Incentives-Compatible Peer-to-Peer Multicast

Tsuen-Wan “Johnny” Ngan Dan S. Wallach Peter Druschel
Department of Computer Science, Rice University

Abstract now downstream freeloaders.

Many peer-to-peer (p2p) system designs assume coopeeative Section 2 discusses the threat model and provides some
vironments, with all clients correctly running the sametwafe. background. Section 3 describes different approaches to
Any client who modifies its software may be able to unfairly-be implementing fairness policies in p2p multicast systems.
efit. This paper considers such fairness issues in the coofex e present our experimental results in Section 4. Finally,

p2p multicast streaming services. We present mechanisibsath g i 5 discusses related work and Section 6 concludes.
distinguish nodes with selfish behavior and reduce the tyuafi

service experienced by these selfish nodes from their paéues.

peers make their judgments strictly by observing the behnafi

their upstream peers. We only require that the multicastdree 2 Model

periodically rebuilt, increasing the likelihood that a &®ading

node’s downstream peers will later be upstream of the femdo While the ideas in this paper are general enough to be ap-

and can retaliate by refusing to serve the offender. plicable for almost any tree-based multicast systems, (e.g.
Bullet [15]), for concreteness we will discuss our system in
1 Introduction terms of SplitStream [2]. SplitStream supports applicatio

level multicast above Pastry [20], a p2p routing substrate.
P2p multicast systems [2, 15] have demonstrated thathe key idea behind SplitStream is to split the original con-
streaming media applications can scale to reliably suppofent stream intd stripes and to multicast each stripe using a
large numbers of nodes without the need for the costljseparate multicast tree. Nodes subscribledifferent trees,
server and network infrastructure. Unfortunately, thgse S \yith the roots spread uniformly around the Pastry ring. Ev-
tems assume that all the peers are correctly following thery node will (most likely) be an interior node in exactly
protocol. If a node was to refuse to transmit data to itSgne tree and will be leaf node in the remainkg 1 trees.
downstream peers, or if that node was to simply refuse tarhys, the forwarding load is distributed among all partici-
accept any downstream peers, it could “freeload” on theyating peers. If each node supported a fan-oktdiildren,

system. If every node were to follow a similar policy, the then the total in-degree and out-degree would be equal.

system as a whole would collapse. o) _
The splitting strategy also provides robustness against

One way to solve the freeloading problem is to designpacket loss. Audio and video stream types could poten-
incentives-compatiblpolicies. We wish to build applica- tjally be split using media-specific codecs that allow lower

tions such that nodes maximize their utility by correctly quality media streams to be partially reconstructed with
following the prescribed protocol. A number of incentives- only part of the data. Stripes for general-purpose datadcoul

compatible p2p systems have been built, generally follow|sg penefit by using error correcting codes.
ing a variety of tit-for-tat strategies. These systems ase i

tended to provide fair sharing of disk storage [5, 17] or net-Of course, this leaves room for a variety of freeloading be-
work bandwidth while downloading large files [3]. Mul- _haV|ors. A_node could falsely claim its outgoing bandwidth
ticast applications represent a related problem, but existS fully utilized and refuse to accept a new child. A node
ing tit-for-tat mechanisms do not map cleanly onto multi- could likewise accept a new child but refuse to send it any
cast systems, where (relatively) static distributiongreee ~ data. A node might avoid joining the one tree where it
constructed once and used forever. We need a way to ddiould be aninterior node, only joining tke- 1 trees where
tect misbehaving peers and refuse to grant them servicd's @ leaf. Nodes might even form a conspiracy if coopera-
This paper describes some simple mechanisms that use orfi" helps them to freeload. This paper addresses seith
first-hand observations, thus avoiding many thorny trust is!nteresteobehaV|or§, but does not addresaliciousbehav-
sues. Nodes remember when their upstream peers fail t§7: Where a node’s goal might be to deliberately prevent
provide them with good service. By requiring the multicastdistribution of the streaming media or to otherwise damage
trees to be periodically rebuilt, the upstream relatiopshi the Pastry routing or SplitStream service. Castro et al. [1]

can reverse, giving nodes a chance to refuse service to tifiScuss a number of techniques that might limit the damage
a malicious node can cause to a p2p network; many of those

*Email: {twngan, dwallach, druschel}@cs.rice.edu ideas could be applied here.

