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ABSTRACT
The free-rider problem arises in the provisioning of pub-
lic resources, when users of the resource have to contribute
towards the cost of production. Selfish users may have a
tendency to misrepresent preferences – so as to minimize in-
dividual contributions – leading to inefficient levels of pro-
duction of the resource. Groves and Loeb formulated a clas-
sic model capturing this problem, and proposed (what later
came to be known as) the VCG mechanism as a solution.
However, in the presence of heterogeneous users and com-
munication constraints, or in decentralized settings, imple-
menting this mechanism places an unrealistic communica-
tion burden. In this paper we propose a class of alternative
mechanisms for the same problem as considered by Groves
and Loeb, but with the added constraint of severely limited
communication between users and the provisioning author-
ity. When these mechanisms are used, efficient production is
ensured as a Nash equilibrium outcome, for a broad class of
users. Furthermore, a natural bid update strategy is shown
to globally converge to efficient Nash equilibria. An exten-
sion to multiple public goods with inter-related valuations
is also presented.

Categories and Subject Descriptors
G.1.6 [Optimization] Mechansim Design, Non-cooperative
Games

General Terms
Economics, Algorithms, Theory

1. INTRODUCTION
This paper proposes a new class of mechanisms for ad-

dressing the free-rider problem that arises in the production
of public goods. By public good we refer to a resource whose
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usage is non-exclusionary: it can be used simultaneously and
equally by all users. This is in contrast to a private good,
which has to be divided up among the users, each of whom
has exclusive access to its portion after the auction. Com-
mon examples of public goods in everyday life are television
/ radio broadcasts, weather reports and public works such
as libraries.
In proposing the mechanisms described in this paper we

are motivated by public goods in modern communication
and computation systems. Consider for example a large dis-
tributed database, containing information available to all
users, without exclusion. Each user contributes towards the
building / maintenance of this database, either in direct
monetary terms or through contributed storage resources.
Since the information in the database is assumed to be freely
available to all users, each user has an incentive to minimize
the amount of resources it contributes. However, if every
user acts according to these selfish considerations, the net
result could be a possibly severe under-provisioning of the
resource. This is the classic “free-rider problem:” improper
provisioning of a public good – the database – due to selfish
behavior. Other examples of public resources are commu-
nity wireless data access, and file distribution and storage
in peer-to-peer networks.
Mechanisms for the production of public goods proceed

as follows. Users are asked to submit bids to the producer.
Based on the received bids the producer then decides, ac-
cording to a pre-specified and globally known rule, the quan-
tity of the public good to be produced and the contributions
to be made by each of the users. Groves and Loeb [1] pro-
posed a generic model capturing the free-rider problem in
the production of a real-valued amount of a public good.
The mechanism they proposed for solving the problem was
one of the earliest instances of what later came to be known
as the general class of VCG mechanisms. This paper pro-
poses alternative mechanism designs for the same resource
allocation problem as formulated in [1].
It is well known (see e.g. [2]) that VCG mechanisms are

the only ones that ensure efficient production as dominant
strategy outcomes in a wide variety of resource allocation
problems. It is also increasingly apparent that in many
settings the implementation of VCG mechanisms places a
heavy communication and computational demand on the
auctioneer and agents, to the extent that they are deemed in-
feasible to implement. Another criticism of the VCG mecha-
nism is that it asks for detailed private information, namely
the entire set of user preferences, to be made public for the
purposes of resource allocation. Even when bids may be
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submitted anonymously, users may be unwilling or unable
to completely reveal their preferences.
In this paper we consider the same problem as was con-

sidered in [1], but add a severe communication constraint.
Specifically, we require that each user’s bid be a single real
number. This is in contrast to the VCG implementation,
which asks that the bid be an entire real-valued function.
Since dominant strategy equilibria are unreasonable to ex-
pect in this setting, we settle for Nash strategies as the equi-
librium concept. We propose mechanisms that result in the
production of an optimal quantity of the public good at any
Nash equilibrium. Furthermore, Nash equilibria are shown
to always exist, and are unique if there is a unique optimal
quantity. Revelation of single-valued bids implies that it is
not possible to infer a user’s private valuation information
from its bid.
Such a mechanism design immediately raises the question

