,
or if there is no such single task, the processing power may
be time-shared between multiple tasks given that the total
requirements of the tasks do not exceed � � � cycles/sec. It must
be noted that the same value of number of CPU cycles/sec might
represent different amounts of compute power for different
nodes. This might happen if nodes have different hardware
and/or software configurations. We use the unit of cycles/sec
to represent normalized equivalent amounts of compute power
at different nodes in a heterogeneous system.

Once the amount of idle computing resources has been
estimated, the next step is to determine how to sell them.
Moreover, buyers needing extra computing resources should
be able to locate the right sellers and purchase the resources
from them. The related and equally important issue is how the

2For example, by using information from Unix commands, such as ”top” and
”uptime”.

3In case some other resource, say disk space, is under consideration then we
would use another appropriate unit, like G gigabytes for T time units.

sellers should price their resources in order to maximize their
profits. In the next subsection, we first describe techniques for
dynamically creating and locating markets, such that no single
node is overburdened with the task of maintaining and running
the markets.

A. Constructing Markets for Buying and Selling Computing
Resources

Since different nodes have different amounts of compute
power to sell and purchase, it is necessary to create suitable
markets to permit buyers and sellers to come together and trade
the amount of compute power they require. For a buyer to
sequentially search the entire network for the best available
deal is a very time consuming and expensive operation. Also,
selecting one node, say successor of Chord ID zero, where
all the transactions for all the available compute power in the
network take place is not a good idea either. This is because
relying on one node can lead to extreme scalability, fault-
tolerance, and security problems.

For efficient creation and lookup of compute power markets,
we propose two schemes that uniformly distribute the location
of and responsibility for maintaining those markets across the
network. Both the schemes use Chord for market assignment
and lookup, however, they differ from each other in the overhead
involved and the manner in which nodes are selected for running
markets for various commodities. The term commodity as used
here represents a range of idle CPU cycles/sec values. Each
market deals in only one type of commodity (i.e. homogeneous
markets). A single physical node may be responsible, i.e. be a
market owner (MO), for more than one market.

Figure 1 depicts how nodes with different values of idle com-
pute power C join different markets. Although, for simplicity
of discussion we have used C as a discrete value, in actual
practice it refers to a well-defined range of values within which
a node’s idle processing capacity lies. Thus, nodes with different
but close enough processing capacities trade in the same market.

6, C=1

1, C=0

2, C=1

3, C=2

4, C=2

5, C=0

Markets for :

Sellers:

C=0 C=1 C=2

1, 5 2, 6 3, 4

C = average idle capacity of a node in cycles/sec

Fig. 1. Creation of markets for CPU cycles in CompuP2P.

We describe below two schemes for the creation of compute
power markets.

1) Single Overlay Scheme: In this scheme, the value C
computed by a seller acts as the Chord ID for locating the
corresponding compute power market. The successor node of
Chord ID C is assigned the responsibility for maintaining the
market for that particular idle compute power. It is possible
that several compute power values map to a single node and
then that node is responsible for running different markets, all
dealing in different commodities.

3

This scheme is very simple to implement and involves not
much additional overhead. Compute power markets are searched
using the normal Chord lookup protocol. In other words, if a
node needs to purchase x cycles/sec, it simply looks up for
the market maintained by the successor of Chord ID x. The
drawback of this scheme is that if the idle compute power values
in the network happen to be in a very narrow range, then most
of the markets would map to only a very few distinct physical
nodes. Those nodes then become the bottleneck and can degrade
the system performance.

