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ABSTRACT
We develop a model to study the phenomenon of free-riding in
peer-to-peer (P2P) systems. At the heart of our model is a user of
a certain type, an intrinsic and private parameter that reflects the
user’s willingness to contribute resources to the system. A user
decides whether to contribute or free-ride based on how the cur-
rent contribution cost in the system compares to her type. When
the societal generosity (i.e., the average type) is low, intervention
is required in order to sustain the system. We present the effect of
mechanisms that exclude low type users or, more realistic, penal-
ize free-riders with degraded service. We also consider dynamic
scenarios with arrivals and departures of users, and with white-

washers: users who leave the system and rejoin with new identi-
ties to avoid reputational penalties. We find that when penalty is
imposed on all newcomers in order to avoid whitewashing, system
performance degrades significantly only when the turnover rate
among users is high.
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tributed Systems; J.4 [Social And Behavioral Sciences]:
Economics
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Design, Economics, Performance
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1. INTRODUCTION
Why is free-riding widespread among users of P2P sys-

tems? How does free-riding affect system performance?
What mechanisms discourage free-riding? How does white-
washing affect the performance of P2P systems?
These are the questions that motivate us.

P2P systems rely on voluntary contribution of resources
from the individual participants. However, individual ra-
tionality results in free-riding behavior among peers, at the
expense of collective welfare. Empirical studies have shown
prevalent free-riding in P2P file sharing systems [1, 16]. Var-
ious incentive mechanisms have been proposed to encourage
cooperation in P2P systems [4, 6, 10, 13, 17]. At the same
time, it has been suggested that free-riding can be sustain-
able in equilibrium and may even occur as part of the socially
optimum outcome [12].

We develop a simple modeling framework to help answer
these questions. At the heart of our model is a user as a ra-
tional agent with a private and intrinsic characteristic called
her type, a single parameter reflecting the willingness of the
user to contribute resources (type can be intuitively thought
of as a quantitative measure of decency or generosity).

Each user decides whether to contribute or free-ride based
on the relationship between the cost of contribution and her
type. We assume that the cost of contributing is the inverse
of the total percentage of contributors, because when many
people free-ride, the load on contributors increases. Thus, if
at present a fraction x of the users contribute, the decision
of a rational user with type ti is:

Contribute, if 1/x < ti

Free-ride , otherwise

Even within this minimalistic framework we can already
see some interesting implications. In this “free market” en-
vironment, the percentage x of contributors is determined
as the intersection of the type distribution with the curve
x = 1/t. Under a uniform type distribution, the two curves
intersect at two points (see Figure 1), of which the higher
one is the attractor of the natural fixpoint dynamics, i.e.,
starting at some initial x, users arrive at individual deci-
sions, their aggregate decisions define a new x, and so on.
As long as the initial x is above the lower intersection point,
the process converges to the upper one. If there is no inter-
section, i.e., when there are too many selfish rascals around,
then x becomes 0 (the other attractor, which always exists)
and the system collapses.
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Figure 1: The intersection points of the two curves rep-

resent the two equilibria of the system. The curve x = 1/t

represents the contribution cost, and Pr(ti >= t) repre-

sents the generosity CDF, assuming ti ∼ U(0, tm). The

higher equilibrium (contribution level x1) is stable.

To understand system performance, we need to analyze
system benefits, as well as costs. What is a user’s benefit
when the level of contribution is x? We assume that the ben-
efit a user receives from participation in the system (whether
or not she contributes), denoted by Q, is a function of the
form

Q = αxβ

where β ≤ 1 and α > 0 are positive constants. Hence user
benefit is an increasing function of the number of contribu-
tors, but with diminishing returns—a form widely accepted
in this context (see, e.g., [2], [3], [15]). Thus, the perfor-
mance of the system, denoted by Wsystem, is defined as the
difference between (1) the average benefit received by all
users (including both contributors and free-riders) and (2)
the average contribution cost experienced by all users, which
effectively include only the contributors (free-riders incur no
costs):

Wsystem = αxβ − 1 (1)

With this we are ready to tackle more questions:

1. Would excluding low-type users from the system im-
prove performance? The answer seems to be true only
if the societal generosity level is low and α is large
enough (see Section 3).