of price discovery: how do users know / arrive at a Nash
equilibrium? This is not a concern for VCG mechanisms as
users are assumed to know their own value functions. For the
mechanisms in this paper, myopic best response adjustments
to bids in continuous time result in global convergence to
Nash equilibria. Furthermore, these updates are easy to
compute and need very little information – which can be
provided by the mechanism designer – about the rest of the
market.
VCG mechanisms are individually rational because when

bidding optimally each user can ensure that its payment
does not exceed the value it obtains from the good’s produc-
tion. In the mechanism proposed in this paper, the payment
made by a user will always be less than its single-valued bid.
This is true at all times, not just at the final equilibrium.
Also, at Nash equilibrium, no user’s payment will exceed the
value it obtains from the good’s production.
Allocation of private goods based on single-valued bids,

as well as the dynamics of convergence to equilibria, has
received attention previously [3, 4, 5, 6, 7]. The problem
of provisioning a public good differs from these in the sense
that the allocation decision is one-dimensional, namely the
real-valued quantity to be produced, while in the private
good case the allocation is a multi-dimensional vector of
each user’s quantity.
For public goods, when improperly designed mechanisms

are used, inefficient production may occur as an equilibrium
outcome. In Section 2 we give an example of a simple intu-
itive mechanism and show that inefficiencies in production
may be quite severe even for reasonable scenarios of user
value functions. In Section 3 we describe one example of
the class of new mechanism we propose in this paper, and
prove the existence, uniqueness, and optimality results for
Nash equilibria in the resulting game. In Section 4 we show
that myopic gradient ascent updates in continuous time re-
sult in global convergence to a Nash equilibrium. In Section
5 we extend the example mechanism to the case when there
are multiple public goods and users with joint value func-
tions. We present the full class of mechanisms in Section 6,
and conclude with some discussion in Section 7.

2. SYSTEM MODEL
A certain quantity Q ∈ R++ of a public good has to be

produced by a producer, where R++ is the set of strictly
positive reals. The producer can produce a quantity Q at
cost C(Q). Once produced, it is available to n users, where

n ≥ 2. Each user i obtains a value Ui(Q) from the good’s
production, and contributes a payment pi towards its pro-
duction. It is assumed that C(Q) is strictly increasing and
convex and each Ui(Q) is strictly increasing and concave,
and all functions are continuously differentiable. This is the
same as the model in Groves and Loeb [1]. 1

A quantity Q∗ is said to be efficient if producing that
quantity maximizes the net social benefit:X

i

Ui(Q
∗) − C(Q∗) ≥

X
i

Ui(Q) − C(Q)

for all Q ∈ R++. If a quantity Q does not satisfy the above
requirement, it is inefficient. It is assumed that there ex-
ists some finite Q∗ > 0 that is efficient. Concavity implies
that the efficiency of Q∗ is characterized by the first-order
conditions.

Lemma 2.1. A quantity Q∗ is socially optimal iff
P

i U
′
i(Q

∗) =
C′(Q∗).

Any mechanism for the production of the good proceeds
as follows. First, each user i is asked to submit a bid bi.
Then, the producer maps the vector of bids b into a pro-
duced quantity f(b) and a payment pi(b) for each user i.
We will call f the production function and the pis the pay-
ment functions. The production and payment functions are
known by the users in advance, i.e. before they submit their
bids. Specifying the space of allowed bids and the produc-
tion and payment functions specifies the mechanism.
One example of such a mechanism is the classical VCG

mechanism. A VCG mechanism requires users to submit
bids that are functions on R+. Given these bid functions bi,
the production function is

fV CG(b) = arg max
Q≥0

X
i

bi(Q)− C(Q)

while the payment function for user i is

pV CG
i (b) =

0@max
Q≥0

X
j �=i

bj(Q)− C(Q)

1A
−
0@X

j �=i

bj(f
V CG(b))− C(fV CG(b))

