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ABSTRACT
We explore the problem of modeling Internet connectiv-
ity at the Autonomous System (AS) level and present an
economically-principled dynamic model that reproduces key
features of the AS graph structure. We view the graph as
the outcome of optimizing decisions made by each AS given
its business model. In our model, nodes (representing ASs)
arrive over time and choose and change providers to max-
imize their utility. Our formulation of AS utility includes
revenue from an AS’s own generated demand for traffic, con-
gestion and routing costs, as well as transfers to and from
provider and customer ASs, respectively. Our model has the
following features: it uses an empirically-motivated model of
traffic demand (Chang, Jamin, Mao, Willinger, 2005) which
considers the variation in demand with ASs’ business models
and the graph of business relationships; it allows for nodes
to revise their connections over time, in a fashion similar
to the well-known ‘forest fire’ model (Leskovec, Kleinberg,
Faloutsos, 2005); a node’s utility explicitly models many of
the major economic and technological issues at play.

We validate our model-generated graphs against those of
other generative models. Building on previous work that
has shown that rule-based generative models like preferential
attachment yield poorly-performing traffic routing graphs
(Li, Alderson, Doyle, Willinger, 2006), we show that our
graphs perform well as designed, engineered systems, while
retaining measured statistical properties of the AS graph.

1. INTRODUCTION
The Internet is composed of tens of thousands of sub-

networks (domains) called Autonomous Systems (ASs), each
administered separately and following its own distinct objec-
tives and constraints in controlling the traffic entering and
leaving its network. In such a multilateral setting, under-
standing the factors affecting AS inter-connection policies
and how these affect the overall, inter-domain network per-
formance is a challenging problem.

While there is already a large literature devoted to un-
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derstanding Internet connectivity at the AS level, many of
these models suffer from common pitfalls. Many models
are static and fail to capture the AS graph evolution and
its reactivity to changes in business relationships, routing
policies, and inter-domain demand. Other models have evo-
lutionary dynamics based on rules or generalized stochastics
(e.g. [5, 12]), such as preferential attachment and the copy-
ing model, which fail to give insight into the economic and
technological issues that govern the growth and maintenance
of the AS graph.

Moreover, in a thoughtful critique of such rule-based and
randomized models, Li, Alderson, Doyle and Willinger [14]
show that while many generative models reproduce features
of the AS graph such as node-degree distributions obey-
ing a power law, they fail to capture the high utility or
good performance of realistic networks [14]. In a study of
an AS’s intra-domain graph, Li, Alderson, Willinger and
Doyle [15] define performance as network throughput and
show that “only a careful design process explicitly incorpo-
rating technological constraints, traffic demands, and link
costs yields high-performance networks. In contrast, net-
works with the same degree distribution, resulting from even
carefully-crafted random constructions result in poor-performing
networks.” In other words, it is very unlikely that random-
ized or rule-based generative models will yield graphs that
have the highly-optimized structure of real-world networks.

1.1 Contributions
The present work explores the problem of modeling AS

graph formation using economic principles. Notable features
of our model include the incorporation of AS business mod-
els with an asymmetric gravity model of inter-domain traffic
demand [7], an explicit representation of AS utility that in-
corporates benefits for traffic routed, congestion costs, and
payment transfers between ASs, and a deterministic process
for revising of links that can cascade through the network.
While previous work on AS network growth has focused on
at most one aspect of these characteristics [8, 9, 3, 11], we
have not seen the conjunction of these ideas studied before.
As far as we know, there is no previous work on AS graph
modeling that incorporates a deterministic process for link
revision that can cascade throughout the network.

We validate our model against the properties of other gen-
erative models. To do this, we define the social planner’s
problem which is parameterized by the business models of
the graph and provide a method to compare earlier genera-
tive models with our model by optimizing the placement of
business models on the network. We find that our model



yields graphs that are better-performing as compared to
other dynamic generative models. We also find that our
model yields a structured placement of nodes endogenously,
where this placement of nodes generally reflects ASs’ busi-
ness models and market power. Finally, we find that our
generative model reproduces key statistical features of the
actual AS graph. In summary, although the generative
model uses simple myopic decisions, with some opportunity
for revision, we find it leads to well-performing graphs.

