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Abstract

In the context of pre-Bayesian games we analyze re-
source selection systems with unknown number of play-
ers. We prove the existence and uniqueness of a symmet-
ric safety-level equilibrium in such games and show that in
a linear model every player benefits from the common ig-
norance about the number of players. In order to analyze
such games we generalize the theory of equilibrium in gen-
eral pre-Bayesian games.

1. Introduction

There has been much interest in the recent years in work
bridging computer science and game theory. Most of this
work is concerned with the analysis of multi-agent systems,
where the agents are selfish, and each agent attempts to
maximize his own utility or minimize his own cost. Hence,
it is natural that work in multi-agent systems adopted the
notion of equilibrium as the type of solution concept to be
discussed. On the other hand, when dealing with settings
of incomplete information, work in computer science typi-
cally adopts non-Bayesian models, where qualitative deci-
sion making rules (without probabilistic assumptions about
the environment) are used. However, in a multi-agent setup
with incomplete information the non-Bayesian approach
might severely restrict the type of analysis that may be car-
ried out. Indeed, most previous work on games with in-
complete information in computer science adopted domi-
nant strategy equilibrium or ex-post equilibrium as the ma-
jor solution concepts. This paper is part of a line of research
that introduces non-Bayesian equilibrium concepts as ap-
propriate solutions for dealing with incomplete information
in multi-agent systems. One interesting property is that (as
we show) the related (non-Bayesian) equilibrium always ex-

ist.1 The main challenge remained is to consider concrete
powerful settings, where the related (non-Bayesian) equi-
librium concepts can be discussed, and lead to illuminating
results. In this paper we deal with such setting, resource se-
lection games, which is central to the computer science lit-
erature. We present an analysis of resource selection games
with incomplete information, using the non-Bayesian ap-
proach, yielding several highly powerful and surprising re-
sults.

In a resource selection system, Γ, there is a set of m re-
sources, j ∈ {1, · · · ,m}. Each resource j is associated with
a cost function wj : {1, 2, · · · , · · · } → <, where wj(k) is
the cost for every user of resource j if there are k users.
Together with a set of n players a resource selection sys-
tem defines a game in strategic form– a resource selec-
tion game, Γ(n). The action set2 of every player i in Γ(n)
is the set of resources M , and the cost of i depends, via
the resource-cost functions on the resource she chooses and
on the number of other players who choose this resource.
Thus, resource selection games are special type of conges-
tion games [22, 17]. A resource selection game is also re-
ferred to as a simple congestion game.3. In many situations
the assumption that every player knows the number of play-
ers is not reasonable. The goal of the current paper is to an-
alyze resource selection games with unknown number of
players. One approach for analyzing such situations is the
Bayesian approach, where it is assumed that the distribution
of the random set of players is commonly known. In this ap-
proach one is interested in Bayesian equilibrim. 4 The goal

1 In a finite setup.
2 When dealing with games in strategic form the choice set of a player

is referred to as an action set or as a strategy set. We use ”actions”
rather than ”strategies” because we keep the notion of strategy to de-
scribe the choice set of a player in ”bigger” games.

3 Simple congestion games and their generalization to player-specific
games were discussed in [21, 15, 8, 26, 10]. Simple congestion games
were also discussed in the price of anarchy literature, e.g., [11, 2]

4 See [14, 13, 6] for such analysis in the context of auctions, and [18,
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of this paper is to analyze resource selection games in the
non-Bayesian setup in which the players do not have proba-
bilistic information about the other players in the game. We
will use the model of pre-Bayesian games.

We remark that games can be analyzed with either pay-
off functions or cost functions. Most of the general theory
has been developed with payoff functions. However, con-
gestion games have been mainly analyzed using cost func-
tions. Translating results proved in one of the setups to the
other setup is obvious in most cases.5 We follow the tradi-
tion of previous literature in the sense that the general the-
ory is discussed with payoff functions, while resource se-
lection games are discussed with cost functions.

