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1 Introduction

Network structures play a central role in determining
outcomes in many important situations. Examples
include the world wide web, joint research venture
projects among firms, co-author relationships among
academics, political alliances, trade networks, the or-
ganization of intra-firm management, social networks
for transmitting information, and P2P systems for file
sharing. Given the large and increasing prevalence
of such applications, it is necessary to understand
the properties of these networks as these have impli-
cations for both individual incentives and collective
welfare.

Previous research has identified several empirical
regularities shared by networks in many of these di-
verse applications. We concentrate on three reason-
ably robust and prominent empirical characteristics
of large networks that have been observed in a variety
of settings.

• Networks tend to have small diameter and small
average path length, where small is on the order
of the log of the number of nodes (or less, as we
shall discuss).

• Networks tend to have high clustering coeffi-
cients relative to what would emerge if the net-
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work’s links were simply determined by a com-
pletely random process.

• The degree distribution of networks tends to ex-
hibit “fat tails” and often approximate a “scale-
free” or “power-law” distribution. Thus, there
tend to be many more nodes with very small and
very large degrees than one would see if the links
were formed completely independently.

While these three characteristics of a network are
far from enough to completely characterize a net-
work, together they give us a great deal of informa-
tion about network structure. An important reason
for trying to understand these characteristics, and
how they are determined, is that they are critical in
determining the overall performance in a network.

Recent papers have looked at explaining these net-
work characteristics. Two prominent studies are by
Watts and Strogatz [30],1 who focussed on finding
networks with the joint characteristics of small di-
ameter and high clustering, and by Barabási and Al-
bert [4], who looked at generating scale-free networks.
Watts and Strogatz [30] point out the following: start
from some sort of symmetric (regular) network with
high clustering, but possibly large diameter. They
show by simulation that it takes only some minimal
random rewiring of a relatively few links to greatly
decrease the diameter of the network. Barabási and
Albert [4] come from a different angle. It has been
known for almost a half century that in a growing
society, if individual object size (say degree) grows
according to a lognormal distribution over time, and
subject to some bounds on object size (e.g., every
node forms at least one link upon birth), then the
overall distribution of object size in the population
will have a scale-free distribution. Barabási and Al-
bert [4] look at a model where new nodes are born
each period and choose to form links to existing nodes
with a probability proportional to the existing node’s
degree. This form of preferential attachment gener-
ates something like the lognormal growth in the de-
gree of existing nodes, and thus generates a scale free
distribution.2

While the work to date has made important
progress in helping us to understand some of the em-
pirical regularities of large networks, it leaves two

1See Watts [29] for a more detailed treatment, and back-
ground on high clustering.

2There are other studies generating scale free degree distri-
butions based on variations of preferential attachment, includ-
ing some models that are hybrids of random and preferential
attachment (e.g., see Kumar et al [20], whose copying method
is akin to preferential attachment, as well as Dorogovtsev and
Mendes Levene [10], Levene et al [21], Pennock et al [26], and
Cooper and Frieze [9]).
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very large holes in our understanding.
The first hole is that neither of the approaches for

generating networks described above manages to fit
all three of the stylized facts. The rewiring approach
of Watts and Strogatz ends up exhibiting a small di-
ameter and high clustering, but generally does not
exhibit a degree distribution that is scale-free. The
preferential attachment based random network gen-
eration model of Barabási and Albert [4] (and vari-
ations) generate scale-free networks, but those net-
works have clustering coefficients that are similar to
a purely random graph - vanishing in large networks.
Thus, neither of these methods of generating net-
works can be the one underlying most of the large
networks that we actually observe.

The second hole is that the processes for generating
networks are attempts at answering the question of
“how” but not of “why”. That is, they are not models
of an actual formation process where actors are mak-
ing some explicit, and say rational, decisions about
how to connect the network. They are instead sim-
ple models of specific stochastic processes of wiring
or rewiring a network that will exhibit some of the
desired characteristics. For instance, in the Watts
and Strogatz treatment, why should a network look
like something that started as a regular network and
then was rewired? And with regards to Barabási and
Albert [4], why should a link be formed according
to preferential attachment?3 If a node is valued for
its degree, then new links would be attached to nodes
with maximal degree as opposed to forming links with
a chance proportional to their degree. If instead, a
node is not valued for its degree why would we see
preferential attachment at all?