1.2 The Model
We construct a graph where ASs are nodes and a link

between two ASs reflects a business relationship such that
traffic is directly routed between them, in both directions.
The likelihood of a link between two ASs is largely depen-
dent on their respective business models and current market
position. For example, an AS that is predominantly a resi-
dential access provider will have most of its traffic demand as
incoming to its network, whereas an AS that mainly provides
web-hosting services will have much of its traffic demand as
outward flow.

There are two main types of business relationships, other-
wise called service-level agreements, between ASs: customer-
provider and peer-to-peer relationships. In the former, cus-
tomers pay providers for the connection, whereas no trans-
fers are made between peers. In previous work, it was shown
that peering links, partly because of their paucity in rela-
tion to customer-provider connections, are unlikely to be a
causal factor in generating many of the statistical properties
associated with the AS graph topology [8].

Our model uses an empirically-motivated and parameter-
ized traffic demand model that determines traffic demands
on the basis of AS relationships and the quality of the paths
separating them. An AS can affect its own demand and that
of others by its linking decisions. Implicit in our model is
that ASs will provision their networks as required to meet
demand, therefore we do not assume fixed link capacities.

Our utility function captures the fact that an AS’s rev-
enue stream comes from servicing both customers within
its own network as well as transit traffic requests from its
inter-domain customers. We model the operating costs of
an AS as stemming from congestion associated with traffic
being routed through its servers and sub-domains. In turn,
the price an AS charges for connectivity by its inter-domain
customers is a function of the running costs of an AS.

Another key feature of our model is that we incorporate
link revision. Since previous work has shown that ASs are
prone to short term volatility [17], we want to allow for
the possibility that an AS may want to revise its links as
its customers, demands and congestion change. Our link
revision process is inspired by previous work of Leskovec,
Kleinberg and Faloutsos [13] that proposes a “Forest Fire”
based link revision for their generative model, which aims
to capture the growth of social networks. In the forest fire
revision process for our AS graph, changes propagate from
customers to providers in a depth-first search manner where
branches die out when a provider does not make a change.

1.3 Related Work
Many generative models of AS growth have been proposed

based purely on randomized or rule-based behavior (e.g. [5,
12]). Our model is economically-principled and we show

that it yields both important statistical properties as well
as much better engineered systems.

We share this economic approach with previous models,
that have centered on the notion that an AS benefits from
the routing of its AS-originating and terminating traffic and
loses utility from transiting traffic. However, many of these [3,
11] have been formulated as game-theoretic models with
static equilibria (fixed points), which makes it difficult to un-
derstand the graph’s evolution over time. Moreover, some of
these assume that edges have intrinsic costs or capacities [2,
1, 4], and still others hinge on fixed demand models [3, 11].

Chang et al.’s [9] formulation of an AS’s decision problem
uses an empirically-motivated demand model previously in-
troduced in [7], which we also employ. Our model differs
from theirs in that our utility function is explicit about the
economic tradeoffs at play (the utility functions are very dif-
ferent) and our model does not involve any randomization
beyond the sampling of business models, which is tuned here
to empirically-measured distributions. While Chang et al.’s
model also allows for the revision of links, each AS revises
its links when a periodic “timer” goes off. Their method
of link revision does not cascade throughout the network as
ASs react to their neighbors’ link revisions.

2. PROPERTIES OF THE MODEL
We model the formation of the AS inter-domain routing

graph. Nodes (representing AS domains) come into con-
tact with other nodes and they lay down links to maximize
their economic benefits. Our model only considers customer-
provider links and so the decision to establish a link is always
initiated by the customer, who pays the provider for the link.
The joint action of customers choosing their providers de-
fines a directed graph reflecting the customer-provider busi-
ness relationships between ASs. While link payments are
one-sided, traffic flows in both directions since the customer
pays for transit traffic to and from its providers.