1A
Given a mechanism and bid vector b, the net reward of

user i is given by

Ri(b) = Ui(f(b))− pi(b) (1)

Given the mechanism, the users play a non-zero-sum non-
cooperative game, with each user trying to maximize its own
net reward.
As an example of a mechanism susceptible to the free-

rider problem, consider the pay as bid mechanism where user
payments are the bids – pi(b) = bi – and the production
function is the one that balances the budget – f(b) = X(B)
where X = C−1 is the inverse of the cost function and B =P

i bi is the total of all bids (and payments).
For this mechanism it can be seen that the first-order nec-

essary condition for a bid vector eb to be a Nash equilibrium

1Except that in [1] it is assumed that Q ≥ 0 and C(Q) =
pQ for some p > 0. Also the Ui functions need not be
differentiable.
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is that

U ′
i(X( eB)) ≤ C′(X( eB))

for each user i, with equality if ebi > 0. It is easy to see
from Lemma 2.1 that there will not be an efficient Nash
equilibrium when more than two users are present, for any
set of value functions Ui and cost function C.

3. A NEW MECHANISM
In this section we present an example from the new class

of mechanisms that ensure socially optimal production. To
do so we need to specify the space of allowable bid vectors,
the production function f , and the payment functions pi.
Each user’s bid is a strictly positive real number: bi ∈

R++. Given the cost function C(Q), define its inverse func-
tion X. This can be done since C in strictly increasing.
Thus X(C(Q)) = Q for all Q ∈ R++. Also, X is increasing,
concave and differentiable, with X ′(C(Q)) = 1

C′(Q)
.

Given the vector of bids b, denote the total of all bids by
B =

P
i bi. We propose the following production function:

f∗(b) = X(B) (2)

For each user i, denote the total bid of users other than
i by B−i =

P
j �=i bj . We propose the following payment

functions

p∗i (b) = bi −B−i log

„
1 +

bi
B−i

«
(3)

The mechanism is thus fully specified.

Lemma 3.1. The reward function Ri(bi, B−i) is concave
in bi for all fixed values of bj , j �= i.

Lemma 3.2. 0 < pi(bi, B−i) < bi for all b and i: a user
is never asked to pay more than its bid.

Since each user’s reward function (1) is concave in its own
bid, the simultaneous satisfaction of the following first-order

conditions by all users at a bid vector eb is necessary and

sufficient for eb to be a Nash equilibrium:

U ′
i(X( eB)).X ′( eB) − 1 +

eB−iebi + eB−i

= 0 for all i

If eQ = X( eB) then X ′( eB) = 1

C′( eQ)
and so the above condi-

tions can be rewritten as

U ′
i( eQ) =

ebieB C′( eQ) for all i (4)

Thus we see that
P

i U
′
i( eQ) = C′( eQ) at Nash equilibrium.

By Lemma 2.1 this relation implies that eQ will be efficient.
We state the theorem formally below, and prove it in the
appendix.

Theorem 3.1. For the public good model described in the
previous section if the mechanism (f∗, p∗i ) is used, there is a
one-to-one correspondence between the set of efficient quan-
tities and the set of Nash equilibria for the game. Also,
at any of these Nash equilibria the corresponding efficient
quantity is provisioned.

Note: Rosen’s theorem [8] cannot be directly used to
show the existence of Nash equilibria in this game since the
users’ strategy spaces are not closed.
It is clear that the mechanism is not budget-balanced.

However, it is possible to bound the subsidy B −Pi pi(b)
as a fraction of the total cost.

Proposition 3.1. When n users are present,

B −Pi pi(b)

B
≤ (n− 1) log

n

n− 1

This is tight when the n bids are equal.