2. The exclusion scenario is unrealistic because users’
types are private. What if free-riding behavior brings
some form of penalty, that is, deterioration of bene-
fits by a fraction of (1 − p)? We find that the penalty
mechanism is effective in discouraging free-riding be-
havior when the threat is sufficiently high relative to
the contribution cost (see Section 4). Moreover, for a
sufficiently high threat, no social cost is incurred be-
cause no user is effectively penalized, so the optimal
performance is achieved.

However, imposing penalties on free-riders require a way
to identify free-riders and distinguish them from contribu-
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Figure 2: Contribution level as a function of the societal

generosity level for different generosity distributions.

tors. Reputation systems [11, 14] may help, but these sys-
tems are vulnerable to the whitewashing attack, where a
free-rider repeatedly rejoins the network under new identi-
ties to avoid the penalty imposed on free-riders [9]. The
whitewashing attack is made feasible by the availability of
low cost identities or cheap pseudonyms. There are two ways
to counter whitewashing attacks. The first is to require the
use of free but irreplaceable pseudonyms, e.g., through the
assignment of strong identities by a central trusted author-
ity [5]. In the absence of such mechanisms, it may be neces-
sary to impose a penalty on all newcomers, including both
legitimate newcomers and whitewashers. This results in a
social cost due to cheap pseudonyms, as suggested by Fried-
man and Resnick [9]. We find that performance is signifi-
cantly affected only for high turnover rates (see Section 5).

2. CONTRIBUTION LEVEL
The contribution level, x, is the fraction of users whose

generosity (type) exceeds the current contribution cost, 1/x.
Thus, the fraction of users who contribute is derived by solv-
ing the following fixpoint equation:

x = Prob(ti ≥ 1/x) (2)

To solve this equation, we need to make assumptions
about the type distribution. In this section, we consider
the following distribution:

• Fraction a of the users: ti ∼ U(0, tm)

• Fraction 1−a
2

of the users: ti = 0

• Fraction 1−a
2

of the users: ti = tm

The parameter a ∈ [0, 1] determines the degree of bi-
modality of the distribution, with a = 0 corresponding to
an extreme bimodal distribution and a = 1 corresponding
to a uniform distribution. tm is the maximum willingness to
contribute resources, and the expected type is always tm/2,
independent of the value of a. tm is thus an important pa-
rameter of the system, as it reflects the societal “generosity”
(it is twice the expected type).

For a = 1, a user’s type is uniformly distributed between 0
and tm. Under a uniform distribution, we derive the fraction



General symbols

ti user i′s type
tm maximal type in population
α system benefit coefficient
β diminishing returns coefficient
W realized performance
Q individual benefit
R contribution cost
T threat level
z exclusion fraction
p penalty level

pm maximal possible penalty

Static system

x contribution level

Dynamic system

xs contribution level of stayers
xl contribution level of leavers
xa average contribution level
d turnover rate

Table 1: Model’s symbol notations.

of contributors as follows:

x = Prob(ti ≥ 1/x) = 1 − 1

xtm

(3)

which yields:

x1,2 =
tm ±

√
t2m − 4tm

2tm

The larger root x1 is the stable equilibrium (attractor,
see Figure 1) while x2 is unstable. For tm < 4, there is no
intersection between the curves, thus the contribution level
becomes 0 and the system collapses.

The contribution level varies depending on the type dis-
tribution and range (reflected by a and tm) as shown in
Figure 2. It increases in tm and converges asymptotically
to:

xm =
1 + a

2

On the other hand, the contribution level falls to zero when
tm falls below the threshold tmin

m , as shown in Figure 3.

tmin
m = max

�
1, (16a)/(1 + a)2 �

For a uniform distribution, tmin
m = 4, whereas for the ex-

treme bimodal distribution, tmin
m = 1. This means that

when the societal generosity level is low, a bimodal type
distribution can better sustain the system than a uniform
type distribution. On the other hand, when the societal gen-
erosity level is high, a uniform type distribution can realize
a higher contribution level and system performance. For
analytical tractability, we use the uniform type distribution
in the remainder of this paper. We leave a more thorough
analysis of other type distributions for future work.

3. EXCLUSION MECHANISM
The analysis presented above suggests that when the soci-

etal generosity is low, the system cannot be sustained with-
out intervention. In this section, we analyze the effect of
intervention in the form of exclusion.
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Figure 3: The minimal tm value as a function of a that

achieves positive contribution under a bimodal distribu-

tion.