Inter-domain traffic demand is tied to ASs’ respective cus-
tomer bases. We capture this by a model given in [7],
assigning each node a business model according to their dis-
tribution from empirical data and defining traffic demands
based on these. Generally speaking, a customer AS’s util-
ity for connecting to a provider AS’s domain is a function of
how that connection will affect its own customers’ traffic de-
mand, the link’s impact on its links and network congestion,
and finally on the balance of payments made and received
by it for routing traffic along all of its adjacent customer-
provider connections.

We proceed to a detailed explanation of the properties
of our model. For the sake of clarity, a detailed discussion
of the dynamic process by which the AS graph is grown is
deferred until Section 3. In what follows, let N denote the
set of nodes with n = |N |.

2.1 Strategies
The action of a node i ∈ N is a vector si ∈ {0, 1}n in-

dicating which nodes i has chosen as its providers. We let
s = s1 × · · · × sn be the joint action of all nodes. Note that
an AS node’s actions are restricted to choosing its providers,
not its customers.

2.2 The Graph
The joint action s defines a directed graph G(s) as follows.

The nodes of G(s), hereafter G, are the nodes N . An edge



e = (i, j) is established if and only if si(j) = 1 and designates
that i is a customer of j, which is to say that i pays j for
the link. Let Ei(si) = {(i, j)|si(j) = 1} be the set of node
i’s provider links, with E(s) = ∪i∈NEi(si). Moreover, let
Eu

i (s) = {(k, l), (l, k) : (k, l)∪(l, k) ∈ E(s)} refer to all edges
adjacent to i.

2.3 AS Business Models
An AS’s business model reflects its utility for incoming

and outgoing traffic, as well as its disutility for routing traf-
fic through its domain. Formally, each node i ∈ N has a
business model parameterized with coefficients (αi, βi, γi) ∈
(0, 1]3 where αi reflects AS i’s demand for inbound traffic
and βi reflects its demand for outbound traffic. The param-
eter γi captures an AS’s relative capacity to be an effective
inter-domain access provider. A high value of γi suggests
that i is an effective provider. We can think of the business
model parameters (αi, βi, γi) as representing an AS’s utility
for providing residental access, web hosting, and business
access services, respectively. This is exactly the business
model representation studied by Chang et al. [7] The busi-
ness model coefficients (αi, βi, γi) are chosen from the joint
distribution F (a,Σ), where a refers to the distribution of γi,
which is currently drawn from a power law [7]. Since busi-
ness model coefficients are highly correlated in real-life, we
use a measured pairwise correlation matrix Σ to compute αi

and βi [7].

2.4 Traffic Demands
Let B(G) be the traffic demand matrix where entry bkl

represents the total demand for traffic from k to l. Let S
designate the routing policy. Accordingly, given G = (N, E),
let Pkl(S ,G) designate the set of edges e ∈ E along which
traffic from k to l is routed.

Traffic demands between ASs are given by a realistic de-
mand model that captures many key features of traffic de-
mand in the actual AS routing graph [7]. The traffic de-
mand model of Chang et al. [7] is an asymmetric extension
of the gravity model [18], where in the extension, bilateral
demands in each direction depend on the business models
of each pair of ASs, as well as those along the routing path
between them. The gravity model assumes that traffic de-
mand from AS k to AS l is expressed as Rk×Al

Ωkl
, where Rk is

a repulsive factor associated with traffic originating at k, Al

is an attractive factor associated with traffic destined for l,
and Ωkl is a bottleneck factor that opposes traffic from k to
l. The attractive, repulsive, and bottleneck factors are tied
to the business models of ASs. For example, an AS that is
predominantly a residential access provider will have most
of its traffic demand as incoming to its network, whereas
an AS that mainly provides web-hosting services will have
much of its traffic demand as outward flow.

We associate the rank vector (rα
i , rβ

i , rγ
i ) associated with

node i’s (αi, βi, γi) business model coefficients in relation to
those of all other nodes N . Let ω, ρ, χ be positive constants
that reflect the sensitivity of traffic to variations in business
model rank values. In particular, a value of χ = 0 will mean
that demand is not dependent on graph structure.