4. DYNAMICS
The above section shows that for the mechanism pre-

sented, Nash equilibria always exist and are efficient. How-
ever, users still have to find out these Nash equilibria. In
this section we show that if users follow a natural bid up-
date strategy, then the vector of bids converges to a Nash
equilibrium from any valid initial condition.
Specifically, consider the user update rule when each user

attempts gradient ascent, in continuous time, of its reward
function (1):

d

dt
bi =

∂

∂bi
Ri(bi, B−i)

= U ′
i(X(B)).X

′(B) − bi
B

(5)

To follow this bid update procedure at a given time, the
user only needs to know the amount currently provisioned,
the cost function’s derivative and the total of all the users’
bids. The user does not need detailed information about
what each user’s bid is, or even how many users are present.

Theorem 4.1. For the bid updates given by (5), the vec-
tor of bids will converge to a Nash equilibrium from any
initial condition having bi > 0 for at least two users i.

If the unique optimal decision is zero production, i.e. ifX
i

Ui(0)− C(0) >
X

i

Ui(Q)− C(Q)

for all Q > 0, then the above dynamics will result in B → 0.
Hence production will be efficient in the limit.

5. MULTIPLE GOODS
The mechanism presented above has a natural extension

to the case when there are multiple public goods to be pro-
duced for users who have joint valuation functions. In this
section we show that if the production costs are decoupled,
then using the mechanism proposed in this paper separately
for each good results in efficient joint provisioning of all
goods.
Efficient production has to be achieved ofM public goods.

Denote the vector of quantities by Q = [Q1, . . . , QM ]. Each
user has a value function Ui(Q), which is assumed to be
jointly continuous, differentiable, concave and strictly in-
creasing 2 in each coordinate. The production of each good
incurs a cost, as specified by the cost functions Cm(Qm) for

2The strictly increasing requirement for Ui can be relaxed
somewhat, but we will not discuss it here for brevity
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1 ≤ m ≤ M . Each cost function Cm is assumed to be con-
vex, strictly increasing and differentiable. Q ∈ R

M
++ means

that each coordinate is strictly positive: Qm ∈ R++ for all
m.
A vector of quantities Q∗ is said to be efficient if it max-

imizes the net social benefit:X
i

Ui(Q
∗) −

X
m

Cm(Q
∗
m) ≥

X
i

Ui(Q) −
X
m

Cm(Qm)

for all Q ∈ R
M
++. It is assumed that there is at least one

efficient Q∗ ∈ R
M
++ in which each quantity is finite.

With these assumptions, running a separate market for
each good results in efficient production. Each user i now
submits a vector of bids bi = [b1i . . . b

M
i ]: thus each bid is an

M -dimensional vector bi ∈ R
M
++. As before define, for each

good m, the bid sums Bm �
=
P

i b
m
i and Bm

−i
�
=
P

j �=i b
m
j .

Let Xm be the inverse function of Cm as in the single good
case. For notational brevity, denote the vector of total
bids by B = [B1, . . . , BM ] and the vector production func-
tion by X. Thus X(B) stands for the vector of quantities
[X1(B

1), . . . ,XM (BM )]. Also, B−i = [B1
−i, . . . , B

M
−i].

Consider the mechanism that, given all the bids, produces
quantity Xm(B

m) of each good m and charges user i an
amount

P
m pm

i , where

pm
i (b

m
i , B

m
−i) = bmi −Bm

−i log

„
1 +

bmi
Bm

−i

«
is the payment user i makes towards the provisioning of
good m. The level of production of each good is thus a local
decision, with the users balancing payments across goods
so as to maximize their net reward. For the mechanism as
described, this is given by

Ri(bi, B−i) = Ui(X(bi +B−i)) −
X
m

pm
i (b

m
i , B

m
−i)

Bid vectors eb1, . . . ,ebn are a Nash equilibrium if

Ri(ebi, eB−i) ≥ Ri(bi, eB−i) for all bi ∈ R
M
++

As in the single good case, efficient allocations and Nash
equilibria are fully characterized by first-order conditions.
Thus Q∗ is optimal if and only ifX

i

∂

∂Qm
Ui(Q

∗) = C′
m(Q

∗
m) for each m

Bid vectors eb1, . . . ,ebn are a Nash equilibrium if and only if

∂

∂Qm
Ui( eQ) =

ebmieBm
C′

m( eQm) for all i and m

where eQ = X( eB). This is the multiple-goods analogue of
relation (4), and we can prove the existence and efficiency of
Nash equilibria for the multiple goods case in the same way
as was done for a single good. We state this as a theorem
below and omit the proof.