2) Processor Overlay Scheme: In order to more uniformly
distribute the responsibility for running the compute power
markets, an additional overlay can be maintained that keeps
information about available idle compute power at different sell-
ers in the network. All MOs, which are responsible for various
commodities, constitute this Chord-based overlay network. The
total ID space of this new overlay is equal to the maximum
amount of compute power that may possibly be available on
any single node and is upper-bounded by ����� � , where c is a
constant and represents the number of bits used to represent the
value of idle CPU cycles/sec.4

The process of selecting a MO for a commodity is illustrated
in Figure 2. A node on determining its value for C applies a hash
function to C to find the corresponding Chord ID (=

������� �
	 � , a
value between 0 and ���� �).5 The successor node of

������� �
	 �
is then the MO for the market trading in commodity C. The
various MOs defined in this manner then together form another
overlay network, called the processor overlay, which has ID
space from 0 to ����� � . The ID of a MO in this new overlay
network is simply the value C whose hash value was mapped
to it in the initial Chord network. Stated otherwise, the ID of
a MO in the processor overlay network, called CPU Market ID
(CMID), is the number of CPU cycles/sec that are being sold
in its market.

It must be noted that in the above description, it is possible
that a single node in the initial overlay network is the MO for
several different markets, causing it to have multiple CMIDs
assigned to it in the processor overlay network. Each CMID
value is represented by a different node in the processor overlay
as shown in Figure 2.

Original Chord
overlay network 4, MO for C=1 and 2

5

6

1, MO for C=3

2

3

C = average idle capacity of a node in cycles/sec
CMID=1

Processor overlay

4 2

3 Instance of node
with Chord ID=1

Instances of physical
node with Chord ID=4

Fig. 2. Processor overlay schema using the CPU capacity values given in Fig.
1.

The lookup in processor overlay, requires �� �
������� � steps on
average, where M is the number of different CMID values in

4We assume that the value of c is large enough to represent the idle processing
power of even a very large computer system.

5Here we are referring to an existing Chord network comprising of all the
nodes, and m is the Chord ID size in terms of the number of bits.

the processor overlay network. Moreover, nodes store �����
����� �
routing information to support the Chord protocol.

The search mechanism for the compute power in processor
overlay is performed based on the number of CPU cycles/sec
(which acts as the lookup key) that a client requires for its
processing. The client first contacts any of the known MOs and
forwards the lookup request to it. The selected MO searches
for an appropriate market for the desired compute power in the
processor overlay network. The lookup process finally returns
the IP address of the MO that runs the market for that compute
power or the nearest higher compute power value available in
the network. For example, if only two compute power markets
(with commodity values b and c) exist in the network, and a
client desires a (where

���������
), then the above mechanism

returns market for b instead of c. The MO is then contacted to
obtain information on the sellers listed in the market.

Nodes have incentive to become MOs, since they make profit
by charging listing price (LP) from sellers (and/or buyers) that
benefit from the services provided by a market. We describe
below two pricing schemes that can be used by a MO.
 A MO can charge the same fixed price to all the sellers

that are listed in the market. This is a simple strategy,
however, since there is no central authority to govern the
listing price, the MO can charge arbitrarily high prices
to the sellers and/or may price discriminate among them.
Moreover, this scheme also does not take into account the
dynamics of a particular market. It seems unfair that sellers
should pay the same listing price, when in fact they earn
different profits depending on the market they are in and
the existing competition. We refer to this scheme as fixed
listing pricing.

 A MO can charge (to the buyers or sellers or both) on the
basis of the market characteristics, say some percentage of
the selling price. This scheme appears to be fair to both
the sellers as well as the MO, since a seller is not required
to make a payment till it is able to sell its compute power,
and the MO also potentially gets a higher payoff depending
on the dynamics of the market. Although appealing, this
scheme is in fact difficult to implement in a distributed
setting when the participants (buyers, sellers, and market
owners) are all selfish. We refer to this scheme as variable
listing pricing.

B. Pricing for Computing Resources

Pricing is non-trivial when there are either multiple at par
sellers from a buyer’s point of view or when a buyer is trying
to minimize its cost of processing (again assuming multiple
sellers). Utilizing the model that a transaction involving the
trading of compute power can be modelled as a one-shot game
and using the results from game theory and microeconomics
(the classical Prisoner’s dilemma problem ([10]) and Bertrand
oligopoly ([11]), respectively), we can see that long-term col-
lusion among compute power sellers (and MO) is unlikely to
occur. In one-shot Prisoner’s dilemma game, non-cooperation
is the only unique Nash equilibrium strategy for the players.
In fact, the model of Bertrand oligopoly suggests that sellers
(irrespective of their number) would not be able to charge more

4

than their marginal costs for selling their resources (please see
[10] for a game-theoretic derivation of this result). In Bertrand
oligopoloy sellers strategy is to set ”prices” (as opposed to
”outputs” in Cournot oligopoly) and is thus more reasonable to
assume in the context of CompuP2P.6 As a consequence, sellers
(irrespective of how many there are in a market) in CompuP2P
set prices equal to their marginal costs only.