3 Designs between the bandwidth overhead of tree reconstruction and
the desire for smaller time steps. Smaller time steps allow

In this section, we first describe a naive approach and &xyoes to respond more rapidly when they detect that a node
pose some of its problems. Then we will discuss theg being selfish.

space of possible mechanisms that might be used to detect o o .
freeloaders and how they might be combined together téarental availability When a node joins a multicast tree

form a robust incentive-compatible policy. and is refused service by its prospective parent, it has no
way to determine if the prospective parentis genuinely-serv
3.1 Anaive approach ing its maximum number of children or if it is freeloading

A selfish nod | laim that it Id not ve th on the system. A freeloader can always claim to be serv-
tse 'Sf no _e:;can avvtays Z?Lm fa : Eou n[())| r?ceflve 9 g its conspiring peers. If service is refused once, it doul
stream from [1s parent, and therefore be unable to orwarjﬂst be bad luck. If, after numerous tree reconstructions,

the data stre_am.“ A.s fummg the multg:ast trees are allwa Fe prospective parent has demonstrated a history of refus-
constructed in a “fair” manner according to the prescribe

; : . ng service to its children, then the child can legitimately
protocol, a naive approach to solve this problem might b

: e . . “tefuse to serve the freeloader if and when their parental
fo require each node, when it falls to receive the deSIreqoles become reversed. The ability of a child to measure
data from its parent, to send (random) data of size equal t

th ted st o all its child Si d this parental availabilitywill depend on the specific details
€ expected stream 1o all IS childrén. SInce every NOGe Ix¢ y mylticast trees are constructed in any given system.
required to transmaomethingit might as well transmit the

correct data. When a node joins a SplitStream tree, for example, it routes
a message toward the root of that tree. The first node that

tes bandwidth. potentiall ing leaitimate trafic t teceives the message is most likely to become the joining
wastes bandwidin, potentially causing legitimate ralic t -, yqg parent. If this node refuses the connection, saying i

be d.ropped when the underl_ying netvyork is suffering CONhas enough children already, the joining node must search
gestion. Furthermore, nothing in this approach prevent;

o _ or another parent. It will first search the children of the
nodes from claiming to already have enough children an

th fusing t ; e in & leaitimat | ailed parent, and then its siblings and grandparent, fecur
us retusing to accept any more. £ven in a legitimate mu sively. If SplitStream nodes are operating correctly, ¢hes

ticast tree construction, some nodes may, depenqling on the o rehes will be unlikely to occur, and service will most
protocol and by good chance, become leaves, without anNker be found with one of the failed parent’s immediate

rengrleml:ant ;[jofretrlanzmlt co_||'|1tent. _leferent|afF|ng bedwe children. As such, any parent that consistently refuses to
good luck and freeloading will require more effort. accept a node as a child is highly likely to be a freeloader.

3.2 Fairness mechanisms Reciprocal requests Two well-behaved nodes would be

We need mechanisms that can distinguish selfish nodeesXpeCte(j to have an equal chance of being parent or child

. in any given multicast tree. A freeloader, however, might
from nodes that are following the protocol correctly. We .
) : o regularly refuse to accept children. When the freeloader
wish to focus on mechanisms that individual nodes can fol- : .
X . . . A asks some prospective noBeo be its parentB needs
low, based strictly on information they observe about their : ; .
. . 2o a way to judge whetheA has had a history of behaving
peers, as well as information they might infer about nodes_ . ; L
) selfishly. To address this, we alldto break the traditional
between themselves and the root of any given tree. o ; . :
join protocol and instead occasionally attempt to malkis
Debt maintenance When nodeA forwards a stream data parent by requesting to join directly und&for a multicast
packet to a nod®, both nodes can track thBtowesA a tree whereA is supposed to be an interior node. This can
debt of one packet. If the debt exceeds some threskold, be done whenever the number of recent requests from one
might refuse to send further dataBo direction exceeds a constant factor more than requests in
the opposite direction. This would allo#® to determine
whetherA is misbehaving, and thus have a stronger basis

for ignoringAin the future.