Theorem 5.1. Consider the model with multiple public
goods described in this section with the mechanism (f∗, p∗i )
used for the provisioning of each good. Then there is a one-
to-one correspondence between the set of efficient quantity
vectors and the set of Nash equilibria for the game. Also,
at any of these Nash equilibria the corresponding efficient
quantity vector is provisioned.

As in the single good case, if each user updates its bid
vector according to gradient ascent in continuous time then
there is global convergence to an efficient Nash equilibrium.
The update equations are now given by the gradient

d

dt
bi = �bi

 
Ui(X(B)) −

X
m

pm
i (b

m
i , B

m
−i)

!
(6)

which is the same as

d

dt
bmi =

„
∂

∂Qm
Ui(X(B))

«
X ′

m(B
m) − bmi

Bm

The proof of global convergence is similar to that for a single
good. We state the theorem below and omit the proof.

Theorem 5.2. For the bid updates given by (6), the vec-
tor of bids will converge to a Nash equilibrium from any ini-
tial condition where for each good m there are at least two
users with strictly positive bids for that good.

6. A CLASS OF EFFICIENT MECHANISMS
The mechanism presented in this paper is not unique in

its efficiency guarantee. In particular, consider a mechanism
with real-valued bids such that the production function is
f(b) = X(B), each payment function pi(b) is convex in-
creasing and continuously differentiable in bi for fixed b−i,
pi(0,b−i) = 0, and the vector of payment functions satisfiesX

i

∂pi

∂bi
(b) = 1

for all b ∈ R
n
++. If the existence of Nash equilibria can be

demonstrated for such a mechanism, then the Nash equilib-
ria are guaranteed to be efficient. We will refer to any such
mechanism as a mechanism with guaranteed efficiency. In
the following, we present a large class of mechanisms with
guaranteed efiiciency for which the existence of Nash equi-
libria can be shown.
Let ψ(s) be a strictly increasing continuous function from

[0,∞) to [0,∞), with ψ(0) = 0. Given a vector b of bids,
with bi ∈ R++, consider the mechanism given by

f(b) = X(B)

pi(b) =

Z bi

0

ψ(s)

ψ(s) +
P

j �=i ψ(bj)
ds

In terms of this notation, the mechanism given by (2) and
(3) corresponds to ψ(x) = x.
It can be shown that the analogues of Lemma 3.1, Lemma

3.2, Theorem 3.1, and Theorem 4.1 hold for any mecha-
nism of the kind specified above. Given this class of efficient
mechanisms, further optimizations can be performed with
revenue as the metric. The following proposition gives an
upper bound on revenue for the more general class of mech-
anisms with guaranteed efficiency.

Proposition 6.1. Given user value functions Ui and any
mechanism with guaranteed efficiency, if b∗ is a Nash equi-
librium at which quantity Q∗ is produced, thenP

i pi(b
∗)

B∗ ≤ max
i

U ′
i(Q

∗)
C′(Q∗)

Proof of Prop. 6.1:
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For each user i,

pi(b
∗)

b∗i
≤ ∂pi

∂bi
(b∗) =

U ′
i(Q

∗)
C′(Q∗)

where the inequality holds because pi(bi,b
∗
−i) is a convex in-

creasing function of bi with pi(0,b−i) = 0, and the equality
is the first order necessary condition for b∗i to be a Nash bid
for user i. The proof of the proposition follows immediately
from these relations. ✷

The above upper bound may be quite small if the num-
ber of users is large. Note that efficiency requires thatP

i U
′
i(Q

∗) = C′(Q∗). So, for example, in the case when
users are symmetric this upper bound is 1

n
.

The mechanism designer may be interested in maximizing
revenue. Alternatively, it may be the designer’s objective
to provision optimally, but at minimal cost to the users.
The following theorem shows that either objective can be
achieved by a suitably designed mechanism from the class
described in this section.