1

1x

mt t

z{

(1 -  z) / t

Pr(ti >= t)

1 / t

Figure 4: The effect of the exclusion mechanism. The

shaded area represents the excluded users, and the

(higher) intersection point occurs at a higher contribu-

tion level.

If we had perfect information about the type of each in-
dividual user, we could exclude the users of the lowest type
in order to increase the contribution level. This shifts the
cost curve downward (see Figure 4), resulting in a higher
contribution level. However, exclusion also decreases per-
formance by limiting the number of users who enjoy the
system’s benefits. The trade-off is optimized at a particular
exclusion level.

Suppose a fraction z of users are excluded. The fixpoint
equation describing contribution level now becomes:

x = Prob(ti ≥
1 − z

x
) (4)

which yields:

x =
tm +

√
t2m − 4tm + 4tmz

2tm

Notice that x represents the contribution level in the entire
system rather than that in the post-exclusion system; there-
fore, the effective contribution level is the minimum between
this value and (1 − z).

With the exclusion in effect, the system performance be-
comes:

W exclusion
system = (αxβ − 1)(1 − z)

The optimal exclusion level is:

z∗ = argmaxz W exclusion
system

Figure 5 presents the system performance as a function
of tm with and without exclusion. We see that intervention



is not necessary when the societal generosity is sufficiently
high (tm >∼ 4.5). Any performance improvements realized
by the high-type users are offset by the loss in benefits for
the excluded low-type users. In contrast, for lower tm values,
the exclusion mechanism is effective in preventing a total
collapse in cooperation.
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Figure 5: System performance as a function of tm under

free-market and exclusion. β = 0.7, α = 10.

4. PENALTY MECHANISM
The exclusion mechanism that we describe is unrealistic,

because it assumes that types are observable. In addition,
the exclusion mechanism excludes users based on innate type
rather than behavior. In doing so, it does not allow users to
adjust their behavior in response to the imposed threat.

The penalty mechanism assumes that free-riding behav-
ior is observable, even though innate user types may not be;
that is, users are labeled as either contributors or free-riders,
and being a free-rider entails a penalty – deterioration of a
user’s benefits by a fraction of (1 − p). An example penalty
would be exclusion with probability p. Another example
penalty, which is mathematically equivalent to the first, is
service differentiation, under which free-riders’ system ben-
efits are reduced, while contributor benefits are not (see [4],
[11], [8] for various mechanisms that have been proposed
and analyzed, and which would have this effect). Down-
grading the performance of the free-riders has two effects,
which both lead to a higher contribution level. First, the
penalty reduces the contribution cost, denoted by R, since
the load placed on the system is reduced. Second, it intro-
duces a threat, denoted by T ; users who free-ride know that
they will get reduced service.

Under the penalty mechanism, the realized performance
of contributors and free-riders is:

Wcontributors = Q − R = αxβ − x+(1−x)(1−p)
x

Wfree−riders = Q − T = αxβ − pαxβ

Consequently, the contribution level, x, is derived accord-
ing to the following expression:

x = Prob(ti ≥ R − T )

x = Prob(ti ≥
x + (1 − x)(1 − p)

x
− pαxβ) (5)

In what follows, we set β = 1 for tractability and presen-
tation clarity. The solution of this fixpoint equation is:

x =
p − tm + � p2 + 2tmp + t2m − 4tm + 4pα − 4p2α

2(−tm + pα)

System performance now becomes:

W penalty
system = (αxβ − 1)(x + (1 − x)(1 − p))

and the optimal penalty level is:

p∗ = argmaxp W penalty
system

While p yields a higher contribution level, it also reduces
the benefit to free-riders. However, if p is set high enough,
it achieves full cooperation, and no penalty is actually im-
posed. Based on equation 5, this is achieved when p ≥ 1

α
.

In this case, we achieve the maximal system benefits:

Qm = Q(x = 1) = α

For example, if Qm = 10, we only need a mechanism that
can catch and exclude a free-rider with 10% probability, but
if Qm = 1.1, we will need to increase the probability to over
90%.

These results suggest that if we impose a high enough
penalty, or are able to identify and exclude free-riders with
high probability, we achieve optimal system performance.
However, in many cases it may be difficult or costly to
exclude free-riders with high probability, and p will be re-
stricted by a maximal feasible value, denoted by pm.