What we do in this paper is fill both of these holes.
We present a process that will exhibit all three of the
stylized facts. Moreover, this is a process by which ra-
tional economic actors (nodes) search for other nodes
and choose the links that they form so as to maximize
their economic benefit or utility. The understanding
of why the three stylized facts emerge is roughly as
follows. The search process occurs through the net-
work itself. This means that nodes with high degree
are more likely to be found through the search pro-
cess. This leads to attachment that has characteris-

3There are some papers that give one explanation as to a
“why” behind power laws. This is the idea of “HOT” (highly
optimized tolerance) systems that underlies Carlson and Doyle
[7] and Fabrikant, Koutsoupias, and Papadimitriou [13]. That
important idea addresses systems that are optimized, rather
than self-organizing. As such the explanation is quite different
in both application (for instance, understanding connections
among some routers) and approach, and thus quite comple-
mentary to that proposed here. Also, such models focus on
the scale-free aspect and robustness of the networks (e.g., see
Li et al [22]) and not issues of clustering.

tics similar to preferential attachment, which in turn
leads to a scale-free distribution of degrees on the
higher end. Second, the starting point of the search
and/or the cost structure can lead to a higher ten-
dency to form local links. This naturally leads to
high clustering. Third, the relatively small diameter
comes from the tendency for many nodes to find the
same ones to link to (as they are more likely to find
and link to nodes which already have large number
of links), which generates a diameter which is smaller
than the order of a purely random network.

We should mention that an interesting by-product
of our analysis is that the degree distribution we ob-
tain approximates a scale free distribution only for
the upper tail - that is, only for nodes with relatively
high degree, but not for ones with relatively low de-
gree. As pointed out by Pennock et al [26], many of
the internet based data sets that are said to be “scale-
free,” are only scale- free for large degree nodes.

2 A Search Model

We propose an ‘economic’ model of network growth.
The agents, who comprise or control the nodes of a
network, behave strategically. As they come in con-
tact with other agents, they choose whether to form
or not form links with them to maximize their utility.

Given a finite set of agents or nodes N , a (directed)
graph on N is an N × N matrix g where entry gij

indicates whether a directed link exists from node
i to node j. The obvious notation is that gij = 1
indicates the presence of a directed link and gij = 0
indicates the absence of a directed link.

For any node n ∈ N , let dout
i (g) = |{j ∈ N : gij =

1}| denote the out-degree of i, and din
i (g) = |{j ∈

N : gji = 1}| denote the in-degree of i. In the case of
a non-directed network, these are the same measure,
and are simply denoted di.

The basic model (see Jackson and Rogers [18]
for extensions) is based on an explicit search pro-
cess. Action takes place at a countable set of dates
t ∈ {1, 2, . . .}. At each time t a new node is added
to the population. Let Nt denote the set of all nodes
present at time t. Denote by g(t) the network con-
sisting of the links formed on the nodes Nt at the end
of time t.

The formation of links is described as follows. Let
us denote the new node born at time t by t. Upon
birth, the node t identifies mr nodes uniformly at
random (say, without replacement) from Nt−1. We
shall call these “parent” nodes. The new node forms
a (directed) link to a given parent node if the benefit
in terms of utility from forming that link, exceeds
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the cost. For now, let us assume that the benefit less
the cost is independently and identically distributed
across t, t′ pairs. Jackson and Rogers [18] has other
formulations of utility that allow for indirect benefits
and externalities from the network structure below.
Let pr denote that the probability.

In addition, (regardless of whether the node forms
a link to the parent) the node t searches in the par-
ents’ neighborhoods and finds other nodes. For in-
stance, in the example of web pages, new nodes are
found by following links from the parents’ web pages.
The new node t finds ms nodes through this search
method (over all parents). We think of this as hap-
pening in the parents’ immediate neighborhood, but
the same analysis applies for more extended neighbor-
hoods - say searching along paths of length at most k
from the parent node. Let ps denote the probability,
that the new node attaches to any given one of these
nodes found through search. Generally, it is reason-
able to have pr = ps, but we allow for the additional
heterogeneity so that we can nest other models (e.g.,
Barabási and Albert [4]) as special cases.

An expression for the probability that a given ex-
isting node i with degree di(t) gets a new attachment
(in period t + 1) is roughly4

pr
mr

t
+ ps

(
mrd

in
i (t)
t

) (
ms

mr(prmr + psms)

)
, (1)

Letting m = prmr +psms be the expected number of
nodes that a new node forms, we can rewrite (1) as

prmr

t
+

psmsd
in
i (t)

mt
. (2)

The first expression in (2) is the probability that the
node is chosen at random as a parent of the new node
and is linked to in that capacity. As there are t ex-
isting nodes, and a new node picks mr of them at
random, this probability is self-explanatory. The sec-
ond probability is that the node is found and attached
to via the search. This is the probability that at least
one of the nodes that has a link to i is chosen as a par-
ent, times the probability that i is then found via the
search, and then attached to. There are din

i (t) pos-
sible nodes that would have i in their neighborhood,
and so the probability that one of them is identified
as a parent by the new node is mrdin

i (t)
t , and then the

corresponding probability that the node is identified
out of the search through the neighborhoods of the
parents is ms

mrm .