In a classical pre-Bayesian game there is a fixed set of
players N = {1, 2, · · · , n}, each of them is endowed with
a set of actions, xi ∈ Xi. There is a set of states ω ∈ Ω.
The payoff of player i, ui(ω, x1, x2, · · · , xn) depends on
the realized state, on her choice of action, xi, and on the
choices of all other players. However, the realized state is
not known to the players. Every player receives a state-
correlated signal, ti = t̃i(ω) on which she conditions her
action. A pre-Bayesian game becomes a Bayesian game
when a commonly known probability measure on the set
of states is added to the system. In pre-Bayesian games one
can deal with ex-post equilibrium. It is well-known that an
ex-post equilibrium in a pre-Bayesian game is a Bayesian
equilibrium for every choice of prior probability and vice
versa. Indeed, the classical literature in economics/game
theory actually discussed ex-post equilibrium in a particu-
lar Bayesian game, and defined it as a Bayesian equilibrium
which is robust to changes in the prior probability. Only re-
cently the concept of pre-Bayesian games have been explic-
itly defined.6 Unfortunately, ex-post equilibrium does not
exist even in very simple pre-Bayesian games. A strategy of
player i in a pre-Bayesian or Bayesian game is a function
bi that assigns an action (or a mixed action), xi = bi(ti)
to every possible signal ti. In all concepts of equilibrium
it is assumed that a player knows the other players’ strate-
gies. Hence, when a player receives a signal, ti, she is fac-
ing a classical decision problem with uncertainty about the
true state. She knows, however, that the true state should be
compatible with her signal. That is, the true state is one of
the states in Ω(ti) ⊆ Ω that yields the signal, and she is op-
timizing her choice in this decision problem. In a Bayesian
equilibrium, optimizing means maximizing expected util-
ity over Ω(ti) with respect to the given prior probability. In
an ex-post equilibrium, optimizing means maximizing util-

19, 20] for such analysis in the context of elections.
5 An exception is the price of anarchy theory.
6 Pre-Bayesian games have been also called games in informational

form and games without probabilistic information [9, 7], games
with incomplete information with strict type uncertainty [4], and
distribution-free games with incomplete information [1].

ity for every compatible state.
Another equilibrium concept for pre-Bayesian games

was recently defined in [4] - a minimax-regret equilibrium.
In such an equilibrium optimizing means choosing an ac-
tion that minimizes the maximal regret over compatible
states. It was proved in [4] that a minimax-regret equilib-
rium always exist in a finite setup7 when players are using
mixed strategies.8 An equilibrium concept for forms of pre-
Bayesian games has been already defined in [25, 24, 23]
in the context of work on artificial social systems, and
[12] defined another equilibrium concept for particular pre-
Bayesian auctions. Both groups of authors used distinct
generalizations of maximin equilibrium, which was recently
defined for classical pre-Bayesian games in [1]. In a max-
imin equilibrium optimizing means maximizing utility in
the worst case scenario. The min in a maximin equilibrium
ranges over all states that are compatible with the signal
ti, and the max ranges over all actions, Xi. Therefore, in a
cost model the maximin equilibrium is actually a minimax
equilibrium. We therefore prefer to use the term safety level
equilibrium for both payoff and cost models. In [1] the au-
thors mainly deal with the non-private type case, in which
all players have the same signaling function. However, they
prove existence results for the classical pre-Bayesian games
described above.

The existence of multiple equilibria has always been a
problematic issue in game theory. For pre-Bayesian games
we also face the problem of multiple types of equilibrium.
The question of which type of equilibrium in pre-Bayesian
games makes a better prediction is yet to be explored. It is
observed however, by [4] and [1] that every ex-post equilib-
rium is both a minimax-regret equilibrium and a safety level
equilibrium.

In order to analyze resource selection games with un-
known number of players we mainly use the safety level
equilibrium solution. However, the model of pre-Bayesian
games described above is not applicable for that matter,
since the set of players in this model is fixed. We therefore
generalize the model of pre-Bayesian games. In our gener-
alized model, the set of players and the action sets of the
players are state dependent.

We prove existence results for maximin and minimax-
regret equilibrium in the generalized model.9. All proofs
of existence (in [4], [1] and ours) make use of (variations
of) Kakutani fixed point theorem. For the sake of complete-
ness we also present and prove an existence theorem for a
third, and new equilibrium concept for pre-Bayesian games

7 Namely, the number of players and the number of states are finite.
8 Actually, the proof in [4] is given for a less general model of pre-

Bayesian games than the one described above, but in this paper we ex-
tend their proof to the more general case.