One-shot model of a compute power transaction is reasonable
to assume, since once a seller sells its compute power, it de-
lists itself from the market and perhaps move to another market
for selling its remaining compute power, if available. Moreover,
in a dynamic system, where nodes continually join and leave
the network, it is difficult to keep track of nodes that do not
fulfill their collusion agreements. Thus, nodes are not likely to
be penalized based on their past behavior.

The marginal cost of providing computing resources can
include among other things - listing price, bandwidth cost for
message exchange, etc. and is represented by � 	 � for a node,
i.

1) Providing Incentives to Sellers: Since the best pricing
strategy for sellers is to charge equal to their marginal costs,
it results in zero profits for them. Therefore, sellers would not
be motivated to sell their compute power unless some other
incentive mechanisms are devised for them. Below we describe
two such strategies depending on whether fixed or variable
listing pricing is used to compensate a MO.
 Strategy For Fixed Listing Pricing. If fixed listing pricing

is possible, then a MO has no incentive to cheat and thus
we can use the technique employed in Vickrey auction
([8], [9]). A seller when it joins a market provides its
marginal cost information to the MO. A buyer, looking to
minimize its cost, selects the seller with the least marginal
cost, but the amount it has to pay to the seller is equal to
the second lowest marginal cost value listed in the market.
This selection scheme is called reverse Vickrey auction.
The above strategy provides non-zero profit to the selected
seller and ensures that sellers state their correct marginal
costs to the MO (see [9] for the truth-eliciting property
of Vickrey auction). The strategy is also inherently secure
because even if sellers learn about the posted marginal
costs, they cannot take undue advantage of that information
to post a lower marginal cost than their actual values. To
understand this, consider the following simple example.
Example: Let a seller A has the marginal cost (� 	 �) of 5
and the lowest marginal cost among all the sellers different
from A (��� 	 � ���) be 4. If A hides its true MC and posts
it as 3 in order to get selected, its actual payoff would be
(� 	 � ��� � � 	 �) or 4-5 = -1, i.e. it would suffer a loss of
-1. Thus, it can be seen that the only rational strategy for a
seller is to post its correct MC. In this incentive scheme, a
seller selected for processing makes a profit of � � 	 � � �
� 	 � .

 Strategy For Variable Listing Pricing. If variable listing
pricing is being used, the above scheme based on Vickrey
auction cannot be employed. This is because Vickrey

6In CompuP2P all the sellers in a market sell the same amount of a computing
resource.

auction is designed to be used by non-selfish auctioneers
(here MO is the auctioneer), whose goals are to maximize
system efficiency as opposed to personal gains. Whereas,
in variable listing pricing, a MO has incentive to behave
selfishly to maximize its profits. For the case of fixed listing
pricing this selfishness was not a problem, since the payoff
that a MO received was fixed. But if the payoff that a MO
receives is dependent on a transaction outcome, then it has
incentive to cheat. To understand how a MO may cheat
consider the following example.
Example: Let us say, a MO receives 10 percent of a
transaction value from the sellers. Suppose there are three
sellers, A, B, and C currently listed in the market. The
marginal costs of A, B, and C are 100, 200, and 300,
respectively. If a buyer now makes a request for the lowest
cost supplier then the MO has incentive to report C as the
lowest cost supplier, instead of A. This is because by doing
so the MO earns a profit of 30 (=300*10/100) instead of 10
(=100*10/100). Even if Vickrey auction is used, the MO
has incentive to report 200 and 300, instead of 100 and 200
as the lowest and second lowest cost values, respectively,
to the buyer.
In order to deal with the selfish MO problem, we propose
a max-min payoff strategy. This strategy makes the payoff
to a seller and MO complementary to each other, i.e. if the
seller receives a high payoff than the MO receives a low
payoff and vice versa. We develop the following simple
model for this strategy. Let there be N sellers in a market
represented by ��� ���������	� � , such that � 	 �

� � 	 �
 � for
all ��� �� � � � . The sellers are not aware of each
other (or of the buyers) and only know their own marginal
costs, which they truthfully report to the MO. Buyers are
also completely unaware about the sellers that are listed in
the market and rely on the MO to give them information
about the lowest cost supplier.
The proposed payoffs to the MO and the selected seller
by the buyer under max-min payoff strategy (based on the
marginal cost values that a buyer receive from the MO) are
as follows.

�����
�������� �
� 	��� � � 	��� � � �
� 	��� � �

�����
������! �!"#��� 	 ��
$ � (1)

� 	 �� and � 	 �� in the above equation refer to the marginal
cost values of the lowest and highest cost supplier, respec-
tively, as reported by the MO to the buyer. Note that a MO
can manipulate the reported values if doing so increases
its payoff.
The above payoff values guarantee that the total cost to
the buyer is bounded and the best strategy for the MO is
to return the lowest cost supplier only. We formalize this
in the form of the following proposition.
Proposition 1: Assuming one-shot model of compute
power transactions, the payoffs strategy in Equation 1
guarantees the following:
a) The lowest cost supplier is always selected.
b) The payoff received by the selected seller covers its
marginal cost of providing the service.

5

c) The total cost to the buyer is bounded.
d) The payoff to the MO is variable depending on the
dynamics of a market, specifically, it depends on the
marginal costs of the sellers listed in the market.

Proof: a) The MO can increase its payoff by reporting
a low value for the lowest listed marginal cost, i.e. mini-
mizing � 	 �� as much as possible. However, � 	 �� cannot
be decreased below � 	 � , the true lowest marginal cost,
since otherwise the seller (here seller 1) gets a payoff of
� 	 ��

$ �!� � � 	 � � . Since a seller does not provide its
service unless its payoff is greater than its marginal cost,
the best strategy for the MO is to set � 	 �� � � 	 � and
return the lowest cost supplier for processing.
b) This is implied from Equation 1 where we see that the
payoff received by the seller is one more than its marginal
cost.
c) From Equation 1, the payoff to the MO is maximized
for � 	 �� � ��� � 	 � (after setting

�������
	������ ����� = 0), giving
it a payoff of � � � � � � 	 � � .7 Thus, the total cost to the
buyer is bounded and is equal to � � � � � � 	 � �

$ � 	 �
$ � .

d) It follows from the description of the payoff values given
by Equation 1.

In the above we assume that a MO serve the buyers in the
order in which it receive requests from them. Moreover, once a
seller has been selected for processing, it de-lists itself from the
market (and joins some other market if it has sufficient compute
power remaining).

IV. FAULT-TOLERANT COMPUTING

It is possible that a processing node might not be able to
finish the computation assigned to it either because it leaves the
network, it crashes, or the computation takes longer to complete
than initially anticipated by a client. Under such circumstances,
it may be expensive to restart the computation all over again.
To handle such cases it is useful to periodically checkpoint the
processing node’s computation, so that if required the failed
computations can be migrated to other processing nodes in the
network.

Unlike traditional checkpointing, which relies on dedicated
checkpoint servers to store the processing state, we propose to
use dynamic checkpointing in which nodes that store the check-
point data are determined on-the-fly. Similar to the techniques
outlined in Section III for the sharing of compute power, we
can construct markets for memory storage. The client based on
its estimation of the amount of checkpoint data may reserve the
required memory resources.

Further, in practice errors in computation and/or communica-
tion of results can occur. Such errors might be hard to detect and
correct. To increase the reliability in the correctness of the end
results, one can use redundant computations as also employed
in SETI@Home [3]. Basically this scheme involves performing
the same computation multiple times at different nodes and then
selecting the result produced by the majority of the nodes.