4This is not an exact calculation, since it ignores the possi-
bility, for instance, that some of the parents are in each others’
neighborhoods, or that the node is found by more than one
method of search. Nevertheless, is a very accurate approxima-
tion for when the network is large (i.e., t is large) relative to
mr and ms, as these adjustments vanish.

2.1 Clustering

We begin the analysis of this model by looking at
the clustering coefficient. Given the directed nature
of the network, there are various ways in which one
might measure clustering. Here, we look at any two
links out from a given node, and ask what the prob-
ability that those two nodes are linked. So, for in-
stance, if a given web page is linked to two others,
then what is the probability that they are linked to
each other (one way or the other). Thus the cluster-
ing coefficient can be calculated as

C(g) =

∑
i

∑
k 6=j gijgik max[gjk, gkj ]∑

i

∑
j 6=k gijgik

.

We provide the clustering coefficient for the case
where pr = ps = 1, and when the search by a new
node is evenly distributed over each parent’s neigh-
borhood. That is, ms is a multiple k of mr and k
new nodes are picked in each parent’s neighborhood.

Proposition 1 In the search model with pr = ps =
1, C(g(t)) tends to 2ms

m(m−1)−mrk(k−1) (in probability).

For the proof, see Jackson and Rogers [18]. If we
allow for ps and pr to be less than one, then the clus-
tering coefficient is a more complicated expression,
but is on the same order, and most importantly, it is
bounded away from 0 as t grows.

The fact that the limiting clustering coefficient
does not vanish here comes from the search part of
the model. It is likely that a given node links to two
different nodes who are linked to each other, precisely
because they are linked to each other. Most impor-
tantly, this distinguishes the search-based model from
random graph models, preferential attachment mod-
els, as well as the hybrid random graph and prefer-
ential attachment models, where the clustering coef-
ficients tend to 0 as t →∞ (e.g., see Fronczak, Fron-
czak, and Holyst [16]). Previous models that have
been shown to generate high clustering either start
from some lattice structure and then rewire, as in
Watts and Strogatz [30], or involve some hierarchical
structure (see Eiron and McCurley [11]). Substantial
evidence suggests that large networks indeed exhibit
clustering measures much larger than would be pre-
dicted by either purely random processes or models
based on preferential attachment, as well as the hy-
brid versions.5

5For instance, Watts [29] gives a clustering coefficient of
0.79 for the network consisting of movie actors linked by movies
in which they have co-starred. Networks of researchers linked
by co-authored papers have also been analyzed in various fields
of study. For instance, Newman [24] gives clustering coeffi-
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2.2 A Mean Field Analysis of the De-
gree Distribution

Consider a process that evolves over time (continu-
ously) where the in degree of a given node i at time
t changes in proportion to the probability given by

ddin
i (t)
dt

= pr
mr

t
+

psmsd
in
i (t)

tm
. (3)

If we start the system with each node t having in
degree counted as d0 (for instance 0),6 when it is born
at time t, then we can solve the differential equation
given by (3) to find

din
i (t) = (d0 + rm)

(
t

i

) psms
m

− rm,

where r = prmr

psms
is the relative fraction of links

that are formed at random compared to through the
search.7

Proposition 2 The degree distribution of the above
process has a cumulative distribution function of

Ft(d) = 1−
(

d0 + rm

d + rm

) m
psms

, (4)

for d ≥ d0.

The proof of Proposition 2 appears in Jackson and
Rogers [18], and is similar to results found in many
papers that have used mean field approximations to
estimate large random network properties.

As a check on the mean-field approximations,
where we match the analytic solution from Proposi-
tion 2 with simulations of random process itself. The
two match up well for all degrees, and for a variety of
different parameters that we have run. See Jackson
and Rogers [18] for details.

Figure 1 illustrates these effects by showing the
complimentary cdf 1 − F (d) of the degree distribu-
tion for three parameterizations of the model. The
left panel shows a case where the roles of random

cients of 0.496 for computer science, and 0.43 for physics, while
[Grossman] gives a measure of 0.15 in mathematics. Several
authors have also analyzed clustering in the world wide web.
For instance, Adamic [1] gives a clustering measure of 0.1078
on a portion of the web containing over 150,000 sites (com-
pared to 0.00023 for a purely random graph of the same order
and number of edges).