This approach has two obvious problems. One is that i

Periodic tree reconstruction If multicast trees are con-
structed randomly, some nodes may be stuck in unfair o
unfavorable positions if there are freeloaders. A luckyanod
might happen to be a leaf, where an unlucky node mighAncestor rating Another approach, an extension of debt
happen to be downstream from a selfish node that is refusnaintenance, is to apply debts and credits not only to a
ing to forward data to its children. By periodically recon- node’s immediate parent, but to all of their ancestors who
structing the multicast tree, a node will only ever benefit orshould have been responsible for forwarding data from the
suffer from such situations for at most a fixed time period.multicast root. Whenever a node receives a packet, it in-
New multicast trees can be constructed concurrently whilerements its confidence value of each node in the path to
existing trees are in use. We require only that the new multhe root. Whenever an expected packet is not received (this
ticast tree be sufficiently different from the old one that acan be noticed if the packets should arrive at a timely, peri-
leaf node will be unlikely to have the same ancestral nodesdic fashion, as in video and audio streams), the node decre-
after the old tree is replaced. There will remain a trade-offments the confidence value of each node in the path to the

root, blaming them all equally, for the lack of any more creating a structure analogous to a Merkle hash tree [16].
specific information. When the trees are reconstructed, any

blame assigned falsely or due to lost packets would averg 4 Sybil attacks

age out as nodes are later observed to behave correctly.

Freeloading nodes, on the other hand, would be consistentlyhe rating mechanisms described above can all be poten-
blamed for their misbehavior. Service would eventually betially defeated if nodes with poor reputations can quit the
refused to these freeloaders. system and rejoin under new identities, an example of a
3.3 Authenticity of data and path Sybil_ {;\ttack [8] While we could address thgsg attacks by
requiring certified nodelds [1], we can also limit the effec-
Our mechanisms rely on the knowledge of ancestors. Aiveness of such attacks by putting new nodes through a
selfish node, of course, has no incentive to provide such inprobation where they experience a lower quality of service.
formation correctly. False information might allow good In SplitStream, where there akerees being used concur-
nodes to be falsely considered to be freeloaders; likewisaently, we might reconstruct one tree for each time step. If
false information might allow freeloading nodes to escapeaye close these trees to new members after they start run-
detection. Here, we outline a low-cost method to authentining, then a new node will not be able to join a tree until
cate the stream data and verify the integrity of the path. Wet is being reconstructed, and will not receive laktreams
borrow ideas from hash chains [19] and path authenticationntil k time steps have elapsed. Thus, it will get a lower
in Ariadne [14]. quality of service when it first joins, with its quality pro-
aq[essively improving over time. This may or may not be an
inconvenience to legitimate nodes. If, for example, nodes
are subscribing to a lecture that starts at a known time, they
would need to joirk time steps in advance. If a time step
was 15 seconds and= 16, then the probationary period

First, the source creates a hash chain by randomly gener
ing a valuex, (for sufficiently largen), and iteratively com-
putingxn_1,...,%o by Xi = h(x11) with a cryptographically
secure one-way hash functibite.g., MD5 or SHA-1). One
important property of one-way hash functions is that while .
it is cheap to compute a hash, it is computationally infeasi-WOUId only be four minutes long.

ble to find its inverse. Thus, giveq, 1, itis trivial to verify A selfish node might attempt to join under multiple iden-
that it hashes tag, but it is infeasible to find,; from x. tities with the hope of getting some portion of the stream
We assume that the source can distribxgeas an initial ~ with each pseudonym. Regardless of the pseudonyms, the
shared secret to all receivers. selfish node will be immediately required to participate in
the protocol and will suffer if it freeloads. Furthermore, a
node using multiple pseudonyms will pay some fixed over-

the packet, it hashes the message digest it receives froPrFad in the underlying pr pro_tqcol fo_r maintainir_lg each
its parent (ord; for the source) with the receiving node’s pseudonym, thus providing a disincentive to creating such

nodeld. Thus, the message digest received by the sourcé3§GUd0ny_rns' A_‘S a r_esult, nodes have an incentive to Jjom
child A would beh(di,A) and that byA's child B would under a single |dent|tyland to behave correctly, allowing
beh(h(d;,A),B) and so on. Each packet will also include them to develop a positive reputation.