9 We also allow compact convex sets of actions.

13



- the competitive ratio equilibrium. The competitive ratio
approach is relatively common in computer science.10

Once we have the right tools we proceed to analyze re-
source selection games with unknown number of players.
We focus on a model with increasing resource cost func-
tions. In order to derive results for the case in which the
number of players is unknown we prove several results,
some of them are interesting for themselves, about classical
resource selection games with known number of players. In
particular we prove that every resource selection game pos-
sesses a unique mixed-action symmetric equilibrium. When
the number of players is k, the unique symmetric equilib-
rium mixed-action of every player is denoted by pk. That is,
pk = (pk

1 , pk
2 , · · · , pk

m), where pk
j is the probability that a

player chooses resource j.
In our pre-Bayesian model all active players know a

common bound, n, on the number of active players, but
the players do not know the true number of players, say k,
k ≤ n. Hence, the only signal a player receives is an ”ac-
tivity” signal. A state in this pre-Bayesian game is the set of
active players. We prove that a resource selection game with
unknown number of players has a unique symmetric safety
level equilibrium. In this equilibrium, every active player is
using the unique symmetric-equilibrium mixed-action, pn

in the game in which the number of players is commonly
known and equals n.

Hence, when the number of players is k, every player
uses pk when the number of players is commonly known,
and every player is using pn when the number of players is
unknown. Surprisingly, the lack of knowledge makes each
of the players better off in the linear system, in which the re-
source cost functions are linear! That is, we show that in the
linear model, when there are k players, and each of them is
using pn, the cost of each player is at most the cost he ob-
tains in the unique symmetric equilibrium, pk. Under very
modest assumptions every player is strictly better off.

The above results are applicable to a mechanism design
setup in which the organizer knows the number of active
players, and the players do not know this number. If the
goal of the organizer is to maximize revenue then he is bet-
ter off revealing his private information.11 If his goal is to
maximize social surplus then he should not reveal the in-
formation. In order to estimate the gain of the players re-
sulting from their ignorance we investigate in the last sec-
tion the function ck(pn) for n ≥ k, where ck(pn) is the cost
for a player in a k-player setup when all players play the
mixed-action associated with the symmetric equilibrium of
the corresponding n-player setup.

In the full paper we also analyze the minmax-regret equi-
librium of the related setting. We show that the phenomenon

10 See e.g., [3].
11 This is indirectly related to the Linkage Principle, in auction theory

[16].

described above does not hold for this solution concept. The
precise relationships between the linear cost functions of the
different resources determine whether knowing the number
of participants is helpful or harmful for the players. Many of
the proofs are omitted in this conference version of the pa-
per.

2. Background

A game in strategic form is a tuple, Γ =
(N, (Xi)i∈N , (ui)i∈N ). N is a nonempty set of play-
ers, Xi is a nonempty set of actions for player i,
and ui : X → < is the payoff function of i, where
X = ×i∈NXi is the set of action profiles. Hence ui(x)
is the payoff of player i when the profile of actions
x ∈ X is played. Γ is a finite game if N and X are fi-
nite sets.

Let x ∈ X denote a profile of actions. For each i ∈ N we
let x−i = (xj)j∈N/{i} denote the actions played by every-
one but i. Thus x = (xi, x−i). An action profile x ∈ X is
in equilibrium if ui(xi, x−i) ≥ ui(yi, x−i) for every player
i ∈ N and for every yi ∈ Xi.

A permutation of the set of players is a one-to-one func-
tion from N onto N . For every permutation π and for every
action profile x ∈ X we denote by πx the permutation of x
by π. That is, (πx)i = xπ(i) for every player i. Γ is a sym-
metric game if for every player i, for every action profile x,
and for every permutation π

ui(πx) = uπ(i)(x).

A symmetric action profile is an action profile x such that
xi = xs for every i, s ∈ N . x is a symmetric equilibrium
if it is both an equilibrium profile and a symmetric action
profile .