Demands are then expressed as follows:

bkl =
bkl
β + κα · bkl

α

(rγ
kl)

χ
, (1)

where

bkl
β = (rβ

k )−ω · (rα
l )−ρ + κβ · (rα

k )−ρ · (rβ
l )−ω,

bkl
α = (rα

k )−ρ · (rα
l )−ρ,

rγ
kl = max{rγ

u : (u, v) ∪ (v, u) ∈ Pkl(S ,G), v ∈ N}.

These expressions can be justified by the fact that inter-
domain traffic is, for the most part, either communication
between web servers and clients (“web” traffic) or commu-
nication between two clients (inter-residential traffic). The
amount of web traffic between k and l is given by bkl

β . Web
traffic consists of client-to-server requests for web resources
and server-to-client responses. The first term of bkl

β is meant
to capture server-to-client responses (“response” traffic) from
k to l and the second is meant to capture client-to-server re-
quests (“request” traffic) from k to l. Response traffic is typ-
ically significantly greater than request traffic, so the param-
eter Kβ is meant to capture the asymmetric nature of web
traffic. In the spirit of the gravity model, the total amount
of web traffic between a pair of ASs should be dependent on
their client population size and their web content population
size. Likewise, the total amount of inter-residential traffic
between a pair of ASs should be dependent on the ASs’ client
population size. The amount of inter-residential traffic be-
tween k and l is given by bkl

α . The parameter Kα determines
the relative weight of web traffic and inter-residential traffic.
The bottleneck factor, rγ

kl, is the worst-case service quality
of the path that routes the traffic between k and l. Given
business models for all nodes N and the graph G, the de-
mand matrix B is computed by Equation 1.

We also define xkl
e as the flow of traffic originating from

k and destined for l traveling along edge e and assume that
no packets are dropped by ASs. Therefore, we have

xkl
i,j =



bkl if (i, j) ∈ Pkl(S ,G)
0 otherwise.

(2)

This means that all of the demand is successfully routed
through the network.

2.5 The Routing Policy
The routing policy that we use is the “No Valley and

Prefer Customer” Routing Algorithm [10]. In a “No Valley”
path (v1, v2, ..., vn), if (vi, vi+1), denotes a provider-customer
relationship, then (vj , vj+1) is a provider-customer relation-
ship for all j such that i < j < n. In addition to this, all ASs
prefer to route their traffic through their customers because
an AS does not have to pay its customers to carry traffic.
The chosen AS paths are the shortest paths among the “No
Valley and Prefer Customer” paths. This routing algorithm
takes O(NE) time where N is the number of nodes in the
graph and E is the number of edges in the graph and is
closer to the way actual traffic is routed on AS graphs than
shortest path routing [10].

2.6 Costs and Payments
We model the cost associated with traffic routed through

node q as a congestion cost, τq ·
P

e∈Eu
q

P

k,l∈N xkl
e . Recall

that Eu
q designates all edges adjacent to q. Note that this is

a cost τq applied to all traffic flow through q, capturing q’s
cost for routing inbound and outbound traffic as well as for
all transit traffic. We discuss how to set the cost function
τq below.



ASs with lower transit routing costs in turn provide more
affordable and more reliable service to customer domains,
making them the preferred inter-domain access providers.
The price charged to a customer AS, p, by the provider AS,
q, is modeled as a function of the congestion associated with
traffic being routed through q’s servers and sub-domains as
well as a mark-up for the bilateral traffic flow along the
purchased link. Precisely, node q charges node p

tpq(G) = λq ·
X

e∈Eu
q

X

k,l∈N

xkl
e + µq ·

X

e∈(p,q)∪(q,p)

X

k,l∈N

xkl
e (3)

The first term reflects the congestion cost experienced by
q that is passed onto customer p. The second term rep-
resents the mark-up on all traffic along the link (p, q) and
can be thought of as a per-packet price of traffic flow. tpq

is a linear function that assumes that the mark-up on traf-
fic from costs incurred is separable from price of flow on a
link. That p should pay for traffic in both directions is how
most customer-provider arrangements are made, reflecting
the fact that p is paying q for access to the rest of the AS
graph network.