the hash chain value used in the previous packet, i.e., the

i + 1" packet containg;. Upon receipt ofx, each node 4 Experiments

can confirm that;_; = h(x)). Each node can then verify

the integrity of the previous packet by reconstructing theln this section, we use simulations to study the effective-
message digest usixgand the path. ness of a variety of different mechanisms. We study sev-
eral mechanisms in isolation and then describe a combina-

In case of lost packets, a node only needs to hash the Vall’b%n that is more effective at discriminating freeloadeosi

multiple times until it matches the last segn Likewise, . .
L : : ; normal nodes. All experiments are run on an instrumented
a node joining an ongoing streaming session only needs to

. . 5 version of SplitStream using 500 nodes with randomly cho-
hash the value multiple times until it matcheg If the . . . -
. . sen nodelds. Since SplitStream considers node proximity
source ever runs out of all the values in the hash chain, i

. when building multicast trees, node “locations” are ran-
can generate a new chain on the fly and use the old chain L . o
. : domly distributed on a plane, with proximity between two
to authenticate the new one. Each multicast tree can use g ; . .)
: : nodes determined by their Euclidean distance. Each node
separate hash chain so that other trees can still be use Whl|? . .
one is under reconstruction aftempts to subscribe to= 16 trees, and will accept up to
' 16 children. The root node transmits one “data unit” to each
Under this scheme, nodes cannot fake the path from the roshulticast tree and then all trees are reconstructed at every
to their children without knowingg;, which would not be time step. (For an actual implementation trying to spread
revealed until after the packet becomes obsolete. Nodes cdhe load of tree reconstruction, we might cut one time step
still lie about their children, however. If that becomes aninto 16 smaller steps and reconstruct one of the 16 trees per

issue, we can require nodes to sign lists of their childrenstep. The net cost would be the same.)

Before the source sends tifepacket, it computes the base
message digest = h(data,x). Whenever a node sends

%)
30 ; ; . . £ 1 1
Reconstruct one tree—+— i %
o 25F Unsubscribe one tree—-— g S 08t 4
() = .
2 2
A i = 06 .
g o
1 Q
'-oc—) E 04 1
S 1 o |
z o 02p Normal nodes—+— |
Sr 7 & ol Selfish nodes -
0 ' ' : : 0 2 4 6 8 10 12 14 16 18
100 200 400 1000 2000

Debt level
No. of nodes

. . Figure 2: Cumulative distribution for debt level.
Figure 1: Average tree reconstruction cost.

8_ 1 T T T T
= 09
4.1 Tree reconstruction cost g 8.3 r
Tree reconstruction would not be useful if the costwas pro- @ 0.6 -
hibitively expensive. We first study the cost of reconstruct % 05F
ing and discarding trees. Figure 1 shows the average num- S 8;‘ i
ber of messages sent by every node in order to reconstruct '§ 0:2 N
a tree. Since subscribing to a tree is simply sendinga sub- T 0.1}
scribe message to a specific nodeld, the cost is proportional 0" : : : :
to the log of the number of nodes. As each message is very 0 0z 04 06 08 1
small in size (it contains a treeld and a few nodelds), only Parental availability

a few kilobytes are transmitted by each node, which is min-

imal relative to typical data rates for streaming video. ToFigure 3: Cumulative distribution of parental availalyilit
unsubscribe from a tree, a node only needs to notify its parvhen all nodes are normal.

ent in the tree, therefore the cost is constant regardless of

the size of the system. Moreover, this unsubscription cosfions. Despite the tree reconstructions, we see that debt
can be saved if all the nodes in the tree discard the tree at theyels do not discriminate well between selfish and normal
same time. This is possible if the data source can includ@odes. We believe this occurs mainly as a result of the Split-
this information in the data stream. Stream’s preference for routing to “local” nodes, meaning

To estimate the overhead in practice, consider video streanii@t many nodes will have the same pairings, round after

ing to 500 nodes. Assume that the video is streaming aliound, and other nodes will not learn enough to distinguish

128Kbps, the typical upstream bandwidth for a DSL userSelfish from normal nodes.