For any finite set C, ∆(C) denotes the set of probability
distributions over C. Let Γ = (N, (Xi)i∈N , (ui)i∈N ) be a
finite game in strategic form. Every pi ∈ ∆(Xi) is called
a mixed action for i. pi(xi) is the probability that player i
plays action xi. Every vector p ∈ ∆ = ×i∈N∆(Xi) defines
a probability distribution over X; The probability, p(x) of
x ∈ X is

∏
i∈N pi(xi).

Let um
i be the expected payoff function defined on ∆ by

ui. That is, um
i (p) = Ep(ui).

The game Γm = (N, (∆(Xi))i∈N , (um
i )i∈N ) is called

the mixed extension of Γ. A mixed action for player i in the
game Γ is an action for player i in the game Γm.

A mixed action equilibrium in a finite game Γ is defined
to be an equilibrium in Γm. It is well-known (see e.g, [5])
that every finite symmetric game in strategic form possesses
a symmetric mixed action equilibrium.
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3. Resource Selection Games with Known
Number of Players

In a resource selection system, Γ = (m, (wj)m
j=1) there

is a set of resources, M = {1, · · · ,m}, m ≥ 1. Ev-
ery resource j is associated with a cost function wj :
{1, 2, · · · } → <. wj(k) is the cost for every user of resource
j if there are k users. Together with the set of players Nn =
{1, · · · , n} a resource selection system defines a game in
strategic form– a resource selection game Γ(n). The action
set of every player i in Γ(n) is the set of resources M , and
the cost of i depends on the resource she chooses and on
the number of other players that choose this resource via
the resource-cost functions. That is, Xn

i = M for every
1 ≤ i ≤ n, and cn

i (x) = wxi(σxi(x)), where for every re-
source j and for every action profile x ∈ ×n

i=1X
n
i = Mn,

σj(x) is the number of all players s for which xs = j. Ob-
viously every resource selection game is a finite symmetric
game.

Let p ∈ ∆(M) be a mixed action of an arbitrary player.
That is, p = (p1, · · · , pm), where pj is the probability that
a player who uses the mixed action p will select resource j.
We denote the support of p by supp(p). That is supp(p) =
{j ∈ M |pj > 0}. Denote by cn(p, j) the expected cost of a
player that chooses resource j when each of the other n− 1
players in Γ(n) is using p. Let cn(p) be the expected cost of
every player when each of the n players in Γ(n) is choosing
p.

For every n ≥ 1, and for every 0 ≤ α ≤ 1. Let Y n
α ∼

Bin(n, α) be a binomial random variable. That is, fn
α (k) =

P (Y n
α = k) =

(
n
k

)
αk(1− α)n−k for every 0 ≤ k ≤ n. Let

Fn
α (k) = P (Y n

α ≤ k) be the distribution function of Y n
α .

Obviously

cn(p, j) = E(wj(1 + Y n−1
pj

)), (1)

where E stands for the expectation operator. That is,

cn(p, j) =
n−1∑
s=0

wj(s + 1)fn−1
pj

(s). (2)

Let (q, · · · , q) ∈ ∆(M)n be a symmetric mixed-action
equilibrium profile in Γ(n). We will refer to q as a
symmetric-equilibrium action.

Theorem 1 Every resource selection game with at least
two players (n ≥ 2) with increasing 12 resource cost func-
tions possesses a unique symmetric mixed-action equilib-
rium.

In order to prove Theorem 1 we need some preparations.
We prove two lemmas, and a corollary to these lemmas. The
proofs of Theorem 1, of the lemmas, and of the corollary are
given in the full version.

12 That is, wj(k) < wj(k + 1) for all j and k.

Lemma 1 Let n ≥ 1. Fn
α (k) is a strictly decreasing func-

tion of α for every 0 ≤ k ≤ n− 1.

Lemma 2 Let Γ(n), n ≥ 2 be a resource selection game.
Let q, p ∈ ∆(M) be mixed actions, and let Let j ∈ M be
a resource such that wj is increasing in {1, 2, · · · , n}. If
pj > qj then cn(p, j) > cn(q, j).

Corollary 1 Let Γ(n), n ≥ 2 be a resource selection game
with increasing resource cost functions. All symmetric equi-
librium actions in Γ(n) have the same support.

For every n ≥ 1 we will denote the unique symmetric
equilibrium in Γ(n) by pn, and we denote by cn = cn(pn)
the equilibrium cost of a player in Γ(n).