Figure 6 presents the percentile of optimal performance
that can be achieved by the penalty mechanism for different
pm values for a given α of 10. As long as p ≥ 1/α, optimal
system performance can be achieved, regardless of the value
of tm. In our example, where α = 10, the curve representing
pm = 0.1 exemplifies this (For lower values of α, a higher
pm will be required). On the other hand, if the penalty is
set too low (e.g., p = 0.01), the resulting performance is not
significantly better than the free-market (p = 0) outcome.

An additional issue is the stability of the equilibrium. It is
true that if p = 1/α, x = 1 is an equilibrium for all tm values.
However, the basin of attraction, [1− ε, 1], varies depending
on tm, and a low tm value may lead to an extremely small
ε or even ε = 0, which means that the system will never
converge to x = 1 unless the initial x is 1. The threshold
value above which the system converges to x = 1, denoted
by tthreshold

m , is a function of α and ε as follows:

tthreshold
m =

1 − 2α + εα

α(ε − 1)

tthreshold
m increases in ε as expected. For the value presented

in the figure (α = 10), tthreshold
m (ε = 0) = 1.9, which means

that for tm < 1.9, x = 1 is not an attractor, and the wider
the desired basin of attraction is, the higher tthreshold

m be-
comes.

5. THE SOCIAL COST OF FREE IDENTI-
TIES

In Section 4, we show that a penalty mechanism can dis-
courage free-riding behavior. However, the effectiveness of
penalties can be undermined by the availability of cheap
pseudonyms. In particular, a free-rider might choose to
whitewash, i.e., leave and rejoin the network with a new iden-
tity on a repeated basis, to avoid the penalty imposed on a
free-rider. The lower the cost of acquiring new identities, the
more likely a free-rider will engage in whitewashing. Since
whitewashers are indistinguishable from legitimate newcom-
ers, it is not possible to single them out for the imposition
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market scenario. α = 10.

xl , xs

whitewashers

d

(1-xs )(1-d)

d
newcomers departures

Figure 7: Dynamic system with arrivals, departures,

and whitewashers. A fraction d of users depart and are

replaced by the same number of newcomers. At the same

time, a fraction (1 − d)(1 − xs) of users whitewash under

FI.

of a penalty. Of course, it is possible to counter the white-
washing strategy by imposing the penalty on all newcomers.
However, this results in a social cost, as shown by Friedman
and Resnick [9].

In this section, we are interested in quantifying the social
cost of cheap pseudonyms in terms of reduced system per-
formance. We do so by extending our model from section 4
into a dynamic model in which users join and leave the sys-
tem. To quantify the performance reduction due to cheap
pseudonyms, we consider two dynamic scenarios: permanent
identities (PI) and free identities (FI).

Under PI, identity costs are taken to be infinity1, while
under FI, they are free. In actuality, identity cost can take
any positive finite value, and users decide whether to white-
wash depending on how the identity cost compares to the
penalty imposed on free-riders and newcomers. In this pa-
per, we focus on the two extreme cases of infinite and free
identity costs, as we believe these cases provide important
insights while preserving simplicity.

1Identity cost refers to the cost of acquiring any additional iden-
tity after the first, which is considered to be a sunk cost.

5.1 System Dynamics and Population Mixture
We model a system where some users leave and newcomers

join, with a turnover rate of d (Figure 7). We assume that
arrivals and departures are type-neutral and therefore do
not alter the type distribution 2.

The population at each point in time is composed of the
following four groups:

• existing contributors (EC)

• existing free-riders / whitewashers (EF/WW)

• new contributors (NC)

• new free-riders (NF)

The difference between the permanent and free identities
scenarios is signified by the members of the second group.
While free-riders stay in the system if identities are per-
manent, they will adopt whitewashing behavior under free
identities. However, if penalty is imposed also on newcom-
ers, free-riders are indifferent between staying or whitewash-
ing.

5.2 Contribution Cost, Threat and Contribu-
tion Levels

An important property of the dynamic scenarios is that
not all users care about the threat. The users who leave
the system at the end of each period are not affected by the
penalty they would have paid had they stayed in the system.
Consequently, we get two separate contribution levels:

xl: the contribution level of users who leave

xs: the contribution level of users who stay

The values of xs and xl in equilibrium satisfy the following
equations:

xl = Prob(ti ≥ R) (6)

xs = Prob(ti ≥ R − T ) (7)

(Recall that R and T denote the contribution cost and the
threat, respectively).