We stress that λq and µq are a function of q’s identity,
both terms relating to q’s effectiveness as an access provider,
and that they are customer-anonymous, i.e. independent of
p. In practice, p’s traffic demand along the proposed link
does matter in these per-unit charges. Our assumption holds
particularly well for small customers linking to much larger
providers and for the rare cases where large customers link
to relatively small providers [17].

An AS q’s costs for routing inter-domain traffic are very
much tied to how its network is provisioned. Two impor-
tant factors affecting an AS’s transit costs are the length
of inter-domain links and the inter-domain bandwidth ca-
pacity. Lower transit costs are associated with topologies
with greater geographic coverage and that are optimized for
larger traffic volumes. In our model, the effectiveness of q
as an access provider is captured by the coefficient γq of
its business model. With this in mind, we choose parame-
ters τq, λq and µq to vary super-linearly in γq to reflect the
large variability among ASs’ prices (and presumably costs)
for customer traffic [9]. Precisely, we have that

τq = τ · e−γq , λq = λ · e−γq , µq = µ · e−γq . (4)

where τ, λ, µ > 0 are model parameters.

2.7 The Utility Function
Transfer payments between ASs aside, an AS’s revenue

comes from the customers in its own domain. We adopt a
simple model whereby a node obtains 1 unit of utility for
every traffic packet either originating from it or destined for
it.

Given the set of nodes N , each with its associated business
model, the graph G(s) = (N, E(s)) of inter-domain connec-
tions and its associated traffic demand matrix bkl ∈ B(G),
and the transit costs and transfers made and received, the
utility of an AS node i is as follows:

ui(G) =
X

j∈N

bij +
X

j∈N

bji − τi ·
X

e∈Eu
i

X

k,l∈N

xkl
e

−
X

j:(i,j)∈Ei

tij(G) +
X

j:(j,i)∈Ej

tji(G)

3. THE DYNAMIC MODEL
In this section, we explain the dynamic process by which

the AS inter-domain graph is formed.

3.1 Overview of the Dynamic Process
As nodes arrive in the network, they are given a business

model that is chosen randomly from the joint distribution
described in Section 2. The newly born node chooses to
connect to the existing AS inter-domain graph in a way that
maximizes its utility function. We assume that this strate-
gic behavior is myopic in that nodes base their decisions on
the immediate effect on their utility, and ignore the poten-
tial consequences that current decisions have on the future
evolution of the network. This is a reasonable assumption
if nodes have limited information about the network struc-
ture or about how their actions will affect others decisions,
and this approach provides a starting point to consider far-
sighted behavior in later work.1

The dynamic process unfolds as follows: Time proceeds
in discrete periods. In period t, a single AS node is born
with business attributes < αi, βi, γi >. The newly born AS
proceeds to place a single link to maximize its utility. In
the same time period, the new node’s provider then has the
occasion to revise its links. It can either lay down a new
link and/or delete a single link (assuming it has more than
one provider) based on the action that maximizes its utility.
If it decides to make a change, then each of its providers
has the occasion to do the same. This process continues as
described below.

3.2 Best Response of an AS
When a node i is born, it chooses to form a single link with

an existing node j in the network, such that connecting to
j maximizes i’s utility. The following is the best response
function of node i given that its decision space is to add a
link:

BRA
i (G) = argmax

i′ 6=i,i′ /∈Ei

ui(G
′ = (N, E ∪ (i, i′)))

A node i can also add a link or delete a link or do both
during the revision of nodes and will have a similar best
response function.

3.3 Initial Conditions
Our random process starts with a single node being born.

The second node is similarly born and (necessarily) links to
the first node as its provider. The third node that is born has
a choice of either linking to the first node or the second node
as its provider. One might think that the nodes that arrive
early are severely restricted in their choice of providers, but

1Indeed, in a survey of AS interconnection arrangements,
Norton [17] suggests that AS relationships are sometimes
prone to short-term volatility from unforeseen changes in
traffic demand routing patterns stemming from new contract
agreements.



given that we incorporate revision of links into our model,
nodes have the opportunity to improve their situation as
more nodes arrive.