Figure 1 shows that on average each node needsto send 463 pgrental availability

messages to reconstruct one tree. Assume that each mes-

sage is of size 128 bytes and all 16 multicast trees are rdn order to understand parental availability (a child’srrgt

constructed every two minutes. The total overhead wouldf how likely a given parent was to accept it as a child),

only be 1.71% of the stream. we simulated a network with no freeloaders; each node will
accept up to 16 children. Figure 3 shows the distribution

4.2 Debt after 256 tree reconstruction time steps. Half of the child-

Consider two randomly chosen nodes in the SplitStreanI?arem availability ratings in the system are pelow 0.37 an_d
system. If the trees are constructed randomly, the odds df2!f are above. If a node was a freeloader, its parent avail-
one node being the parent or the child of the other are th@Pility rating would be zero. If we choose to cut off parents
same as a random coin flip. As trees are reconstructed, tHith low availability, we must take care to avoid false pos-
expected average debt that might be accumulated will tenfiives: particularly given that many legitimate parentséia

to vary with the square root of the number of rounds [13]./0W ratings. For example, a cut-off of 0.44 might normally

We can thus define thaebt level reject 58% of the legitimate parents.
accumulated debts/credits 4.4 Confidence
Debt level= .
v/ total transfers

Since debts between peers and parental availability rates
Figure 2 shows the cumulative distributions of debt levelsare insufficient, by themselves, to detect freeloading apde
with 5% selfish nodes after 256 rounds of tree reconstrucwe will consider a rating mechanism (see Section 3.2) that

3 1 [Type [Count | Description |
D 0.9 o + 496 | Normal nodes
s 0.8 L X 1 | Refuse to accept children after 32
kS 0'7 B o 1 | Always refuse to accept children
© 0.6 L N | ® 1 | Refuse to forward data after 32
kS 0' 5l ¥ | 3] 1 | Always refuse to forward data
) : >
o2 04+ X - ‘O 1
5) FEFXE T T T FF T TP T T T A F A FF T FFF T F T F 77 1
c 0.3 F X b, o 09F T *x]
[} 02} /X i p : 60O %
= ' X Normal nodes—+— g 08p .
g 0lp < Selfish nodes—=-— 7 S 07% x i
o == 1 1 1 1 1 1 ,(7’, - 5
1 2 4 10 20 40 100 200 g 061 x 1
. . = 05F ‘o O X —
Negative confidence S - i
E O4m o x
. . _ . . . © 03 gn OED *x]
Figure 4: Cumulative distribution for negative confidence. £ go| | . °.0 xx]
: n o
% o1b ':2ogguumﬂéééﬁﬁéﬁémmw—
@ olL1 L Ll LI PYYL PYTTT T
(i

blames all upstream peers for any transmission failure. Fig 0 64 128 192 256 320 384 448 512
ure 4 shows the distribution of negative confidence, with Time (full reconstructions)
5% selfish nodes, after 256 full reconstructions. Unlike

debt, the confidence value can effectively distinguishself Figure 5: Fraction of multicast streams Successfu”y re-

ish nodes. For example, by setting a threshold of 2, a selfisBejved when nodes refuse to send data to freeloaders.
node can be positively identified by more than 90% of nodes

in the system with only 1% false positives.)))
4 y P who refuse to accept children likewise manage to only re-