7Note that in the given network model, it is difficult for a buyer to verify the
marginal cost values it receives from the MO.

However, the increased fault-tolerance comes at an increased
cost for a user. The user’s budget should be sufficient to cover
the cost of reserving memory space to store the checkpoint
data and/or compensate the redundant processing nodes for their
compute power.

V. PROTOTYPE IMPLEMENTATION FOR SHARING OF

COMPUTE POWER

We have implemented a Java-based prototype of the proposed
CompuP2P architecture for sharing of compute power, and have
deployed it in our lab for running compute intensive simulations.
Java owing to its platform independence and write-once run-
anywhere feature enables easy migration of tasks from one node
to another in a heterogeneous system. As incentives to the users
to sell their idle compute power, we use printing quota as a
form of virtual currency, such that users donating more compute
power get higher printing quota and vice versa.

A user submits its task to the system in the form of a
task-specification file. The task-specification file contains a
description of a task-tree (describing the inputs and precedence
relation among the sub-tasks comprising a task) that needs to
be solved, with the following additional information:
 Code IDs representing the Java class files and data keys

for each of the sub-tasks and inputs, respectively. The class
files can be downloaded either from a well-defined code
server or it can be searched for and downloaded just as
other normal data using code ID as the key.

 Estimated amount of compute power required for the sub-
tasks.

 User’s budget, i.e. the maximum amount of currency that
a user can spend in order to get its task successfully
completed.

The implementation currently provides for the minimum
cost mapping of a task tree to the network nodes. Task tree
mappings satisfying other QoS requirements, such as minimum
delay or bounded delay with minimum cost are currently not
implemented.

We use SPECjvm98 benchmark [14] to address the problem
of nodes’ heterogeneity when comparing their compute power.
A benchmark program can be selected based on the type of
applications typically submitted by the users of the network.
Benchmarks help to normalize the compute power values so that
a given value is interpreted similarly by all the different nodes.
These normalized values help to create homogeneous markets
such that different sellers have equivalent compute power to
offer, i.e. given a program all the sellers take approximately
the same amount of time to execute it. To understand how
this normalization is achieved consider the following example.
Say, there are two nodes A and B that takes time � � and ��� ,
respectively, to execute certain program P of the benchmark.
If A has 	 � and B has 	 � available compute power, then
the normalized idle compute power of A and B is given by
	 � ��� � and 	 � ��� � , respectively. These values are then used
to determine the market they should join in order to sell their
compute power.

Checkpointing as described in the previous section is cur-
rently not implemented. We plan to use object persistence

6

feature provided by PJama ([15]), which would enable a failed
computation to be continued at a different node upon failure of
an initially allocated processing node.

VI. RELATED WORK

The mechanism for sharing of compute power in Com-
puP2P is significantly different from other distributed computing
projects, such as Condor ([12]), SETI@home, and POPCORN
([16]) that utilize idle processing capacity in the network.

Condor is designed to harness the idle CPU cycles of
workstations, desktops, servers etc. Users submit their sets of
serial or parallel tasks to Condor in form of jobs. The Condor
matchmaker decides where to run them based on job needs,
machine capabilities and usage policies. Task management is
centralized to ensure that jobs are executed based on the spec-
ified requirements of provider and consumer. Unlike Condor,
CompuP2P is completely decentralized, in the sense that there
is no centralized entity that create or maintain the markets.

In SETI@home only one central node can allocate tasks
to others, whereas in CompuP2P all the peers can purchase
computing power and distribute their workload onto other peers
in the system.

Both Condor and SETI@home do not take into account
nodes’ selfishness and assume that nodes provide their compute
power without requiring any form of compensation in return.
For example, SETI@home appeals on the participants’ altruism
to contribute their resources in the quest to search for life in
outer space.

POPCORN provides an infrastructure for globally distributed
computation over the whole Internet and uses a market-based
mechanism to trade CPU cycles. However, unlike in CompuP2P,
POPCORN uses a trusted centralized market that serves as a
matchmaker between the seller and buyer nodes.