6We allow this to potentially differ from 0, again so that
we can compare this to other models, such as preferential at-
tachment where it is necessary to start the in degree at a level
different from 0, or a node would never get any links.

7This presumes that psms > 0, as otherwise (3) simplifies
and has a different solution, as discussed in Jackson and Rogers
[18].

and search linking are roughly balanced, and gener-
ates a degree distribution that is nearly scale-free. In
contrast, the middle simulation shows a case where
the majority of links are formed randomly. In this
case the degree distribution is nearly scale-free in the
upper tail, but the lower tail is distinctly thinner than
a scale-free distribution would predict. [Let us point
out that in a log log plot of the complementary cdf,
the larger part of the graph comprising the right hand
side can actually only be due to a small fraction of
the data. We discuss this in more detail in Jack-
son and Rogers [18].] The third case (right panel)
is a purely random specification where no links are
formed via search, and so the degree distribution is
not scale-free in either tail.

Figure 1. Simulations are based on T = 10, 000 periods.

(left) Entering nodes connect to two parents as well as to

two nodes from each of the parents’ outlinks (mr = 2,

pr = 1, k = 2, and ps = 1). (middle) Entering nodes

connect to nine parents and to one node from each of the

parents’ outlinks (mr = 9, pr = 1, k = 1, and ps = 1).

(right) A purely random graph where entering nodes

connect to two parents and no other nodes (mr = 2,

pr = 1, and ms = 0).

Compare these distributions with those in Figure
2, which contain data from coauthorship networks
(left) from Newman [24] and the world wide web
from Albert, Jeong, Barabási [2]. While the latter
appears to exhibit a scale-free distribution, the for-
mer clearly does not. The search model accommo-
dates both cases, and suggests that the role of search
is more prevalent in the www case than for the coau-
thor network.

2.3 Diameter

Diameter is difficult to establish in the context of a
random graph, especially when the structure strays
from the purely random structure first studied by
Erdös and Rényi [12]. For some special cases we can
deduce limits on the diameter by piggy-backing on
some powerful results due to Bollobás and Riordan
[6].
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Figure 2. (left) Data from Newman [24] containing the

frequencies of authors with varying numbers of

coauthors, which are clearly not scale free. (right) Data

from Albert, Jeong, Barabási [2] showing the

complimentary cdf of web-page degrees, which is

approximately scale-free.

Proposition 3 If pr = 0, ps = 1, ms = 1, and
mr ≥ 2, then the resulting network will consist
of a singlecomponent with diameter8 proportional to

log(t)
log log(t) , almost surely.

The proof follows from Bollobás and Riordan [6].9

We conjecture that increasing the parameters pr

and ms and decreasing ps (provided mr ≥ 2) should
not affect these results, and this is confirmed by fol-
lowing the heuristic test suggested on page 24 of [6].
It is worth noting that the constraint that mr ≥ 2 is
critical. Intuitively, it is this independent search that
allows a node to form a bridge between different exist-
ing neighborhoods of the network, thus reducing path
length. Moreover, the fact that the search method is
more likely to lead to nodes with relatively very large
degree, means that new links are likely to lead to
shortening paths between many existing nodes. In
contrast, in a case where only one neighborhood is
searched, then this bridging no longer takes place and
the diameter stays on the order of that of a purely
random network (log(t)).

Thus, when at least two neighborhoods are
searched, the diameter of the resulting network is
much smaller than that of a uniformly random net-
work. Results from simulations support the conjec-
ture that this holds more generally. In the simula-
tions, we calculate a crude upper bound on the di-
ameter of a network by simply doubling the size of
neighborhood a given node much search out in or-
der to see the entire population. For the simulations
presented in Figure 1 (middle), using the node with

8Given the directed nature of the links, diameter is mea-
sured based on paths where a link can go in either direction.
Clearly, the diameter will generally be infinite if we measure
paths in other directions, as some nodes will form no outward
links whatsoever under the general random process we have
described.

9We need to allow nodes to self-connect and enter with de-
gree 1, in order to apply their proof.

highest degree, this crude upper bound is typically
δ̄ = 6 for T = 10, 000. Given that ln(T ) = 9.21 and
ln(T )

ln ln(T ) = 4.15, and that the upper bound we cal-
culate is not tight, this suggests that the diameter
for the search model is indeed of order smaller than
ln(T ).
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