3.4 Revision of Links
Once a node lays down a link to its provider, this provider

is given the opportunity to revise its links and this process
continues recursively until no providers make a change. This
process propagates upstream from customers to providers.
Customers may add a link to a new provider or delete a
link to an existing provider, but a provider may not add or
delete customer links. In order to make our revision process
tractable and ensure that our revision process does not cy-
cle, we perform a depth first search where branches die out
once a provider decides not to make a change. The revision
of links process in our model is much like the Forest Fire
model of Leskovec et al. [13] although our revision process
is deterministic rather than randomized.

At each node in the depth first search, a node first com-
putes its best response function for adding a link given the
current topology of the network and adds a link if doing so
increases its current utility. It then computes its best re-
sponse function for deleting a link given the current topol-
ogy of the network and deletes a link if doing so decreases
its utility.

Node i does not have a single best response function, but
its best response during the link revision process should be
thought of as computing the best response addition and sub-
sequently computing the best response deletion:

BRD
i (G) = argmax

i′∈Ei

ui(G
′ = (N, E/(i, i′)))

We note that we run the depth first search once and do
not repeat the revision process until we reach an equilibrium.
We note that in many cases it may be computationally ex-
pensive to do so, since each computation of the best response
function involves multiple computations of all-pairs shortest
paths and traffic demands. We also believe it may be un-
necessary to run the link revision process until it reaches
equilibrium at every time step since nodes will have the op-
portunity to revise links in future time intervals.

4. SIMULATION RESULTS

4.1 Statistical Properties
The graphs generated from our dynamic process satisfy

some simple properties of the AS graph. We observe that
our generated AS graphs satisfy power law degree distribu-
tions (as we would expect [14, 16]), shown by approximately
linear behavior on a log-log scale. Though power law degree
distributions are not unusual, they are still a key statistical
property that AS graphs satisfy. Any valid AS model must
generate graphs with power law degree distributions, how-
ever they should not be the only metric by which to judge
AS graph generative models [14]. We observe that the cus-
tomer degree distribution, the provider degree distribution
and the overall degree distribution of our dynamically gen-
erated graphs satisfy a power law degree distribution. We
show an example of the degree distributions in Figure 12.

2We observe that the exponents of the power laws are -
0.8219, -0.3892, -0.7684 for the customer, provider, and to-
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degree

We observe that the exponent of the customer degree dis-
tribution is smaller (i.e. more negative) than the exponent
of the overall degree distribution, which is in turn smaller
than the exponent of the provider degree distribution, which
is what is found in practice [9].

4.2 Defining the Performance of a Graph
Our main interest is in evaluating the relative performance

of generated graphs against those of other generative mod-
els, including a highly optimized manual construction by Li
et al. [14], based on the notion of Highly Optimized Toler-
ance (HOT) of Carson and Doyle [6]. We use a measure
of social welfare to compare the relative performance. In
this, we follow Li et al. [14] who notice that rule-based and
purely stochastic generative models may reproduce certain
statistical features of the graph, such as power-law degree
distributions, but fail to capture important structural fea-
tures related to the performance of the graph in question.

We define the performance of a graph as the social wel-
fare function W (G) =

P

i∈N ui(G). Notice that all the pay-
ments cancel out, so this objective function is just the total
demand met by the network discounted by the congestion
cost experienced by all nodes.

W (G) =
X

i∈N

“

X

l∈N

bil +
X

k∈N

bki − τi ·
X

e∈Eu
i

X

k,l∈N

xkl
e

”

(5)

This is a reasonable model of social welfare for a network
of utility-maximizing ASs.