The average contribution level in the system, denoted by
xa, is:

xa = dxl + (1 − d)xs

The contribution level of users who stay is always greater
than or equal to that of users who leave. Unlike the static
system, where x = 1 can be achieved for a sufficiently high
p, dynamic scenarios cannot achieve xa = 1 due to the users
who leave.

The user’s contribution cost in each period is determined
by the ratio between the fraction of users who get the full
benefit of the system and those who get the reduced benefit.
If only existing free-riders are penalized (feasible only under
PI), all other groups get the full benefit. However, if all
newcomers are penalized, all groups except for existing
contributors get reduced service. The following table
presents the fraction of users who get the full and reduced
benefit under the two scenarios:

2The model can be extended in future work by considering more
sophisticated dynamics, as discussed in Section 6.



NC not penalized NC penalized

% penalized (1 − d)(1 − x) d + (1 − d)(1 − x)
% not penalized (1 − d)x + d (1 − d)x

Based on this table, the contribution cost under PI, when
newcomers are not penalized is:

RPI =
(1 − d)x + d + (1 − d)(1 − x)(1 − p)

x

The cost under FI, when newcomers are penalized is:

RFI =
(1 − d)x + d(1 − p) + (1 − d)(1 − x)(1 − p)

x

The cost is lower under FI because a larger fraction of
users are penalized; therefore the demand placed on the sys-
tem is lower. Nevertheless, the benefits of all users, except
for existing contributors, is also reduced. Under PI, if we set
p sufficiently high, we can obtain a scenario where p threat-
ens users but no penalty is actually imposed (similar to the
static system, see Section 4). In contrast, under FI, impos-
ing a penalty always results in reduced performance, because
newcomers are penalized independently of their behavior.

5.3 System Performance
Table 2 presents the fraction in the population and the

realized performance level of each group under the two sce-
narios. System performance is:

Wsystem = �
j

(fj ∗ Wj)

The best strategy is to impose a penalty p∗ that satisfies:
p∗ = argmaxp Wsystem
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Figure 8 compares the system performance, Wsystem, sub-
ject to a penalty p = p∗, under PI and FI as a function of
tm for different turnover rates (d). We make the following
observations:

• For very small turnover rates (d = 0.01), the sys-
tem performs close to its optimal level, as the threat

is imposed on the majority of the population, and
thus a small penalty level is sufficient to achieve a
high contribution level. No notable performance gap
exists between PI and FI. As turnover increases, a
higher penalty is required, which reduces system per-
formance.

• As tm increases, system performance converges to its
optimal level under both scenarios. The performance
gap between the two scenarios shrinks.

• Under a high turnover rate (d = 0.5) and low tm val-
ues, the system performs better if a penalty is imposed
on newcomers even under PI. If societal generosity is
low and the turnover rate is high, it is hard to obtain
satisfactory contribution levels, and penalties to new-
comers may help improve contributions by reducing
the load placed on the system.

We conclude that a notable social cost due to free iden-
tities is incurred only when a penalty on all newcomers is
unnecessarily imposed. In particular, the cost is incurred
only under high turnover rates (d) and only in conjunction
with intermediate contribution levels (tm) and low system
benefits (α). In contrast, in cases where the system can
tolerate the newcomers, the imposition of a penalty on all
newcomers incurs a social loss. In what follows, we provide
some observations that help explain these findings:

• If the turnover rate is low, the fraction of newcom-
ers in the population is small. Therefore, penalizing
newcomers does not significantly affect system perfor-
mance. In addition, because the population is fairly
permanent, a low p imposes a sufficient threat to ob-
tain many contributions.

• If the turnover rate is high and the societal generosity
is low, system collapse can only be avoided by reduc-
ing the demand placed on the system. Assessing a
penalty on all newcomers is one method to limit the
demand. In these situations, penalizing newcomers ac-
tually helps to sustain the system by reducing system
overload.

• If the societal generosity is high, a high contribution
level is obtained even in the absence of intervention.
Therefore, the best policy under both scenarios is to
impose a small penalty or no penalty. Hence, no no-
table social loss is incurred due to free identities.

• If the benefits of the system (α) are high, even a small
p results in a high threat to free-riders. Once again,
the optimal p is small, and so no notable gap occurs.