4.5 Refusing service to freeloaders ceive 10% of the multicast data. It can also be observed

that initial cooperation followed by freeloading behavior
In this experiment, we evaluate the effectiveness of a comhas only a limited effect in the short term and no effect in
bination of our mechanisms. We simulate a system consisthe long term.
ing of 496 nodes correctly following our protocol and four ,)
selfish nodes. Two of these selfish nodes begin cheating imve also performt_ad an experiment W|th_ten freeloaders_ of
mediately while the other two start cheating only aftertimebOth types (r_efusmg to send data to children a_md refus_'”g
32. Two cheaters will refuse to forward traffic to their chil- ©© accept children). These freeloaders experienced simi-
dren and the other two will refuse to be a parent. Wherar levels of r?ceptlon as the freeloaders in Figure 5, but
performing our simulations, we tried a variety of different normal nodes’ reception levels dropped from 98% to 92%.

parameters, eventually settling on the ones described her'léhis indicates that increasing numbers of freeloaders will

Normal nodes will always forward data to each of their chil- cause worsening _performancg for norm_al_ nodes, but that
dren. unless the child has: the freeloaders will not benefit from their increased pres-

ence. For contrast, we also ran a similar simulation against

» a confidence value of less thas2; or the original SplitStream, with a random distribution of
e a parental availability of less than4 as well as a freeloading nodes and found that normal nodes’ reception
confidence value of less thar20 levels was 90.6%. This shows that our techniques represent

When accepting children, a parent can preempt it imp_rove_mer_1t over the original system, although some
previously-accepted children for any other node with atbandwidth is still beln_g Wgsted on freeloaders. One_p053|-
least 01 higher in parental availability. Also, reciprocal Pl€ way to address this might be to use a data encoding that
requests are used when a prospective child has attempté@Mehow requires a node to receive above a certain frac-
to contact a parent at least a factor of 8 times more oftefOn of the multicast data to decode anything at all. Such a
than when their roles are reversed. Furthermore, we gescheme would reduce the utility experienced by freeloaders
cay positive confidence values over time, multiplying themi' the freeloaders gain no benefit from staying, they would
by 0.9 after each time step. As a result, nodes will forgetleave and t_he bandwidth they were consuming would revert
how good their parents have been, but they will remembePack to being used by good nodes.

how bad their parents have been. A parent is thus forced to

continue providing service to maintain its children’s cenfi © Related work

dence; likewise, freeloaders will be forced to provide ser-

vice if they ever wish to reestablish their reputation. Distributed mechanisms Ngan etal. [17] consider a p2p

storage system, and propose an auditing mechanism so that
Figure 5 shows that our hybrid policy, considering confi-cheaters can be discovered and evicted from the system.
dence values and parental availability, effectively ppags Fuqua et al. [12] modeled the utility function of nodes
nodes who refuse to forward traffic to their children. Nodesin such a system, showing that nodes with similar prefer-

ences will have an incentive to cluster together and to tevea[4] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Parabips
their preferences truthfully. Feigenbaum et al. [9] coasid
multicast transmissions using micro-payments, and proved
the strategy-proof property of a simple cost-sharing mech-
anism. All such systems are examples of problems in dis- 1ol

tributed algorithmic mechanism design (DAMD) [10].

Nicolosi and Mazieres [18] propose a technique for the [6]
sender of multicast data to confirm message delivery to all
receivers. While this can help the sender to learn the iden-

tity of nodes refusing to forward data, it does not prevent 7

nodes from refusing to accept children.

Reputation systems Many systems depend on nodes ob-

serving the behavior of their peers and gossiping with each
other about their observations. Dingledine et al. [7] sysve

many such schemes for tracking nodes’ reputations.

In reputation systems, if obtaining a new identity is cheap,

(8]

negative reputations can be shed easily. Friedman and

Resnick [11] study the case of cheap pseudonyms, and aft0]
gue that suspicion of strangers is costly. Distributed repu

tation systems have been proposed in a number of contexts,

including MIX-Nets [6] and Gnutella [4].

Our system uses the notion of a probationary period, wherg 1
new nodes see degraded service, yet must participate fully
in the protocol. A similar concept appears in Tangler [21].