We say that a resource cost function wj is convex if it can
be extended to a convex function on [1,∞).

The following lemma will be useful later.

Lemma 3 Let Γ = (m, (wj)m
j=1) be a resource selection

system, with increasing and convex cost functions. There
exists an integer K ≥ 2, K = K(Γ) such that for ev-
ery n ≥ K, the unique symmetric-equilibrium action in the
game Γ(n), pn ∈ ∆(M) has a full support. That is, pn

r > 0
for every 1 ≤ r ≤ m.

Proof: Recall that pn is the unique symmetric-equilibrium
action in Γ(n), and that cn = cn(pn) is the symmetric-
equilibrium cost of every player. As pn is in equilibrium,
cn(pn, j) = cn for every j ∈ supp(pn) . For every resource
j we denote by wj the convex extension of wj to [0,∞). As
wj is convex,

cn(pn, j) = E(wj(1 + Y n−1
pn

j
)) ≥ wj(1 + E(Y n−1

pn
j

)) =

wj(1 + pn
j (n− 1)),

where the first equality follows from (1), the inequality fol-
lows from the convexity of wj , and the last equality follows
from the well-known fact that

E(Y n
α ) = αn. (3)

Obviously, there exists j ∈ supp(p) for which pn
j ≥ 1

m . For
this resource j

cn = cn(pn, j) ≥ wj(1 +
1
m

(n− 1)) ≥
m

min
r=1

wr(1 +
1
m

(n− 1)).

Since wj is increasing and convex, limn→∞ wj(n) = ∞ for
every resource j. Therefore limn→∞ cn = ∞. Hence, there
exists K such that for every n ≥ K cn > maxm

j=1 wj(1).
We claim that for every n ≥ K, pn

r > 0 for every 1 ≤ r ≤
m. Indeed, if pn

r = 0 for some r then because cn > wr(1), a
player will decreases her cost by deviating from pn to r (as-
suming every other player is using pn). This contradicts pn

being a symmetric-equilibrium action.
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4. Equilibrium in Pre-Bayesian Games

In this section we define a general model of pre-Bayesian
games, and we present and prove existence results for
minimax-regret, safety-level, and competitive-ratio equilib-
ria in such games.

A pre-Bayesian game is a tuple G = (N, Ω, (Xi)i∈N ,
(Si)i∈N , (Ti)i∈N (t̃i)i∈N , (ui)i∈N , (e)i∈N ), where

• N is the set of potential players.

• Ω is the set of states.

• Xi is the set of possible actions of agent i−− Only a
subset of Xi will be available for i at a given state ω.

• The symbol ei stands for a dummy action for i. It
does not belong to Xi. Let Zi = Xi ∪ {ei},and let
Z = ×i∈NZi.

• Ti ⊆ 2Xi × Si is the set of types of i. Hence, every
type of i is a pair ti = (t1i , t

2
i ), where t1i j Xi and

t2i ∈ Si. ti is an active type if t1i 6= ∅.

• t̃i : Ω → Ti is the signaling function of i; t̃i(ω) =
(t1i (ω), t2i (ω)) = (Xi(ω), si(ω)). For every ti we de-
note by Ω(ti) the set of states that can generate ti. That
is Ω(ti) = {ω|t̃i(ω) = ti}. We assume that Ω(ti) 6= ∅
for every ti ∈ Ti.

Player i is active at ω if t̃i(ω) is an active type. The
set of all active players at ω is denoted by N(ω).

• ui : Ω× Z → < is the payoff function of i.

The pre-Bayesian game proceeds as follows. Nature
chooses ω ∈ Ω. Every player i ∈ N(ω) chooses an ac-
tion xi ∈ Xi(ω) . Every non-active player j does nothing. It
is modelled by choosing ej . Hence, the players form a pro-
file z ∈ Z. Every active player i receives ui(ω, z). A strat-
egy of i is a function bi : Ti → Zi such that bi(∅, si) = ei

for every si ∈ Si, and bi(ti) ∈ t1i whenever t1i 6= ∅. We de-
note by Σi the set of strategies of player i ,and let
Σ = ×i∈NΣi.