Sharing of CPU cycles in CompuP2P is completely dis-
tributed and fault-tolerant as compared to the scheme proposed
in [13] that relies on centralized auctioning.

VII. DISCUSSION AND FUTURE WORK

Our current implementation of CompuP2P that permits shar-
ing of compute power can be used to build distributed pro-
cessing systems that can potentially reduce (or eliminate) the
need for large and expensive processing servers in an enterprise.
Users of CompuP2P can harness almost unlimited processing
power of the entire network.

In this paper we have described mechanisms for creation of
markets and pricing of computing resources in a completely
decentralized and robust manner. These mechanisms take into
account nodes’ selfishness without relying on any trusted cen-
tralized authority. However, in order to fully realize the potential
of CompuP2P and implement it for real-world applications,
several issues still need to be resolved.

First, CompuP2P relies on a monetary payment scheme to
compensate processing nodes for their resources. While the
use of a monetary scheme provides a clean economic model,
implementing the associated electronic payment infrastructure
can be very expensive. In order to overcome this problem, we

are developing mechanisms for using reputation as a form of
virtual currency instead.

Second, in any large-scale decentralized network there is
a possibility of malicious nodes, which we have ignored till
now in our discussion. Malicious nodes can complicate the
pricing of computing resources. For example, ideally, a client
wants to pay only for the completed and correct computation
results. However, a malicious node may deliberately generate
wrong results and/or to save its compute power may give out
only partial results to the client. We refer to such incorrect or
incomplete computations simply as faults. The types of faults
that can be generated would depend on the nature of tasks
being processed. For most applications such faults can be hard
to detect and it is even more difficult to prove that they were
deliberately introduced by a processing node. In such scenarios
how much (if at all) the processing nodes should be paid is a
tricky question.

We feel that the reliability of the received computation results
can be improved by distributing a computation to multiple
processing nodes and select the output generated by the majority
of the nodes. Then the nodes whose results do not conform
with the majority results are not compensated by the client.
These and other possible solutions are part of our on-going
investigation. We feel that the precise solutions employed would
be application-domain dependent and hope that our efforts in
using CompuP2P for implementing large-scale simulations in
our lab would provide us with valuable insights into studying
fault-tolerance for distributed computation in CompuP2P.

REFERENCES

[1] Napster. http://www.napster.com/.
[2] Gnutella. http://gnutella.wego.com/.
[3] SETI@home. http://setiathome.ssl.berkeley.edu.
[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications.
In Proceedings of the 2001 ACM SIGCOMM Conference, 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM (San
Diego, 2001), 2001.

[6] G. Medvinsky. A Framework for Electronic Currency. PhD thesis, USC,
1997.

[7] M. Bellare, J. Garay, C. Jutla, and M. Yung. VarietyCash: a multi-purpose
electronic payment system. In Proc. Of 3rd Usenix Workshop on Electronic
Commerce, pages 9-24, August 1998.

[8] N. Nisan. Algorithms for Selfish Agents: Mechanism Design for Dis-
tributed Computation. In Proceedings of the 16th Symposium on Theo-
retical Aspects of Computer Science, Lecture Notes in Computer Science,
volume 1563, Springer, Berlin, pages 1-17, 1999.

[9] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders.
Journal of Finance, pages 8-37, 1961.

[10] M. J. Osborne. An Introduction To Game Theory. New York, Oxford :
Oxford University Press, 2004.

[11] M. R. Baye. Managerial Economics and Business Strategy. Third edition,
McGraw Hill, 2000.

[12] P. Wagstrom. An Overview of Condor. February 19, 2002.
[13] M. Senior, and R. Deters. Market Structures in Peer Computation Sharing.

Second International Conference on Peer-to-Peer Computing (P2P’02),
2002.

[14] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, Release 1.0. August 1998. Online version at
http://www.spec.org/osg/jvm98/jvm98/doc/index.html

[15] The PJama Project. http://www.dcs.gla.ac.uk/pjava/.
[16] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed

computation over internet - The POPCORN project. In Proc. of 18th IEEE
Int. Conf. Distributed Comput. Syst., pages 592-601, May 1998.