6 Conclusions

We have demonstrated that, by regularly rebuilding multi-

(12]

cast trees and having nodes only track their first-hand obfL3]
served behavior of their peers, freeloaders would be suit-
ably denied service. The network and computational overf14]
head of our mechanism is low and thus could scale to large
number of nodes. It remains future work to study whether
we can improve the robustness of the system to tolerate Gl

larger fraction of freeloaders and freeloaders operating i

concert with one another. In addition, the effectiveness o{ 6]
our mechanism may depend on the choice of multicast ap-
plications, p2p routing substrates, and network topokgie
Regardless, we have shown the effectiveness of combining 7
a node’s direct observations with mechanisms to guarantee
that parent-child relationships have a good chance of being

reversed are effective at providing disincentives to frad}
ing behaviors.

References

[1] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.

(18]

(19]

Wallach. Security for structured peer-to-peer overlay net [20]

works. InProc. OSDI'02 Boston, MA, Dec. 2002.
[2]

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. SplitStream: High-bandwidth

multicast in cooperative environments. Bnoc. SOSP’03
Bolton Landing, NY, Oct. 2003.

B. Cohen. Incentives build robustness in BitTorrent.
Workshop on Economics of Peer-to-Peer Syst@askeley,
CA, June 2003.

(3]

In

(21]

and P. Samarati. Choosing reputable servents in a p2p net-
work. In Proc. 11th Int'l WWW Conf.Honolulu, Hawaii,

May 2002.

L. P. Cox and B. D. Noble. Samsara: Honor among thieves
in peer-to-peer storage. FProc. SOSP’03Bolton Landing,

NY, Oct. 2003.

R. Dingledine, M. J. Freedman, D. Hopwood, and D. Mol-
nar. A reputation system to increase MIX-Net reliabilitg. |
Proc. 4th Int'l Workshop on Information HidindPittsburgh,

PA, Apr. 2001.

] R. Dingledine, M. J. Freedman, and D. Molnar. Account-

ability. In A. Oram, editor,Peer-to-Peer: Harnessing the
Power of Disruptive Technologieshapter 16. O'Reilly &
Associates, 2001.

J. R. Douceur. The Sybil attack. Proc. IPTPS'02 Cam-
bridge, MA, Mar. 2002.

] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharin

the cost of multicast transmissionslournal of Computer
and System Scienge&3(1), Aug. 2001.

J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: Recent results and future directions. In
Proc. 6th Int'l Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communicatiopages 1—
13, Atlanta, GA, Sept. 2002.

E. Friedman and P. Resnick. The social cost of cheap
pseudonym.Journal of Economics and Management Strat-
egy, 10(2):173-199, 2001.

A. C. Fuqua, T.-W. J. Ngan, and D. S. Wallach. Economic
behavior of peer-to-peer storage networks. Warkshop

on Economics of Peer-to-Peer Systeferkeley, CA, June
2003.

M. B. Handelsman. Distributing “heads” minus “tailsThe
College Mathematics Journa22:444-446, 1991.

Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A secure
on-demand routing protocol for ad hoc networks. Piroc.
MobiCom’02 Atlanta, GA, Sept. 2002.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. i
High bandwidth data dissemination using an overlay mesh.
In Proc. SOSP’03Bolton Landing, NY, Oct. 2003.

R. Merkle. A digital signature based on a conventional e
cryption function. InAdvances in Cryptology—CRYPTO’'87
(LNCS, vol. 293)1987.

T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing
fair sharing of peer-to-peer resources. Rroc. IPTPS'03
Berkeley, CA, Feb. 2003.

A. Nicolosi and D. Mazieres. Secure acknowledgment of
multicast messages in open peer-to-peer network&rdn.
IPTPS’'04 San Diego, CA, Feb. 2004.

A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient
and secure source authentication for multicast. Pinc.
NDSS’'01 San Diego, CA, Feb. 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, distet
object address and routing for large-scale peer-to-peer sy
tems. InProc. IFIP/ACM Int’l Conf. on Distributed Systems
Platforms Heidelberg, Germany, Nov. 2001.

M. Waldman and D. Mazieres. Tangler: A censorship-
resistant publishing system based on document entangle-
ments. InProc. 8th ACM Conf. on Computer and Communi-
cations SecurityPhiladelphia, PA, Nov. 2001.

