
1

CompuP2P: An Architecture for Sharing of
Computing Resources In Peer-to-Peer

Networks With Selfish Nodes

Rohit Gupta and Arun K. Somani
(firstname@iastate.edu)

Dependable Computing and Networking Laboratory
Iowa State University

2

Outline

CompuP2P overview
Prototype implementation for compute power
sharing

Comparison with SETI@Home, Condor, and
POPCORN

Open Issues

3

CompuP2P: An Overview
CompuP2P is a peer-to-peer (P2P) utility
infrastructure designed to span WANs
Dynamically build markets for a computing resource
Uses game theoretic ideas to govern pricing of
computing resources
Usage

Provide computation capabilities to processing-intensive user
applications, like network simulations, graphics
Support storage intensive applications such as data-bases
and file systems

4

System Model

Assumes a P2P configuration that uses Chord
for addressing and peer connectivity
Nodes are selfish, earn profit by selling their
computing resources

Sellers incur a cost, referred to as marginal costs

Resource Units
Compute power: cycles/sec for T time units
Memory storage: giga(mega) bytes for T time
units

5

Overview of Chord

Chord provides fast distributed hash
function that maps keys to nodes
Each node and key is assigned an m-bit
identifier
Identifiers are ordered on an identifier
circle modulo 2m

Key k is assigned to the first node (called
the successor node) whose identifier is
equal to or follows (the identifier of) k in
the identifier space

6

Chord Lookup Protocol

1

2

0

3

4

5

6

7

6

1

2

Keys 1, 2, 6

Successor(1) = 1
Successor(2) = 3
Successor(6) = 0

Lookup successor(1)
from node 3

7

Construction of Compute Power
Markets

Markets for different amounts of compute power are
created
A market deals in only one type of commodity.

Commodity here refers to compute power in a certain well-
defined range

The same node can be responsible (i.e. be a market
owner MO) for running multiple markets
Two schemes

Single overlay
Processor overlay

8

Single Overlay Scheme
The number of CPU
cycles/sec gives the Chord
ID of the market and the
successor is the MO

MO = successor(C)

Simple to implement
Can lead to uneven
assignment of markets
among nodes and requires
large number of hops

1
0

7

6

5

2

3

4

MO for (5,8]

9

Processor Overlay Scheme
More uniformly assign markets among nodes

MO = successor(hash(C))

MOs form an additional overlay
IDs equal to the commodity values

The lookup returns the IP address of the market
trading in commodity equal to or greater in value than
requested

Emulates the best-fit approach
Lookup is faster (O(log M) steps) in processor overlay
Requires extra overhead

10

Processor Overlay Scheme

Chord overlay
(numbers next to the
nodes are the Chord
IDs)

Processor
Overlay

1, MO for C=3

2

3

4, MO for C=1 and 2

5

6

CMID=1

2

3 Instance of
node with
Chord ID=1

Instance of physical
node with Chord
ID=4

C = average idle
capacity in cycles/sec

11

Incentives to Market Owners (MO)

MOs make profit by charging listing price
Fixed listing pricing

Same price charged to all the sellers (buyers)
Simple but unfair and difficult to implement

Variable listing pricing
Depends on the dynamics of the markets
Fairer but trickier due to selfish MOs

12

Incentives to Sellers

Use of marginal costs is the optimal pricing
strategy

Bertrand oligopoly
Sellers have control over prices
Prices equal to marginal costs

…means NO profits !!!

13

Pricing Compute Power

Reverse Vickrey auction for fixed listing pricing
Select the lowest cost supplier at the price of the second
lowest marginal cost

Max-min payoff strategy for variable listing
pricing

Set the payoffs to the MO and seller opposite to each
other

Sellers 1,2,…N with costs MC1, MC2,…MCN in increasing order of
values
Buyer relies on the MO to get information about the sellers

Buyer looking to minimize its cost
Payoff functions used by buyers are well known

14

Max-Min Payoffs

1
2

1

*4
1

)'(
)''(

MCMC
MCMCPayoff
N

N
MO ⇒

−
=

1'1+= MCPayoff seller

Proposition
a) Collusion is avoided
b) The lowest cost supplier is always selected
c) The total cost to the buyer is bounded
d) Payoffs are market dynamics dependent

15

Prototype Implementation

Implemented a Java-based prototype
Using it for running compute intensive simulations
Printing quota as a form of virtual currency
Users submit a task-specification file as input

Describe the inputs and precedence relation among the
sub-tasks comprising a task
Class files can be downloaded from a well-defined code
server

Fault-tolerance
Handling node crashes

Dynamic checkpointing
Use PJama

16

Comparison With Related Projects

SETI@Home (UC Berkeley 1996)

Only one central server can allocate tasks to
others

Condor (University of Wisconsin-Madison 1985)

All machines under the control of a single cluster
head

Task management, scheduling, and checkpointing is
centralized

POPCORN (Hebrew University 1997)
Uses a trusted centralized market

17

Open Issues

CompuP2P relies on a monetary payment
scheme

Using reputation as a substitute for currency

Verifying computation results
Redundant computations

Can complicate pricing

18

Questions