Theorem 6.1. Let user value functions U1. . . . , Un and
production cost function C be such that there is a unique
optimal quanitity Q∗ > 0 costing B∗ = C(Q∗). Let pα

i (b)
be the payment function for the mechanism having ψ(s) =

1 − e−αs, and pβ
i (b) for the mechanism having ψ(s) = eβs.

Then, if bα and bβ are the corresponding Nash equilibria,

lim
α→∞

P
i p

α
i (b

α)

B∗ = max
i

U ′
i(Q

∗)
C′(Q∗)

lim
β→∞

P
i p

β
i (b

β)

B∗ = 0

Note however that the convergence of either of the above
limits is not uniform in the choice of the Ui value functions.

7. DISCUSSION
This paper proposes a class of mechanisms to alleviate the

free-rider problem by ensuring efficiency at Nash equilibria
of a static game. It then shows that user bids converge to
Nash equilibria globally, provided they use myopic update
strategies. Using iterative price and bid update procedures
for computationally infeasible problems in auctions and re-
source allocation have been proposed recently for multi-unit
auctions where users have bundle bids [9, 10], as well as in
the allocation of divisible goods [6, 7]. All these mecha-
nisms give efficiency and truthful revelation guarantees only
when users are assumed to follow myopic best response bid
updates. The analysis of user dynamics as repeated games
in the true sense is hard. Furthermore, in general, it seems
unlikely that the efficiency properties shown for static mech-
anisms will hold when the dynamics of convergence are re-
peated games. The issue of dynamics is thus a genuine point
of criticism for this approach. In the settings of modern in-
formation systems however, two comments can be made to
partially address this issue. Firstly, it may be that the mech-
anism is not an honest auction, but rather an implementable
algorithm to find efficient allocations in the presence of com-
munication constraints. Secondly, in large distributed set-
tings, finding a viable alternative to best-response dynamics
may be hard.
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Appendix
Proof of Theorem 3.1:

Suppose first that eb is a Nash equilibrium, and eQ = f∗(eb)
is the corresponding quantity that is produced. The equi-

librium condition given in (4) holds for eb. Summing the
conditions in (4) over the set of users yieldsX

i

U ′
i( eQ) = C′( eQ)

By Lemma 2.1, this means that eQ is efficient. Thus efficient
quantities are provisioned at Nash equilibria.
For showing the existence of Nash equilibria, we simply

turn the above argument around. Let Q∗ be efficient – by
assumption there exists at least one such quantity that is
finite. Define for each user the bid

ebi �
=

U ′
i(Q

∗)
C′(Q∗)

C(Q∗)

Then, by Lemma 2.1,
P

i U
′
i(Q

∗) = C′(Q∗) and hence the
total bid satisfies eB = C(Q∗). Thus the above equation can
be rewritten as

U ′
i(Q

∗) =
ebieB C′(Q∗) for all i

Since Q∗ = X( eB), this vector eb of bids defined from Q∗

satisfies the necessary and sufficient conditions of (4), and

hence is a Nash equilibrium. eb as defined above corresponds
to the efficient quantity Q∗. ✷

Sketch of Proof of Theorem 4.1:
Note that the problem of provisioning an efficient quantity

Q∗ is equivalent to ensuring that the user bids total to B∗

where

B∗ = argmax
B

X
i

Ui(X(B)) − B

Adding (5) over all users i gives the update equation for the
total of all the bids:

d

dt
B =

X
i

U ′
i(X(B)).X

′(B) − 1

Note that this is the same as gradient ascent by B to-
wards the optimum of the concave one-dimensional functionP

i Ui(X(B))−B. Thus individual gradient ascent in contin-
uous time by each user, for its own reward function, results
in global gradient ascent by the sum of the bids towards the
efficient outcome.
Also, once the sum bid is close to an efficient B∗, the sum

of the bids B remains nearly fixed. At this point if the bid
of any user is not its Nash bid, it will converge to a small
neighborhood of the Nash bid exponentially fast. ✷
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