Let G be a pre-Bayesian game. We say that G is a finite if
the set of potential players, the set of states , and the strategy
sets are finite. We say that G is a compact-continuous pre-
Bayesian game if the set of players and the set of states are
finite, Xi is a compact subset of some Euclidean space13,
for every type ti, t1i is a compact subset of Xi, and for ev-
ery ω ∈ Ω, the restriction of ui(ω, ∗) to Xi × Z−i is con-
tinuous in xi.

A compact continuous pre-Bayesian game is concave
if Xi is a convex subset of some Euclidean space, every
t1i ⊆ Xi is convex , and for every ω ∈ Ω, the restriction of
ui(ω, ∗) to Xi × Z−i is concave in xi.

Let G = (N, Ω, (Xi)i∈N , (Si)i∈N , (Ti)i∈N , (t̃i)i∈N ,
(ui)i∈N ,e) be a finite pre-Bayesian game. Denote

13 Or of some linear topological space.

∆i = ∆(Xi), and for every Yi ⊆ Xi let Oi(Yi) be the set
of all probability distributions in ∆i that vanish outside Yi.
Note that Oi(∅) = ∅. Let Tm

i = {(Oi(t1i ), t
2
i )|(t1i , t2i ) ∈

Ti}. Define t̃mi : Ω → Tm
i as follows: t̃mi (ω) =

(Oi(t̃1i (ω)), t̃2i (ω)). The pre-Bayesian game Gm =
(N, Ω, (∆i)i∈N , (Si)i∈N , (Ti)i∈N , (t̃mi )i∈N , (um

i )i∈N ,e)
is called the mixed extension of G, where um

i is the
expected-payoff function defined by ui. Obviously Gm is a
concave pre-Bayesian game. Every strategy of i in Gm is
called a mixed-strategy for i in G.

4.1. Safety-level equilibrium

Safety-level equilibrium were defined by Aghassi and
Bertsimas in ([1]). We use their definition for our general
model of pre-Bayesian games.

Let G be a compact-continuous pre-Bayesian game. Let
b−i = (bj)j∈N\i be a profile of strategies of all players but
i, and let ti = (Yi, si) be an active type for i. For every yi ∈
Yi the worst case payoff of i is

Vi(ti, b−i, yi) = min
ω∈Ω(ti)

ui(w, yi, b−i(t̃−i(ω)).

Obviously Vi is continuous on Yi. We say that y∗i ∈ Yi is
optimal for an active type ti = (Yi, si) given b−i if the max-
imal value of Vi(ti, b−i, yi) over yi ∈ Yi is attained at y∗i . A
strategy of player i, bi, is a safety-level best-response to b−i

if for every active type ti, bi(ti) is optimal for ti given b−i.
A strategy profile b = (bi)i∈N is called a safety-level equi-
librium if for every i, bi is a safety-level best-response to
b−i.

Hence, b is a safety-level equilibrium if and only if
for every ω, and for every player i, which is active at ω,
bi(t̃i(ω)) is optimal for t̃i(ω) given b−i.

A safety-level equilibrium in a pre-Bayesian game with
exactly one state is simply a Nash equilibrium in this game.
We next show that safety-level equilibria exist in every con-
cave game.

Theorem 2 Every concave pre-Bayesian game possesses a
safety-level equilibrium.

Proof: For every i, let T a
i be the set of active types, and let

T d
i = Ti \ T a

i be the set of dummy types. Every bi ∈ Σi is
determined by its restriction to T a

i . Note that Σi is a closed
convex subset of X

T a
i

i , which is a convex and compact set
because it is a cartesian products of such sets. In this sense,
every Σi and Σ are convex and compact spaces. For ev-
ery b ∈ Σ and for every i ∈ N let Bi(b) ⊆ Σi be the
set of all di ∈ Σi, which are best response to b−i. Let
B(b) = ×i∈NBi(b) ⊆ Σ. It is standard to check that the
correspondence b → B(b) satisfies the conditions of Kaku-
tani’s fixed point theorem. That is, it is upper hemicontin-
uous, and B(b) is a nonempty compact convex subset of Σ
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for every b ∈ Σ. Therefore there exists a fixed point b, that
is, bi ∈ Bi(b) for every i ∈ N . Obviously such a fixed point
is a safety-level equilibrium.