4.3 Comparing Network Performance
We compare graphs generated by our generative model

against a number of graph topologies: Erdős-Rényi random
graphs, preferential attachment graphs [5], copying model
graphs [12], randomized 2-geodetic graphs3, and highly-optimized

tal degree distribution, respectively. The model is set to
parameters τ = 0.4, λ = 0.3, µ = 0.2, with traffic demand
give by a = −0.9, ω = 1, ρ = 1, χ = 2, κα = 0.5, κβ = 0.5.
3All graphs have the probability of link addition p set to 0.3.
The copying model also has k = 2. Our model graphs have
τ = 0.6, λ = 0.2, µ = 0.31.
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tolerance (HOT) graph constructions [6]. The Erdős-Rényi
random graphs have arguably the least structure and serve
as a baseline for performance. The HOT graphs we evaluate
are hand-crafted constructions (very similar to those pre-
sented in [14]) and exhibit a great deal of structure, which
we would expect to be reflected in high performance.

We ensure that the graphs are of the same size and that
the N nodes that comprise all graphs are identical, mean-
ing that all graphs are made up of exactly the same set
of business models. Given a set of business models and a
graph, we match the business models to nodes in the graph
to optimize the graph’s performance objective function, in
the spirit of presenting all comparison graphs in the best
possible light. That is, given a collection of N nodes, each
with an associated business model, and the undirected graph
G = (V, E), where |V | = |N |, we match each i ∈ N to a
v ∈ V , uniquely. The traffic demand model makes this a
non-linear assignment problem which we solve by adaptive
simulated annealing. We emphasize that node placements
are achieved endogenously by our model.

Figure 2 shows the relative performance, measured ac-
cording to the aggregate welfare of nodes, of different net-
work topologies with business models optimally allocated
(save for our AS graph generative model). The graphs are
not normalized for the number of edges so more nodes and
more edges will benefit performance. We find that our model-
generated graphs fare well against all other graphs relative
to hand-constructed HOT graphs, even against much larger
copying model graphs (which have many more edges). This
speaks to the power of economic constraints on AS strate-
gic behavior to achieve good (social welfare-maximizing) re-
sults, even if AS actions are uncoordinated and myopic.

We also observe that our model reproduces, endogenously,
something near the optimal, social welfare-maximizing place-
ment of business models in the graph. We judge this by la-
beling all nodes according to their dominant (highest value)
business model coefficient and measuring a node’s location
in the graph by its betweenness centrality. Given the graph
G = (V, E), the betweenness centrality CB(v) of a node

v ∈ V is
P

s,t∈V
σst(v)

σst
, where σst refers to the number of

shortest geodesic paths between s and t, and σst(v), the
number of shortest geodesic paths between s and t that pass
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Figure 3: The average dominant business model coeffi-

cient against betweennness centrality.

through node v. Nodes lying on many shortest paths have
higher betweenness centrality values than those that do not.

Figure 3 plots the average value of the dominant busi-
ness model coefficient of nodes against their betweennness
centrality. The graph compares results for copying model
graphs, with the business models assigned to nodes to maxi-
mize social welfare, and those for our model-generated graphs,
with the business models assigned to nodes as per the model4

The plot suggests that our model endogenously achieves
an optimizing placement of business models in the graph.
For both our model-generated graphs and the optimally-
assigned copying model graphs, as the dominant coefficient
grows, business access providers move toward the center of
the graph quickest of all, whereas residential access providers
are much more likely to be located on the fringes of the
graph.

5. CONCLUSIONS AND FUTURE WORK
We believe our model represents a significant departure

from previous generative models by incorporating many of
the tradeoffs affecting AS behavior rather than using simple
stochastic models. A key feature of this model is the incor-
poration of revision of links since an AS’s linking decisions
are rarely permanent. We find that our model retains impor-
tant statistical properties found in the actual AS graph. We
also find that the performance of the graphs yielded by our
model suggests well-engineered systems, in that they have
high social welfare and an optimizing placement of business
models. This is despite the relative simplicity of the dy-
namic, forest fire-like revision process that we consider.

We are presently validating our model against empirical
data for a wide range of parameters. We are also exploring
the use of different traffic demand models as well as incor-
porating peering links, i.e. links without transfers between
parties.

Finally, we plan to study how the social welfare of graphs
generated by our model are affected by different AS routing
policies and to explore how new mechanisms for establishing
interconnections may improve graph properties.

4The plot averages over 10 148-node graphs, with model
parameters as before.
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