6. DISCUSSION AND FUTURE WORK
We have presented an economic model of user behavior

in P2P systems and derived some useful observations. In
particular, a mechanism that penalizes free-riders can im-
prove system performance by reducing the cost placed on
contributors. This mechanism is especially effective when
the societal generosity is low, in which case performance is
low or zero in the absence of intervention. Additionally,
penalizing all newcomers may be effective in discouraging
whitewashing behavior. Newcomer penalties reduce system
performance only for high turnover rates.



Group (j) Group Size (fj) Realized Performance (Wj)

Permanent identities Free identities
EC (1 − d)x Q − RPI Q − RFI

EF / WW (1 − d)(1 − x) Q(1 − p) Q(1 − p)
NC dx Q − RPI Q(1 − p) − RFI

NF d(1 − x) Q Q(1 − p)

Table 2: The size and realized performance level of the different groups under the PI and the FI scenarios.

Our model is flexible enough to account for a diverse set
of characteristics. For example, we extend our model to ac-
count for resource heterogeneity. To do so, we split each user
into a number of virtual users. The number of virtual users is
proportional to the amount of the user’s resources. We find
that users with many resources bear higher costs, and there-
fore exhibit lower contribution levels. Because contribution
from high-resource users is more valuable in terms of system
performance, a heterogeneous system results in a lower sys-
tem performance than a homogeneous system. However, if
the resource level and the generosity level correlate, a het-
erogeneous system may result in better performance than a
homogeneous one. Several research questions arise in this
context, as discussed next.

In this work, we do not propose a new incentive scheme.
Instead, we aim to develop a game-theoretic framework that
shows how incentive schemes affect user behavior and system
performance, and to obtain a better understanding of the
different factors and system parameters relating to the need
and effectiveness of these schemes. For this purpose, we
have simplified the model with a set of somewhat restrictive
assumptions. In future work, we plan to relax or modify
some of the assumptions and possibly extend the model in
several directions:

• Additional incentive schemes. We plan to analyze the
effect of system partitioning on user behavior and sys-
tem performance. In particular, if the system is parti-
tioned into two or more subsystems that impose differ-
ent penalties on free-riders, how would this affect the
results?

• Additional penalty forms. We plan to consider other
newcomer penalties. One possible penalty is an entry
fee that can be used as a pure transfer to the system.
Some examples of entry fees include monetary pay-
ments that can be distributed among the participants
or a required contribution of resources. While these
mechanisms entail no direct loss in efficiency, they in-
troduce a different set of issues. First, this type of
mechanism essentially forces contribution at the en-
tering stage, and may therefore prevent some users
from participating. Second, contribution of resources
from newcomers prior to their participation may be
limited, because in many cases the resources are gath-
ered through membership in the system. Third, redis-
tribution of monetary payments may be difficult due
to highly dynamic system membership.

• System dynamics (Section 5). In a dynamic scenario,
the model can be extended by assuming (1) departure
rates that depend on performance, (2) arrival rates
affected by p, and (3) dynamics that affect the distri-
bution by postulating type-dependent departures and

arrivals. In particular, one could imagine that p would
affect the arrival rate in different directions. On the
one hand, imposing penalties on newcomers may dis-
courage them from joining the system, which reduces
arrivals. On the other hand, users who join a system
that penalizes its users may expect higher performance
levels. Such a system may be particularly attractive
to join. Depending on how p affects the arrival rate,
the performance effect of free identities may increase
or decrease relative to our results.

• Identity costs. In our analysis, we consider the two
extreme cases of infinite and zero identity costs. In
future work, we intend to study cases in which the
cost of identity, c, is a positive finite value. In this
context, performance might benefit from imposing dif-
ferent penalties on free-riders and newcomers (e.g.,
pnewcomers = pfree−riders − c).

• Additional performance metrics. In this paper, we use
the metric of system performance. This metric assigns
equal weights to the realized performance of all users,
whether they are contributors or free-riders. In the
future, we plan to consider other performance metrics
that might be more appropriate on grounds of fair-
ness. One metric might assign more weight to the
performance of contributors than the performance ex-
perienced by free-riders.

• Resource heterogeneity. Several interesting directions
can be examined in the context of resource hetero-
geneity. First, how do the results change if users can
contribute resources at different levels, as opposed to
the binary categorization of contributor or free-rider
that we have assumed in this paper. Second, it will
be interesting to experiment with alternative contri-
bution cost functions that may be more reflective of
the opportunity cost. For example, users with many
resources may experience lower opportunity costs even
when they contribute more resources [7]. If so, the sys-
tem may exhibit better performance.
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