Hence, if G is a finite game, Gm possesses a safety-level
equilibrium. Every such an equilibrium is called a mixed-
strategy safety-level equilibrium in G.

4.2. Minimax-regret equilibrium

Minimax-regret equilibrium were defined by Hyafil and
Boutilier in [4]. We use their definition for our general
model of pre-Bayesian games.

Let G be a compact-continuous pre-Bayesian game. Let
b−i = (bj)j∈N\i be a profile of strategies of all players but
i, let ti be an active type of i, and let ω ∈ Ω(ti). The regret
of xi ∈ t1i at w is defined as:

R(xi, w, ti, b−i) =

max
zi∈t1i

[ui(w, zi, b−i(t̃−i(ω))− ui(w, xi, b−i(t̃−i(ω)))].

The maximal regret of xi ∈ t1i over all ω ∈ Ω(ti) is denoted
by MR(xi, ti, b−i). That is:

MR(xi, ti, b−i) = max
ω∈Ω(ti)

R(xi, w, ti, b−i).

We say that yi ∈ t1i is a minimax regret strategy at ti given
b−i if the minimal value of MR(xi, ti, b−i) over xi ∈ t1i
is attained at yi. A strategy bi is a minimax regret best re-
sponse to b−i if for every active type ti, bi(ti) is a minimax
regret strategy at ti given b−i. b is a minimax regret equi-
librium if for every player i bi is a minimax regret best re-
sponse to b−i. The next theorem shows that minimax-regret
equilibria exist in every concave pre-Bayesian game. The
proof is similar to the proof of theorem 2.

Theorem 3 Every concave pre-Bayesian game possesses a
minimax-regret equilibrium.

4.3. Competitive ratio equilibrium

Competitive ratio equilibrium resembles the minimax-
regret equilibrium. They differ only in the definition of re-
gret.

Let G be a compact-continuous pre-Bayesian
game, where all payoff functions are positive. Let
b−i = (bj)j∈N\i be a profile of strategies of all play-
ers but i, let ti be an active type of i, and let ω ∈ Ω(ti).
Replace the definition of R(xi, w, ti, b−i) in the previ-
ous section with the following:

R̂(xi, w, ti, b−i) = max
zi∈t1i

ui(w, zi, b−i(t̃−i(ω))
ui(w, xi, b−i(t̃−i(ω)))

.

Note that R̂ is well defined since all payoff functions are
positive.A strategy profile b is a competitive-ratio equilib-
rium if for every player i bi is a minimax-regret best re-
sponse to b−i with respect to the regret function R̂.

Theorem 4 Every concave game in pre-Bayesian game
with positive payoffs functions possesses a competitive ra-
tio equilibrium.

The proof follows from Theorem 3 by applying the loga-
rithmic function to the payoff functions.

5. Resource Selection Games with Unknown
Number of Players

Consider a fixed resource selection system, Γ with the
set of resources M = {1, · · · ,m}, m ≥ 1, and resource
cost functions (wj)m

j=1.
We proceed to describe our model of resource selec-

tion games with unknown number of players. Let N =
{1, 2, · · · , n}, n ≥ 1. be the set of potential players. The
set of states, Ω is the set 2N \ {∅} of all nonempty subsets
of N . The set of actions of player i is the set of resources.
That is, Xi = M for every player i. The sets Si will have
no use, and therefore we ignore them. The set of types of i
is Ti = {∅,M}. The signaling functions are defined as fol-
lows: t̃i(J) = M if i ∈ K and t̃i(J) = ∅ if i 6∈ J . Re-
call that Zi = M ∪ {ei}, where ei denotes a dummy ac-
tion. The cost function of i is ci : Ω × Z → <, where for
i ∈ J ⊆ N , ci(J, z) = wzi(σzi(z)), where σzi(z) is the
number of all players l ∈ N for which zl = zi. The values
of ci(J, z) for subsets of N that do not contain i are not rel-
evant and should not be specified. The above pre-Bayesian
game is finite. We denote its mixed extension by GΓ(n), and
we referred to GΓ(n) as a resource selection game with un-
known number of players. A strategy of player i in GΓ(n)
can be described by a mixed action q[i] ∈ ∆(M). That
is, when receiving the signal M , i uses q[i] and when re-
ceiving the signal ∅, i uses her dummy action, ei. Since we
deal with costs and not with payoffs we use minimax rather
than maximin in the definition of safety-level equilibrium.
let µ = q[1], · · · , q[n]) be a strategy profile in GΓ(n), and
let i be a player. Let µ[−i] = (q[l])l∈N\{i} be the profile of
strategies of the other players. If i is active, that is she re-
ceived the signal M , then the set of states that are compati-
ble with i’s signal, Ωi(M) is the set of all nonempty subsets
of N that contain i. If all cost functions are non-decreasing,
and if i believes that all other players are using the profile
q[−i], then it is obvious that the worst case scenario for i is
obtained in the state N . Thus we have:

Lemma 4 Let Γ be a resource selection system in which
the resource cost functions are non-decreasing. Let µ ∈
∆(M)n. µ is a safety-level equilibrium in GΓ(n) if and only
if µ is a mixed-action equilibrium in Γ(n).
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Proof: Assume µ is a mixed-action equilibrium in Γ(n).
Let i be an active player. By the comment we made before
the statement of the lemma,

min
p[i]∈∆(M)

max
S∈Ω(M)

ci(J, p[i], µ[−i]) =

min
p[i]∈∆(M)

ci(N, p[i], µ[−i]).

Because µ is a mixed-action equilibrium in Γ(n), the min in
the right hand-side of the above formula is attained at q[i].
Therefore µ is a safety-level equilibrium in GΓ(n). An anal-
ogous argument proves the if part of the lemma.

Theorem 5 Let Γ be a resource selection system in which
the resource cost functions are non-decreasing. GΓ(n) has
a unique symmetric safety-level equilibrium. In this sym-
metric safety-level equilibrium every player is using the
strategy pn, where pn is the unique symmetric-equilibrium
action in Γ(n).

Proof: The proof follows directly from Theorem 1 and
Lemma 4.

By Theorem 5, each of the players in GΓ(n) is using the
strategy pn, where pn is the unique symmetric-equilibrium
mixed action in Γ(n). However, the cost of each active
player in GΓ(n) is not cn = cn(pn), it depends on the
true state. If the true state is J , that is J is the set of ac-
tive players, and |J | = k, the cost of each active player i
is ck(pn). It is worthy to compare this cost with the cost
ck = ck(pk) that every player in J would have paid had
the players in J known the state. We make these compari-
son in linear models. We say that a resource selection sys-
tem is linear if for every resource j there exists a constant dj

such that wj(k) = wj(1) + (k − 1)dj for every k ≥ 1. For
every number of players, n, the associated resource selec-
tion game, Γ(n), as well as the associated resource selec-
tion game with unknown player set, GΓ(n) will be called
linear too. Note that in a linear system, wj is increasing if
and only if dj > 0, and wj is non-decreasing if and only if
dj ≥ 0. The proof of the following theorem, Theorem 6 is
given in the full version:

Theorem 6 Let Γ be a linear resource selection system
with increasing resource cost functions. For every k ≥ 2 let
pk be the unique symmetric equilibrium in Γ(k). There exist
an integer K = K(Γ), K ≥ 2 such that for all n > k ≥ K:

1. ck(pk) ≥ ck(pn).

2. All inequalities above are strict if and only if there ex-
ists j1, j2 ∈ M such that wj2(1) 6= wj1(1)

Theorem 6 is applicable to a mechanism design setup
in which the organizer knows the number of active play-
ers, and the players do not know this number. If the goal

of the organizer is to maximize revenue then he is better
off revealing his private information. If his goal is to max-
imize social surplus, then he should not reveal that infor-
mation. In order to estimate the gain of the players result-
ing from their ignorance we analyze the function ck(pn).
The proof of the following theorem is given in the full ver-
sion:

Theorem 7 Let Γ be a linear resource selection system
with increasing resource cost functions.There exist K such
that for every n ≥ K the following assertions hold:

1. pn
j = n−1+B−wj(1)A

Adj(n−1) , where A =
∑m

j=1
1
dj

, and B =
∑m

j=1
wj(1)

dj
.

2. The minimal social cost in Γ(k) attained with symmet-
ric mixed-action profiles is attained at p2k−1. Conse-
quently, ck(pn) is minimized at n = 2k − 1.
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